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We study a local ferromagnetic Ising model for classical spins on the trillium lattice. The ground state of this
model features two spins out�/in� and one spin in�/out� on each triangle, and leads to a macroscopic ground-
state degeneracy. Our Monte Carlo simulations find a ground-state entropy intermediate to that of spin ice on
the kagome and pyrochlore lattices, suggesting that trillium spin ice is highly frustrated. To motivate the search
for trillium spin ice, we calculate the magnetic susceptibility and structure factor. We note the qualitative
resemblance of the susceptibility to previously published work on EuPtSi, which features local moments on the
trillium lattice.

DOI: 10.1103/PhysRevB.82.014410 PACS number�s�: 75.10.Hk, 75.40.Cx, 75.40.Mg

I. INTRODUCTION

Recently there has been great interest in the possibility
that spin-ice materials may provide a route to the realization
of deconfined magnetic monopoles in a fully three-
dimensional �3D� correlated spin system. While such
proposals1,2 and their experimental support3,4 have focused
on materials based on the pyrochlore structure, a growing
stable of lattice structures, and accompanying spin-ice mate-
rials, is developing which may provide complementary
routes to the same fundamental physics. In particular, the
existence of �two-dimensional� kagome spin ice was pre-
dicted in 2002 by Wills et al.,5 extended to dipolar spin ice
by Chern et al.,6 and recently realized with dipolar mesos-
copic interactions between lithographically etched ferromag-
netic islands.7 The existence of �3D� hyperkagome dipolar
spin ice has recently been proposed8 as a pure limit of “di-
luted” spin ice.9

Spin ice on the pyrochlore lattice is one of the most well
understood examples of a geometrically frustrated �GF� sys-
tem both theoretically1,10–13 and experimentally.14–18 GF ma-
terials have particularly interesting properties which arise be-
cause the symmetries of the triangle- or tetrahedral-based
lattice structures lead to interactions between charges and/or
spins which cannot simultaneously be uniquely minimized.
Generically one finds many equal-energy ground-state con-
figurations among which selection of a long-range-ordered
ground-state manifold proceeds via higher-order processes
such as order by disorder produced by finite temperature or
quantum fluctuations. One of the earliest recognized frus-
trated materials was water, which was found to retain a finite
entropy to very low temperatures by Giauque and Stout19

and explained in terms of proton disorder by Pauling.20 A
short 14 years later, it was recognized that macroscopic
ground-state entropies could arise in models of magnetism
on GF lattices when Wannier21 showed that antiferromag-
netic �AFM� Ising spins on the triangular lattice had a
ground-state entropy per spin of 0.338314. By the mid 1980s
it was recognized that a number of Ising AFMs exhibit finite
ground-state entropies22 and the list of GF lattices exhibiting
finite ground-state entropies has continued to grow,23 now
including some quantum spin models in addition to the spin-
ice materials motivating this work.

The term “spin ice” was coined by Harris et al.14 to de-
scribe the physics resulting from a ferromagnetic �FM� cou-
pling between nearest-neighboring spins on the pyrochlore
lattice when these local moments experienced an Ising aniso-
tropy directed along the local �111� directions �which point
toward the center of each tetrahedron�. Following earlier
work by Anderson,24 Harris et al. recognized that the
ground-state spin directions of such a local FM Ising model
had a one-to-one correspondence with the displacements of
hydrogen atoms from a corner-shared tetrahedral lattice in
cubic water ice.25 This correspondence enabled Harris et al.
to find a simple approximation to the residual entropy of
Ho2Ti2O7 based on Pauling’s estimate20 for the residual en-
tropy of water ice made almost 60 years earlier.

On the pyrochlore lattice, the Pauling estimate for the
ground-state entropy per spin of spin ice is S

N = 1
2 ln� 3

2 �. Paul-
ing’s estimate results from considering the probabilities of
different ground-state occurrences to be uncorrelated. To ob-
tain this result, one notes that of the 2N spin possibilities for
N Ising spins, only six of the 16 possible configurations on
each tetrahedron belong to the ground state with two spins in
and two spins out. This reduces the degeneracy of the ground
state by a factor of � 6

16�N�, where N�= N
2 is the number of

tetrahedra composing the lattice, such that for uncorrelated
spins one expects a ground-state degeneracy of 2N� 3

8 �N/2.
Since Harris et al.’s early work it has been realized that
dipolar interactions also play a strong role in the experimen-
tal realization of spin-ice materials on the pyrochlore
lattice,10,11 with the possibility of creating an effectively FM
coupling between nearest-neighbor spins even when the
Ising coupling has an antiferromagnetic sign.

Wills et al.5 extended the spin-ice label to include mate-
rials based on corner-shared equilateral triangle magnetic lat-
tices, in showing that a local FM Ising model on the kagome
lattice would have an even larger residual Pauling entropy:
S
N = 1

3 ln� 9
2 �. Ke et al.9 experimentally demonstrated that the

replacement of some magnetic atoms from a pyrochlore lat-
tice with nonmagnetic atoms indeed does produce a non-
monotonic variation in the residual entropy. One of us8 has
recently shown that in the disorder-free limit of such a re-
placement, hyperkagome spin ice, one would expect the
same enhanced Pauling entropy, S

N = 1
3 ln� 9

2 �.
In this paper, we report the first investigation26 of spin ice

on the trillium lattice. We show that a local FM Ising model
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with spins directed along the local �111� axis leads to a mac-
roscopic ground state with a residual entropy � S

N � ln� 3
2 �� in-

termediate to those of kagome and pyrochlore spin ices, in-
dicating that this is the newest member of the spin-ice class.
To motivate the experimental search for trillium spin ice, we
calculate the magnetic susceptibility and neutron-scattering
structure factor for this model. We note the curious resem-
blance of the former quantity to susceptibility measurements
of EuPtSi,27 which remains disordered to very low tempera-
tures and whose magnetic Eu2+ ions form a trillium lattice.
We note that the neutron-scattering structure factor is quite
different from that of the AFM Heisenberg model28 on the
trillium lattice even in the cooperative paramagnetic phase
and explain why this is expected to be a generic attribute of
spin ice on corner-shared equilateral triangle lattices.

II. MODEL

We consider a local FM Ising model on the trillium lattice
with Hamiltonian,

H = J�
�ij�

s�i,local · s� j,local, �1�

where s�i,local=�i�ê� �no sum over ��, �i�= �1, �ij� sums
over nearest neighbors, J�0 is a FM coupling constant, and
ê� is a unit vector denoting the local easy axis of the trillium
lattice as presented in Table I. As the dot product of any two
of the nearest-neighbor unit vectors ê� is − 1

3 , this model is
formally equivalent to an AFM Ising model on the trillium
lattice. The trillium lattice is a simple cubic structure with a
four site basis and a P213 symmetry featuring a 3D lattice of
corner-shared equilateral triangles as pictured in Fig. 1.

It is interesting to note that none of the spin structures
corresponding to the ground state of the AFM Ising model
are common to the ground state of the classical AFM Heisen-
berg model on any corner-shared equilateral triangle lattice
in contrast to the case on the pyrochlore lattice. This means
that the excellent agreement10 between large-N studies of the
AFM Heisenberg model and the local FM Ising model on the
pyrochlore lattice is not expected to carry over to studies of
corner-shared triangle lattices.

In contrast to earlier studied spin-ice lattices, the AFM
Heisenberg model on the trillium lattice is known to order at
low temperatures28,29 despite the geometric frustration inher-
ent to its structure. We will show below that this is not the
case for trillium spin ice meaning that the FM local Ising

model studied here is the first fully frustrated model to be
studied on this structure. The ground state of any corner-
shared triangle structure can be simply found by minimizing
the Hamiltonian of Eq. �1� on a triangle and counting the
energy per spin. For J�0, this leads to a ground-state con-
figuration with two spins out�/in� and one in�/out� with a
ground-state energy of J

3 per spin.30

III. METHOD

We have carried out Monte Carlo simulations using the
METROPOLIS algorithm with periodic boundary conditions on
cubic lattices of side length L corresponding to 4L3 spins.
The bulk of our analysis corresponds to a choice of L=6,
which contains 864 spin sites, as our results appeared to
reach the thermodynamic limit by L=3. To ensure that we
had reached the thermodynamic limit, we considered sys-
tems as large as L=18 in our calculation of the residual en-
tropy of this spin system. At each temperature, 10 000 Monte
Carlo steps were used to equilibrate the system and a further
1000 were used to calculate the averages of physical quanti-
ties, where one Monte Carlo step was taken to on average
attempt one update per site. Error bars as reported corre-
spond to the standard deviation of our averages over four
independent trials. Following the simulated annealing pre-
scription of Kirkpatrick et al.,31 for most of our analysis the
temperature of the system was started at T=20J and reduced
by 1% at each step. Exact results for the residual entropy
were found by counting unique members of the ground state
for the tractable periodic lattice sizes L=1 and L=2.

Acceptance rate

As shown in Fig. 2�a� in contrast to studies12 of spin-ice
physics on the tetrahedron-based pyrochlore lattice, at low
temperatures on our triangle-based trillium lattice, the accep-
tance rate of the Monte Carlo simulations does not approach
zero except in the case of L=1. This difference is easily

TABLE I. Unit vectors ê� denoting the local easy axis at each
location within a unit cell for four inequivalent sites labeled by �.
The relative location of each site within the unit cell is given in
terms of a crystal parameter u.

� ê� Spin location

1 1
	3

�1,1 ,1� �u ,u ,u�
2 1

	3
�1,−1,−1� �u+ 1

2 , 1
2 −u ,1−u�

3 1
	3

�−1,1 ,−1� �1−u ,u+ 1
2 , 1

2 −u�
4 1

	3
�−1,−1,1� � 1

2 −u ,1−u ,u+ 1
2 �

FIG. 1. �Color online� The trillium lattice. The direction of each
spin is shown by an arrow �the direction of the spin at one of the
four sites in the unit cell is pointing out of the page�. Beyond the
triangle a minimum of five bonds are required for the lattice to form
a closed loop.
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understood in terms of the acceptable ground-state spin con-
figurations as shown in Fig. 2�b�. Such flippable sites do not
exist on tetrahedron-based spin-ice lattices. Counting the to-
tal number of ground states for such a three-triangle configu-
ration which have a flippable spin gives 16 of 54 members of
the ground state, slightly above our low-temperature asymp-
tote. Such flippable configurations cannot exist for L=1. A
more careful exact treatment for the 32 sites of L=2 gives a
total of 314 874 ground-state spin configurations. Of these
10 075 968 spin sites, we have numerically found that
2 797 714 sites are flippable, yielding an exact result of
27.8% of all sites are flippable, for comparison with the L
=2 Monte Carlo asymptote of 27.9%�0.3%. As one can see
from Fig. 2�a�, there is no discernible difference in the ac-
ceptance rate for L=2 and L=6, indicating that we have
quickly reached the thermodynamic limit.

Lest one be tempted to suggest that for a given simulation
one has roughly 73% of the spin sites exhibiting long-range
magnetic order amidst a background of static flippable spin
sites, it is interesting to note that the location of the flippable
sites is not fixed. Indeed, even at the lowest temperatures
when the system can no longer access spin configurations
outside the ground-state spin manifold, after waiting a suffi-
ciently long time every site on the lattice will flip. In this
sense, our model remains disordered �unlike pyrochlore spin
ice which becomes stuck in a glassy state32� and able to
equilibrate even to zero temperature. The dynamic process
through which flippable sites move around the lattice can be
illustrated by following the evolution of the location of one
of the flippable sites as shown in Fig. 3. Here we see that it
is possible to have neighboring flippable sites. When a spin
flip occurs at site one, there is some probability that a neigh-

boring spin at site two is now also a flippable site. When this
is the case, the next flip could occur either at site one or site
two. If the latter, the spin at site 1 may well no longer be
flippable, and the location of the flippable site begins to mi-
grate around the lattice. As seen in Fig. 3 this migration

0 5 10 15 20
Temperature [units of J]

0

20

40

60

80

100
A

cc
ep

ta
nc

e
R

at
e

[%
]

L = 2 Exact
L = 6 Monte Carlo
L = 2 Monte Carlo
L = 1 Monte Carlo

+ +

+

+
+

+

+

a)

b)

FIG. 2. �Color online� �a� The acceptance rate of the spin flips as
a function of the temperature. For L�2, below about T=0.2
J
 the
acceptance rate asymptotes to the L=2 exact result of 27.8% as
discussed in the text, �b� The only zero-energy spin fluctuations
allowed in the ground-state feature spins whose neighbors all pair
with opposite signs. Changing the direction of one of the sites
changes three triangles from being mostly up to mostly down or
vice versa as discussed in Sec. IV B 2.

FIG. 3. �Color online� The evolution of the location of a par-
ticular flippable site in time. The path of spin flips which originated
at site 0 after �a� 30, �b� 109, and �c� 191 updates. The numbers in
the pictures are the number of updates it took for the path to reach
that spin site. The number of updates includes updates where the
flippable location does not change, instead the same site flips back
and forth between its two possible directions.
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covers a reasonably large distance in a small number of up-
dates in a manner reminiscent of a random walk or traveling
salesman problem.

IV. RESULTS

A. Heat capacity

Within a Monte Carlo simulation, one computes the heat
capacity as

CV�T� =
�E2� − �E�2

T2 , �2�

where E is the energy of a particular spin configuration on
the lattice and T is the temperature of the system.

Magnetically frustrated materials are distinguished by
their lack of magnetic order to very low temperature despite
the presence of strong spin-spin correlations. In particular,
spin-ice materials are known to exhibit a soft peak in the heat
capacity indicating the onset of the ice rule at low tempera-
tures. At high temperatures, there is little energetic cost for
flipping a spin in a disordered system. As more triangles
begin to satisfy the ice rule, defects become more isolated
forcing the system to pay an energetic cost to flip certain
spins. Below the peak essentially all triangles are members
of the ground state, with all accepted spin-flip processes
leaving the system in its ground state, thus paying no ener-
getic cost.

In Fig. 4�a�, we present the heat capacity per spin divided
by temperature as a function of temperature for L=6. We
observe a characteristic soft peak in the heat capacity with
the ice rule obeyed by the majority of triangles below about
J
2 , and completely obeyed below T� J

8 .

B. Entropy

At very high temperature, one expects there to be essen-
tially no correlations between the local Ising spins or 2N

equally weighted spin configurations for an entropy per spin
of ln�2�. In a majority of materials, as the temperature ap-
proaches zero, in accordance with the third law of thermo-
dynamics, the entropy of the system approaches zero. Spin-
ice materials are a notable exception to this rule, as to very
low temperatures they retain a large finite residual entropy.
One can quantify the amount of residual entropy at tempera-
ture T by subtracting the integrated weight under the

CV

T
curve from the high-temperature entropy of the system,

S�T� = S�T = �� − �
T

� CV�T�
T

dT . �3�

Here and below we will refer to the entropy per spin for
our model. In the T→0 limit, we have a finite residual en-
tropy and correspondingly macroscopic ground state if
S
N �0�=ln�2�−0

� CV

T dT�0.

1. Pauling estimate

As noted above, the simplest approximation one can make
to the residual entropy of a corner-shared triangle/

tetrahedron lattice is to assume, as Pauling did in the context
of water ice,20 that spins beyond the nearest neighboring tri-
angle are uncorrelated. Then each spin site has two degrees
of freedom constrained by only a fraction of the possible
spin configurations on each triangle/tetrahedron being mem-
bers of the ground state. For a triangle-based lattice, this
number is 6

8 . If the triangle assignments are uncorrelated then
for each triangle added one adds a factor of 6

8 to the compu-
tation of the total states available to the system. On the hy-
perkagome and kagome lattices, each spin belongs to two
triangles, such that there are Nt=

2N
3 triangles in total. On the

trillium lattice each spin belongs to three triangles so there
are Nt=N triangles in total. The Pauling degeneracy of the
ground state is then 2N� 6

8 �Nt =2N� 6
8 �N= � 3

2 �N, hence the Pauling
estimate for the entropy per spin is S

N = 1
N ln� 3

2 �N=ln� 3
2 �.

2. Exact

While one might expect the Pauling estimate to provide a
reasonable approximation to the ground-state degeneracy in
the thermodynamic limit for uncorrelated triangles, it clearly
has some limitations as the number of unit cells becomes
small. As an example, if we consider the case L=1, the Paul-
ing estimate includes four triangles and four spins, leading to
a nonintegral number of distinct ground states, 81

6 . For this
case it is not hard to show that all members of the true
ground state have �i�=+1 for two sites in the unit cell and
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FIG. 4. �Color online� �a� Heat capacity divided by temperature
per spin versus temperature in units of the coupling constant J of
the system at different temperatures for L=6, �b� residual entropy
per spin versus system size, L, for a cubic lattice with 4L3 sites �L
is the number of unit cells in each direction on the lattice�. For L
=1 and 2, our Monte Carlo results agree with exact results. For L
�3 we appear to have reached the thermodynamic limit with an
entropy 4% lower than Pauling’s approximation. Note that the re-
gion corresponding to the Pauling entropy has been blown up to
make our error bars visible, and the L=1 result lies considerably
higher.
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�i�=−1 for the other two. This describes � 4
2 �=6 states so the

exact entropy per spin for the case L=1 is S
N = 1

4 ln�6�, sub-
stantially higher than the Pauling estimate.

The case L=2 is still numerically tractable. If we desig-
nate the types of triangles available to the ground state by the
number of “positive” �featuring �i�=+1 on two vertices,
�i�=−1 on the other� and “negative” triangles �the con-
verse�, we see from Table II that the geometry of the lattice
only allows changes in the number of triangles of one type to
vary by three triangles if they are to remain in the ground
state. Counting all members, we find 314 874 distinct states,
much reduced from the Pauling estimate of approximately
431 439.88 states.

Although even the case L=3 is no longer numerically
tractable, the necessity of changing the number of triangles
of any type �positive or negative� by three continues from
one set of allowed triangle configurations to the next. This
may indicate the presence of correlations not present in the
Pauling estimate which could account for our results consis-
tently falling somewhat below this approximation. The origin
of this change in three triangles appears to be that a ground-
state configuration, in order to remain in the ground state
with a single change, can only change a spin whose neigh-
bors are all paired in opposite signs on their corresponding
triangles as illustrated in Fig. 2�b�.

3. Monte Carlo

As shown in Fig. 4�b�, the entropy calculated by Monte
Carlo simulations33 agrees well with the exact results avail-
able at small L, giving a residual entropy per spin at L=1 of
0.44803�0.00015 �cf. with 1

4 ln 6�0.44794� and at L=2 of
0.39564�0.00010 �cf. with 1

32ln�314874��0.395623�. As
expected from Pauling’s estimate, we find a large finite re-
sidual entropy as we approach the thermodynamic limit. For
L=3 and higher, the entropy of trillium spin ice is consistent
with 0.3920�0.0002, approximately 96% of the Pauling en-
tropy �ln� 3

2 ��0.40547�, as one can see from the dashed hori-
zontal line in Fig. 4�b�.34

C. Spin-spin correlations

In order to calculate the static spin-spin correlations, the
static structure factor �S� of the trillium lattice was found,

S�q� ,T� =
1

N
�
i,j

�si� �T� · sj� �T��eiq� ·�ri� −rj� �. �4�

The dot product between all pairs of spins on the lattice
was averaged in the same way that the heat capacity was,
with 10 000 Monte Carlo steps used to equilibrate at each
temperature, 1000 Monte Carlo steps used to find the aver-
age, and a temperature difference between each temperature
step of 0.1%. The dot product between each pair of spins at
a specific temperature was stored prior to multiplication by
the phase factor eiq� ·�ri� −rj� �, where r�i denotes the position of the
spin within the lattice and 	q� the momentum-transfer vector.
The static magnetic susceptibility was found as


�T� =
S�q� = 0� ,T�

T
=

1

NT
�
i,j

�si� �T� · sj� �T�� . �5�

1. Magnetic susceptibility

The temperature dependence of the inverse magnetic sus-
ceptibility �
−1� for L=6 is presented in Fig. 5�a�. At high
temperatures one sees �from the inset� that 
−1 is to a very
good approximation35 a straight line with a best fit line 
−1

= �0.991�0.001�� 1
J�2 �T− �0.49�0.01�. Below about T

=3
J�2
, one sees an upturn of 
−1 relative to this line, with

TABLE II. The number of members of the L=2 ground state
featuring a given number of positive ��i�=+1 on two vertices and
�i�=−1 on the other� and negative ��i�=−1 on two vertices, �i�

=+1 on the other� triangles. The table is symmetric in positive ↔
negative if continued.

Positive triangles Negative triangles Number

4 28 72

7 25 1824

10 22 19680

13 19 76512

16 16 118698
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FIG. 5. �Color online� �a� Inverse magnetic susceptibility as a
function of temperature in units of the coupling constant J times the
square of the spin ��2� from Monte Carlo simulation. �b� Inverse
molar susceptibility of EuPtSi from D.T. Adroja et al. �Ref. 27�.
The inset of both graphs shows a linear fit of the high-temperature
points which was used to define the line that passes through the
Curie temperature.
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a weak shoulder around T= 2
J�2

5 whereupon 
−1 approaches

0.

2. EuPtSi

In Fig. 5�b�, we show the inverse magnetic susceptibility
of EuPtSi as measured by Adroja et al.27 In this rare-earth
material, Eu2+ is believed to lie on the trillium lattice �sym-
metry group of LaIrSi, P213�, and have nearest-neighboring
Pt and Si atoms lying along the local �111� axis. This sug-
gests that as in other spin-ice materials, single-ion anisotropy
may act to favor moments along the local �111� axis. As
discussed below, it is not immediately clear why a Eu2+ �spin
7
2 , L=0� state would experience strong crystal-field effects
pinning it to a local direction, although some evidence for an
analogous favoring of a local transverse magnetization has
been presented for equivalent Gd3+ ions in Gd2Ti2O7 and
Gd2Sn2O7.36 Noting the qualitative similarity between Figs.
5�a� and 5�b�, it is tempting to speculate that spin-ice physics
might be responsible for the lack of magnetic order seen to
very low temperature in this material. To this end, we have fit
the high-temperature experimental data with 
cgs

−1

= �0.1412�0.0005�� mol
emu K �T− �0.61�0.09�� mol

emu�.37

To convert this to SI units, we need the unit-cell length of
EuPtSi: 6.436 Å.27 Noting that 
SI=4�
cgs⇒
SI

−1= 1
4�
cgs

−1 ,
and that there are four EuPtSi units per unit cell, we need to
multiply our expression for 
−1 in mol

emu by � 1
4� �

VNA

4

= 1
4�

�6.536�10−8 cm�3�6.022�1023 mol−1�
4 �3.194cm3

mol to arrive at di-
mensionless 
−1 for comparison with our theory. Here V is
the unit-cell volume in cm3 and NA Avogadro’s number. This
means 
SI,EuPtSi

−1 ��0.451�2�10−3�� 1
K �T− �2.0�0.3�. From

this information, it should be possible to extract an estimate
of the coupling constant J, given a few assumptions. If Eu2+

takes a high-spin configuration, one expects the spin to be

s= 7
2 , and orbital angular momentum to be zero, hence one

would expect a Lande g factor of g=2. If we ignore the
discrepancy38 between the Monte Carlo and experimental

−1 intercepts, we can estimate based on the high-
temperature slopes of these lines an effective value of J�2

�−0.455�0.002 K, where �= 7
2 .

3. Structure factor

In Figs. 6�a� and 6�b�, we present the temperature evolu-
tion of the static structure factor in the hhk and hk0 planes,
respectively. One sees that correlations gradually increase in
strength until entering the spin-ice regime. For comparison
with previous work, we have set the parameter u=0.138, the
value relevant for the Mn sites of MnSi, as the value of u for
EuPtSi is not known. Qualitatively correlations are seen to
be quite different in distribution from those seen for the AFM
Heisenberg model on the trillium lattice as shown in Fig. 3 of
Isakov et al.28 In particular, one sees a lot of weight inside
the box defined by �− �

a , �
a � in each coordinate in the spin-ice

state while there is very little if any weight for the AFM
model. At first, the difference between the spin-spin correla-
tions of these models may appear surprising as one is used to
the very good agreement of spin correlations seen on the
pyrochlore lattice for a local FM Ising model with mean-field
calculations of an AFM Heisenberg model.10 However, as
explained above this is a simple difference between corner-
shared triangle lattices and corner-shared tetrahedral
lattices—that elements of the ground-state manifold of an
AFM Ising model are not common to the ground state of an
AFM Heisenberg model on corner-shared triangles. Put sim-
ply, the sum of the spins on a triangle in an AFM Ising model

0.0

2.5 2.5

0.0

a) b)

FIG. 6. Relative intensity of the structure factor in the �a� hhk and b� hk0 plane. Temperatures decrease from top left �10.266J�, to top
right �1.787J�, to bottom left �0.709J�, to bottom right �0.0642J�. The axes range from − 4�

a to 4�
a where a is the lattice constant with k on

the vertical axis and h on the horizontal. The structure factor was calculated using u=0.138 as discussed in the text. The relative strength of
the correlations is shown on the right of the graphs with white indicating areas of strong correlation and black indicating areas of weak
correlation. Although the color scale remains the same for each image, the number of divisions is 7 for the lowest temperature, 10 for 0.709J,
50 for 1.787J, and 90 for 10.266J.
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cannot be 0, which is the condition for the ground state of the
AFM Heisenberg model on a triangle.

V. DISCUSSION

In light of the recent interest in the creation of deconfined
magnetic monopoles on spin-ice lattices, it is interesting to
consider whether or not deconfined magnetic charges could
be present on any of the three corner-shared equilateral tri-
angle spin-ice lattices: kagome, hyperkagome, and trillium.
Certainly, on each of these lattices, the nature of the ground
state dictates that the coarse-grained �� ·B� =0 condition re-
sponsible for the “bowties” seen in polarized neutron-
scattering experiments4 of Ho2Ti2O7 cannot hold true for all
members of a ground state as in its most basic version it
relies on the sum of the spins on each triangle/tetrahedron
vanishing. While this can, in principle, occur for AFM
Heisenberg spins on a triangle-based lattice,39 the ground
state of the FM local Ising model cannot satisfy this condi-
tion. One might imagine a more coarse-grained sum over
several spins could be satisfied for some members of an Ising
ground state, with total spin 0, but it seems highly unlikely
that such a coarse graining could capture all members. As
such, one might not expect to see the “bowtie” structures
common to the neutron-scattering structure factor of AFM
Heisenberg models on the pyrochlore, kagome, and hyperk-
agome lattices in the spin ice analogs on kagome and hyper-
kagome lattices. Given this, one might find it surprising that
dipolar spin ice apparently does exist on both of these
lattices.6,8 It is an interesting open question whether dipolar
spin ice exists on the trillium lattice, and whether or not the
ground-state excitations on any of these corner-shared tri-
angle lattices can be thought of in the language of deconfined
magnetic charges.

On the experimental side, it is worth noting that the tril-
lium lattice is a reasonably common magnetic sublattice fea-
turing an itinerant FM �MnSi�, a Kondo insulator �FeSi�, and
several large moment Eu compounds �EuPtSi, EuPdSi,
EuPtGe, and EuIrP� not to mention a polar molecule CO
which exhibits a residual entropy slightly smaller than ln 2
per spin.40 Of the Eu compounds magnetic order has not
been seen to below 4.2 K in the first two, to below 2 K in the
third, with only the fourth seen to ferromagnetically order.41

To date the first three materials have been classified as para-
magnets, but it is our belief the possibility that they are co-
operative paramagnets has not been considered. In this con-
text, it may not have been realized that the magnetic
sublattice of these materials is actually a frustrating lattice.
The presence of a cooperative paramagnetic phase would
help explain why each of these materials appears to have a
small yet positive Curie temperature.

While we are struck by the qualitative �and perhaps quan-
titative� agreement between our model and magnetic-
susceptibility data of EuPtSi, it is hard to understand why a
local FM Ising model would result from a detailed investi-
gation of this material, given that a half-filled spin shell
should be spherically symmetric if the high-spin state is
adopted. We mentioned that the Eu atom lies between Pt and
Si atoms along the local �111� symmetry axis of the crystal,

however there are also two nearby triangles of Pt and Si
atoms centered along this axis which bring the coordination
number of the Eu sites up to 20 when the nearest-neighbor
Eu atoms are considered. Further, the related material
EuPtGe is metallic to quite low temperature42 �the resistivity
of EuPtSi has not yet been measured�, suggesting that any
magnetic correlations that do arise in EuPtSi �if it is metallic�
might have an Ruderman-Kittel-Kasuya-Yoshida nature.43

Previous work by one of us44 has shown that the extended
Heisenberg model with J1 FM and J2, J3 AFM has regions of
momentum space which remain nearly degenerate to low
temperatures, suggesting that it may be possible for magnetic
frustration to play a role in the suppression of the ordering
temperature of EuPtSi even if it is not a true realization of
the spin-ice physics we have described in this work.

Lastly, we should mention the possibility that artificial
versions of spin ice on the trillium lattice could be created if
it turns out that none of the naturally occurring trillium ice
candidates provide an immediate physical realization of this
model. When kagome spin ice was proposed, Wills et al.5

could hardly have predicted that the first realization45 of their
model would take the form of lithographically etched meso-
scopic islands, whose only magnetic interactions were dipo-
lar in nature. While it is hard to imagine lithographically
etching a 3D lattice it is not inconceivable that such tech-
nologies could evolve. Likewise, advances in optical lattices
have experimentalists claiming46 that in the near future
model spin systems may be able to be built to order, perhaps
yielding an alternate path to the realization of the interesting
physics of trillium spin ice.

VI. CONCLUSIONS

In this paper, we have predicted the existence of spin ice
on the trillium lattice. We have shown that a local FM Ising
model on the trillium lattice has a macroscopic residual en-
tropy of 0.3920�0.0002 per spin. We have calculated the
heat capacity of this model and have seen that it takes the
characteristic shape of spin ice on other lattices, with no
signs of magnetic order to the lowest temperatures. The mag-
netic susceptibility at high temperatures appears to follow a
Curie Weiss law with a positive Curie temperature before
smoothly deviating toward 
−1=0, exhibiting an intriguing
weak shoulder at around 2

5 
J�2
. We have identified a mate-
rial whose magnetic susceptibility appears to show some of
these features. The neutron-scattering structure factor of this
model has been seen to noticeably differ from the AFM
Heisenberg model on this lattice, a feature we expect to be
generic of corner-shared triangle lattices. It remains an inter-
esting open problem whether or not the dynamics of spin
excitations on this and other triangle-based spin-ice materials
can be well described in terms of free magnetic charges, and
whether dipolar spin ice exists on the trillium lattice as it
does for other spin-ice lattices investigated to date.
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