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The finite-size-scaling method in the equilibrium Monte Carlo �MC� simulations and the finite-time-scaling
method in the nonequilibrium relaxation simulations are compromised. MC time data of various physical
quantities are scaled by the MC time data of the dynamic correlation length. It corresponds to changing the
system size in the finite-size-scaling method. This scaling method is tested in the three-dimensional ferromag-
netic Ising model and in the three-dimensional �J Ising spin-glass model. The transition temperature and the
critical exponents are obtained. We also comment on the definition of the dynamic correlation length in the
nonequilibrium relaxation process. The Ornstein-Zernike formula is not always appropriate.
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I. INTRODUCTION

Monte Carlo �MC� simulations and the finite-size-scaling
analysis are very important tools in the study of phase
transitions.1 The thermodynamic limit is taken by the scaling
analysis on the finite-size and equilibrium �infinite-time� data
obtained by the equilibrium MC simulations. Then, the criti-
cal temperature and the critical exponents are estimated. The
applications serve as a strong bridge between the experimen-
tal and the theoretical physics. We may estimate various
physical parameters, predict unknown properties, and pro-
pose interesting experiments on real materials.

The nonequilibrium relaxation method2–6 is an alternate
version of the MC simulations. The method directly deals
with the MC relaxation functions of physical quantities. In
the standard equilibrium simulations, we take the infinite-
time �equilibrium� limit first. Then, the infinite-size limit is
taken by the finite-size-scaling analysis. This procedure is
reversed in the nonequilibrium relaxation method. We take
the infinite-size limit first by preparing a very large system
and stopping the simulation before the finite-size effects ap-
pear. Then, the infinite-time �equilibrium� limit is taken by
the finite-time-scaling analysis. The critical temperature and
the critical exponents are estimated in the same manner as
the standard finite-size-scaling analysis.

An advantage of the nonequilibrium relaxation method
may be a better computational efficiency in the slow-
dynamic systems. It is very important particularly when the
computational resources are limited. In the equilibrium simu-
lations, we discard the nonequilibrium relaxation MC steps
and collect data only after the equilibrium states are realized.
The discarding steps are very long in the slow systems. We
must perform different MC simulations to obtain data on
different-size systems. A linear size of system takes discrete
and limited values due to the very long discarding steps.
These disadvantages become advantages in the nonequilib-
rium relaxation method. We can use the long nonequilibrium
MC data that have been discarded in the equilibrium simu-
lations. Different time data �relaxation functions� can be ob-
tained by one simulation. The finite-time-scaling fit is easier
because the time data are almost continuous.

In general, there is a question whether the MC data are
sufficient or not in the scaling analysis. In the finite-time-

scaling analysis, the finite time, t, must be long enough to
extract the t→� properties. In the finite-size-scaling analy-
sis, the finite size, L, must be large enough to extract the L
→� properties. Although it is not the definite answer to the
question above, it is possible to check a size-time relation by
observing the dynamic correlation length, ��t�, in the non-
equilibrium relaxation method. This quantity directly exhib-
its how a typical size of correlated clusters grows with time.
We may consider that the finite time is long enough if the
dynamic correlation length satisfies various critical relations
that must hold in the equilibrium limit.

The critical relations between the dynamic correlation
length and other physical quantities lead us to find another
scaling method to investigate the phase transitions. This is
the nonequilibrium dynamic correlation-length scaling
method we introduce in this paper. This scaling method
works within the nonequilibrium relaxation scheme. Non-
equilibrium relaxation functions of physical quantities are
scaled by the dynamic correlation length. For example, we
scale the magnetic susceptibility, �, by plotting
��t ,T� /��t ,T�2−� versus ��t ,T� / �T−Tc�−�, where T denotes
the temperature, Tc denotes the critical temperature, and �
and � denote the critical exponents. This procedure is just a
replacement of L with ��t�: we plot ��L ,T� /L2−� versus
L / �T−Tc�−� in the finite-size scaling.

The present scaling method removes a shortcoming of the
finite-time-scaling analysis in the nonequilibrium-relaxation
method. It is an ambiguity of the dynamic exponent, z. This
exponent connects the correlation time, �, and the correlation
length, �, through the dynamic-scaling relation as ���z. We
can obtain the critical temperature and the critical exponents
apart from a value of z in the present scaling method. On the
other hand, the exponent � is not solely obtained in the
finite-time-scaling analysis.6–12 It always appears as a form
z�. It is necessary to estimate z independently in order to
obtain �. However, a numerical estimate of z has been a
tough task in the slow-dynamic systems. It sometimes de-
pends on the temperature in spin-glass models.13 We will
show that an estimate of z is easy in the present scaling
method using the finite-time and finite-size numerical data.

We also propose a definition of the dynamic correlation
length. The Ornstein-Zernike formula14 is often used to de-
fine this value. We show that this definition is not always
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appropriate particularly in the nonequilibrium relaxation re-
gime.

Section II explains models and a definition of the dynamic
correlation length. Section III explains the scaling procedure.
Numerical results are presented in Sec. IV. The ferromag-
netic Ising model in three dimensions and the �J Ising spin-
glass model in three dimensions are taken as examples. Sec-
tion V is devoted to the summary and discussions.

II. MODEL AND DEFINITION OF THE DYNAMIC
CORRELATION LENGTH

Let us consider the following spin model to demonstrate
the present scaling method:

H = − �
�i,j�

JijSiSj ,

where �i , j� denotes the nearest-neighbor pairs in the cubic
lattice, Jij denotes the exchange interaction, and Si denotes
the Ising spin. We consider the uniform ferromagnetic model
�Jij =1� and the spin-glass model �Jij = �J with an equal
probability� in this paper.

The dynamics of the present MC simulations is the Me-
tropolis type. The linear system size is denoted by L. The
skewed periodic boundary conditions are applied: the spin
number is L�L� �L+1�.

The correlation length of an ordered domain in spin mod-
els is usually defined by the correlation function C�r�
= �SiSi+r� as14

C�r� = �SiSi+r� 	
exp�− r/�	

r

in the equilibrium state near the transition temperature. Here,
we sometimes use r1+� instead of r in the denominator. In the
Monte Carlo simulations, it is easier to estimate the correla-
tion length by the Fourier transform of the susceptibility,
��k�, as15

� =
1

kmin

 ��0�

��kmin�
− 1, kmin =

2


L �1

0

0
� . �1�

Here, kmin denotes the smallest wave vector along one direc-
tion in a finite-size lattice. The expression is exact in the
limit of kmin→0.

The 1 /r factor in the spin-correlation function is only
guaranteed by the mean-field theory in the equilibrium
state.14 It is not trivial that we may use Eq. �1� in the non-
equilibrium relaxation process, where the system size is
much larger than the correlation length: ��L. In such case,
the spin-correlation function may decay in a simple exponen-
tial form without the 1 /r factor. In order to check the r
dependence, we plot in Fig. 1 the correlation functions, C�r�
and rC�r�, against r in the nonequilibrium regime �t=501�
and in the equilibrium regime �t=3981�. The system is the
uniform ferromagnetic model in three dimensions. The tem-
perature, T=4.515, is above the transition temperature.

The linearity of rC�r� is better than that of C�r� when t
=3981. The 1 /r factor is necessary in estimating the corre-

lation length in the equilibrium state. On the other hand, the
linearity is poor and convex upward when t=501. The lin-
earity of C�r� seems to be better.

If the correlation function exhibits a simple exponential
decay as

C�r� = �SiSi+r� 	 exp�− r/�	 ,

the correlation length should be estimated by the following
expression:

� =
1

kmin



 ��0�
��kmin�

− 1. �2�

It is difficult to judge whether we should use Eq. �1� or Eq.
�2� just by the linearity of C�r� or rC�r�. The difference is
small as shown in Fig. 1. There is also a possibility that
another definition for ��t� is appropriate.16 In this paper, we
only consider two expressions presented above and check a
consistency with the dynamic-scaling relation. A definition
that exhibits a better consistency is chosen.

The finite-t and finite-L data of the dynamic correlation
length at the temperature, T, is denoted by ��t ,L ,T�. We
expect that ��t ,L ,T�	 t1/z from the dynamic-scaling relation.
The correlation length divided by L becomes scale invariant
at the transition temperature. Therefore, we plot ��t ,L ,T� /L
against t1/z /L. The plotted data should ride on the single line
with its slope unity at the critical temperature, if we choose a
correct value of z. Let us call it a z scaling. In the paramag-
netic phase, the larger-size data deviate downward. In the
ordered phase, the larger-size data deviate upward. These are
the finite-size effects that appear as the system approaches
the equilibrium state.

Figure 2 shows the z scaling in the uniform ferromagnetic
Ising model in three dimensions. Relaxation data at three
temperatures are plotted in the same figure by shifting arbi-
trary in the vertical direction. The data estimated by Eq. �2�
yield a better scaling and the slope unity. The dynamic ex-
ponent z=2.03�2� is consistent with previous estimates: z
=2.04�3� from the scaling analysis,17 z=2.06�2�,3 z
=2.05�2�,18 and z=2.055�10� �Refs. 19 and 20� from the
nonequilibrium relaxation method, and z=2.04�1� from the
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FIG. 1. �Color online� The r dependence of the spin-correlation
function in the nonequilibrium regime �t=501� and in the equilib-
rium regime �t=3981�. The system is the uniform ferromagnetic
Ising model in three dimensions. The linear system size L=299 and
the temperature T=4.515. The lower two lines are plots of C�r� and
the upper two lines are those of rC�r�.
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damage-spreading analysis.21 The data estimated by Eq. �1�
are well scaled but the slope does not agree with unity. If we
choose z so that it yields the slope unity, the relaxation data
of different sizes do not ride on the same line. �The slope by
Eq. �1� suggests that ��t ,L ,T� /L	 �t1/z /L�1.13, but the scaling
fails if we take z=2.03 /1.13=1.80 for t1/z /L.	 Therefore, the
dynamic-scaling relation contradicts itself even in the ferro-
magnetic model. It is an evidence that a use of Eq. �1� is not
appropriate in the nonequilibrium relaxation scheme.

Figure 3 shows the same z scaling in the �J Ising spin-
glass model in three dimensions. Relaxation data at three
temperatures are plotted in the same figure by shifting arbi-
trary in the vertical direction. The temperatures are above
�T=1.40�, near �T=1.18�, and below �T=1.10� the transition
temperature. The dynamic exponent at each temperature is
estimated so that the relaxation data fall onto the same line
with the slope unity. The linearity is better if we use Eq. �2�.
The estimate of ��t ,L ,T� using Eq. �1� bends upward as the
system approaches the equilibrium limit while the slope ap-
proaches unity in the nonequilibrium limit �t→0�. This
bending behavior may mislead us to underestimate the value
of z. It is also noted that the value of z depends on the
temperature as zT
7.13 The finite-size effects appear when
the temperature is above the transition temperature �T
=1.40�. The size effects are very weak in the spin-glass
phase �T=1.10�.

It is shown that the dynamic correlation length in the non-
equilibrium relaxation process should be estimated by using
Eq. �2�. The dynamic-scaling relation is satisfied in the non-
equilibrium process if we take this definition. We perform
our scaling analysis using Eq. �2� in this paper.

III. SCALING PROCEDURE

We explain our scaling procedures step by step in this
section. The first two steps are the standard procedure of the
nonequilibrium relaxation method. The relaxation functions
of the physical quantity and the dynamic correlation length
are obtained.

�1� We prepare a system with a linear scale L and perform
a MC simulation at the temperature T. We start simulations
from the paramagnetic state. The correlation length is zero in
the initial state. A physical quantity, A, is measured at an MC
step, t, and is stored in memory as A�t ,L ,T�. Changing a
random number sequence, we perform independent simula-
tions and take an average of A�t ,L ,T� over these runs.

�2� We change the system size and perform simulations.
Relaxation functions of A�t ,L ,T� and ��t ,L ,T� for different
sizes are obtained and compared to check the finite-size ef-
fects. Data that are free from the size effects are denoted by
A�t ,T� and ��t ,T�.

Now, we will perform three scaling analyses. The first
scaling analysis determines the dynamic exponent, z. This
analysis is already presented in Figs. 2 and 3 as the z scaling.
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FIG. 4. �Color online� Size dependences of raw relaxation data
of the dynamic correlation length, ��t ,L ,T�, and the magnetic sus-
ceptibility, ��t ,L ,T� in the ferromagnetic model. The upper three
data are the susceptibility and the lower three data are the dynamic
correlation length.
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FIG. 2. �Color online� The z-scaling plot in the uniform ferro-
magnetic Ising model in three dimensions. Data labeled by �1� are
estimated by Eq. �1� and those labeled by �2� are estimated by Eq.
�2�. Three temperatures are below �T=4.510�, very close to �T
=4.511556�, and above �T=4.512� the transition temperature. A
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FIG. 3. �Color online� The z-scaling plot in the �J Ising spin-
glass model in three dimensions. Data labeled by �1� are estimated
by Eq. �1� and those labeled by �2� are estimated by Eq. �2�. Three
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This analysis is not always necessary. It is independent from
the other two scaling analyses. We only perform this scaling
when we need a value of z. This is a clear difference from
�and is probably an advantage over� the standard nonequilib-
rium relaxation method with the finite-time-scaling analysis.

�3� z scaling. At the temperature near the critical tempera-
ture, we plot ��t ,L ,T� /L versus t1/z /L in a log-log scale so
that all the scaled data fall on a single scaling function with
its slope unity. Only a value of z is a control parameter.
Examples are Figs. 2 and 3.

The second scaling analysis determines the anomalous ex-
ponent �. Let us call it an � scaling. We perform the scaling
analysis using the relaxation function of ��t ,L ,T� and
��t ,L ,T�. Since the simulation starts from the paramagnetic
state, both � and � are expected to increase algebraically in
time as ���2−� when T is near Tc. Then, the nonequilibrium
relaxation functions of ��t ,L ,T� and ��t ,L ,T� depend on L
as

��t,L,T�
L2−� 	 � ��t,L,T�

L
�2−�

. �3�

�4� � scaling. We plot ��t ,L ,T� /L2−� against ��t ,L ,T� /L
in a log-log scale and determine � so that all relaxation func-
tions fall on the same line with its slope 2−�. In this scaling,
� is an only scaling parameter. The determination of � is
done first by this scaling plot. Examples are Figs. 5 and 8 in
Sec. IV. Here, it is not necessary to know the critical tem-
perature precisely. We only need a rough estimate. Since we
work with the nonequilibrium relaxation method, the critical

relaxation is observed near the critical temperature in the
nonequilibrium process.

The last scaling analysis determines the critical tempera-
ture, Tc, and the exponent, �. In this scaling, we only use
data that are free from the size effect, ��t ,T� and ��t ,T�. The
equilibrium value of the correlation length diverges as �
��T−Tc�−�. We suppose that this scaling relation is satisfied
even in the nonequilibrium relaxation process. The suscepti-
bility ��t ,T� should be scaled by ��t ,T�2−� with � estimated
above.

�5� Dynamic correlation-length scaling. We plot the relax-
ation functions ��t ,T� /��t ,T�2−� versus ��t ,T� / �T−Tc�−� for
various temperatures and determine Tc and � so that all the
data ride on a single scaling function. Examples are Figs. 6
and 9 in Sec. IV. Here, a value of � is tuned to make the best
scaling behavior.

It is noted that the finite-size L in the finite-size-scaling
analysis is replaced by the dynamic correlation length ��t ,T�
in the present analysis. We consider that the present scaling
analysis is a natural extension from the finite-size-scaling
analysis when we work within the nonequilibrium relaxation
scheme.

IV. NUMERICAL RESULTS

A. Ferromagnetic model

We present numerical results in the ferromagnetic Ising
model in three dimensions. Figure 4 shows raw relaxation

TABLE I. Previous estimates of Tc, �, and � for the ferromagnetic Ising model in three dimensions.

Reference Tc � 2−�

Ferrenberg and Landau �Ref. 22� 4.51142�5� 0.6289�8� 1.970�11�
Blöte et al. �Ref. 23� 4.51152�2� 0.6301�8� 1.963�5�
Salman and Adler �Ref. 24� 4.51143� −4

+10�
Guida and Zinn-Justin �Ref. 25� 0.6304�13� 1.966�7�
Campostrini et al. �Ref. 26� 0.63002�23� 1.9636�4�
Ito et al. �Ref. 19� 4.511424�30� 0.635�5� 1.976�24�
Ito et al. �Ref. 20� 4.511526�30� 0.635�5� 1.976�24�
The present work 4.51153�3� 0.64�1� 1.965�5�
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FIG. 6. �Color online� The dynamic correlation-length scaling
plot of the magnetic susceptibility in the ferromagnetic model.
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and those of T=1.25 are multiplied by 2 in order to separate from
data of T=1.18.
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data of the dynamic correlation length and the magnetic sus-
ceptibility. The dynamic correlation length is estimated by
Eq. �2�. The logarithmic slope of � at T=4.511556 is 1 /z and
that of � is �2−�� /z. We plot in Fig. 5 a scaling result that
determines �. The relaxation data are scaled with 2−�
=1.955�0.015, where the logarithmic slope of the scaled
function agrees with 2−�. If we use the data at T=4.512, the
estimated value of 2−� becomes 2−�=1.90�5�. The esti-
mate improves as the temperature approaches the true critical
temperature.

The final dynamic correlation-length scaling plot of the
susceptibility is shown in Fig. 6. Here, only the
nonequilibrium-relaxation data that are free from the finite-
size effects are plotted. For an estimated value of �2−��
between 1.94 and 1.97, we search for values of Tc and � so
that the scaled data exhibit the best scaling behavior. The
obtained values are Tc=4.51153�3�, �=0.64�1�, and 2−�
=1.965�5�. They are consistent with the previous estimates
listed in Table I.

B. Spin-glass model

In this section, we present the numerical results of the �J
Ising spin-glass model in three dimensions. The spin-glass
correlation length is estimated from the Fourier transform of
the spin-glass susceptibility, �sg, defined by

�sg =
1

N��
i,j

�SiSj�2�
c

,

where the bracket �¯ 	c denotes the configurational average
and the bracket �¯ � denotes the thermal average. The ther-
mal average is estimated by the average over different real
replicas

�SiSj� =
1

m
�
A=1

m

Si
�A�Sj

�A�.

A replica number is denoted by m and the superscript �A�
denotes a replica index. We prepare m real replicas for each
random bond realization with different initial spin configura-
tions. Spin states of each replica are updated using different
random number sequences. The thermal average is taken
only by this replica average in our nonequilibrium relaxation
scheme. A replica number controls an accuracy of the ther-
mal average. It is set to 256 in this paper. The dynamic
spin-glass correlation length is estimated by Eq. �2�, where �
is replaced by �sg. It has been defined by Eq. �1�.27,28

Figure 7 shows the raw relaxation functions of the spin-
glass susceptibility and the dynamic spin-glass correlation
length. Here, the logarithmic slope of �sg is 1 /z�T� and that
of �sg is �2−�� /z�T�. Figure 8 shows the scaling plot deter-
mining a value of �. The straight-line scaling is possible near
�T=1.18� and above �T=1.25� the transition temperature by
using the same value of 2−�=2.2. The scaling behavior is

TABLE II. Previous estimates of Tsg, �, and � for the �J Ising spin glass model in three dimensions.

Reference Tsg � 2−�

Kawashima and Young �Ref. 29� 1.11�4� 1.7�3� 2.35�5�
Palassini and Caracciolo �Ref. 27� 1.156�15� 1.8�2� 2.26�4�
Ballesteros et al. �Ref. 28� 1.138�10� 2.15�15� 2.337�15�
Campbell et al. �Ref. 30� 1.11 2.72�8� 2.40�4�
Hasenbusch et al.�Ref. 31� 1.109�10� 2.45�15� 2.375�10�
Bhatt and Young �Ref. 32� 1.2� −0.2

+0.1� 1.3�3� 2.3�2�
Ogielski and Morgenstern �Ref. 33� 1.20�5� 1.2�1�
Mari and Campbell �Ref. 34� 1.195�15� 1.35�10� 2.225�25�
Nakamura et al. �Ref. 9� 1.17�4� 1.5�3� 2.4�1�
The present work 1.18�1� 1.40�5� 2.20�1�
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FIG. 8. �Color online� The � scaling in the �J Ising spin-glass
model in three dimensions. The raw relaxation data of Fig. 7 are
scaled. Dotted lines are guide for eyes with its slope 2−�=2.2.

101

10-3 10-2 10-1 100

χ s
g(

t,T
)/

ξ s
g(

t,T
)2−

η

ξsg(t,T)/|T-Tsg|−ν

ν=1.4
2−η=2.2 (γ=3.1)
Tsg=1.18

T=
1.20
1.25
1.30
1.40
1.50
1.60

1.15
1.10
1.05
1.00
0.90

FIG. 9. �Color online� The dynamic correlation-length scaling
plot of the spin-glass susceptibility.

NONEQUILIBRIUM DYNAMIC CORRELATION-LENGTH… PHYSICAL REVIEW B 82, 014427 �2010�

014427-5



poor in the low-temperature phase �T=1.10�. It is noted that
the scaling at T=1.10 becomes good if we use a value 2
−�=2.3. This value agrees with the previous estimate that
gives Tsg
1.1.27–31

Using the estimated value of 2−�, we plot the dynamic
correlation-length scaling results in Fig. 9. The scaling be-
havior is good when the temperature is above the estimated
spin-glass transition temperature, Tsg=1.18. The scaling be-
havior is fairly good below Tsg.

The previous estimates9,27–34 for Tsg and critical exponents
are summarized in Table II. They are roughly categorized
into two groups. One27–31 gives Tsg close to 1.1 and � close
to 2. The other9,32–34 gives Tsg close to 1.2 and � close to 1.3.
The present result is consistent with the latter group. The
latter group mostly takes the dynamic approach to the phase
transition. Recently, Hukushima and Campbell35 discussed
that this discrepancy can be understood by the strong correc-
tions to scaling.

Campbell et al.30 proposed the �-scaling analysis, which
uses ��2−�sg

2 � as the scaling variable. They estimated the
transition temperature and the critical exponents as Tsg
=1.11, �=2.72�8�, and 2−�=2.40�4�. We also try this
�-scaling analysis in Fig. 10. The high-temperature data are
well scaled but the low-temperature data cannot be scaled.
Our estimates are Tc=1.11, �=2.62, and 2−�=2.35, which
are consistent with their estimates but disagree with our
present estimates using �T−Tsg�. This discrepancy suggests
that the present numerical simulations are not sufficient to
extract the true critical phenomena both in a size scale and a
time scale in the spin-glass model.35 We checked that the �
scaling is possible using the same transition temperature and
critical exponents in the ferromagnetic model �figure not
shown�. The present size and time scales are sufficient in the
ferromagnetic model.

V. SUMMARY AND DISCUSSION

The dynamic correlation-length scaling method is intro-
duced. The basic idea of this method is that we investigate
the phase transition through the correlation length. It is found
that the scaling relations among physical quantities hold
even in the nonequilibrium relaxation process. We can use
finite-time and finite-size data in the scaling analysis as
shown in Figs. 2, 3, 5, and 8. Although the raw relaxation
data �Figs. 4 and 7� exhibit the finite-size effects, we can
scale them to one scaling line. The critical divergence is
observed from very early stage of the nonequilibrium relax-
ation process, if we scale the data by the dynamic correlation
length. These finite time-size data have been discarded in
previous scaling methods. We can utilize them in the present
scaling method and improve the total computational effi-
ciency.

The present dynamic correlation-length scaling analysis is
regarded as an extension of the finite-size-scaling analysis
replacing the size L with the dynamic correlation length ��t�.
We may consider that the finite-time relaxation data at a time
t corresponds to the equilibrium data of the size L with L
=��t�.

Since the present scaling method is entirely based on the
dynamic correlation length, the definition is very important.
We found that a use of the definition based on the Ornstein-
Zernike formula is not appropriate in our scheme. Since the
formula is based on the mean-field approximation, the
present nonequilibrium process may be out of the applicable
range of the approximation. The relaxation function of the
dynamic correlation length estimated by Eq. �1� exhibits an
extra increase before reaching an equilibrium value, as
shown in Figs. 2 and 3. The logarithmic slope, which is 1 /z,
is then overestimated. It affects a value of � in the conven-
tional finite-time-scaling analysis of the nonequilibrium re-
laxation method.36 The introduced definition, Eq. �2�, is
based on a simple exponential decay of the correlation func-
tion, which may be valid when L
�. We also comment that
the definition Eq. �2� may be used even in the equilibrium
state where the mean-field approximation is not valid.
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