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Phase transition of the three-dimensional chiral Ginzburg-Landau model:
Search for the chiral phase
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The nature of the phase transition of regularly frustrated vector spin systems in three dimensions is inves-
tigated based on a Ginzburg-Landau-type effective Hamiltonian. On the basis of the variational analysis of this
model, Onoda and Nagaosa recently suggested the possible occurrence of a chiral phase, where the vector
chirality exhibits a long-range order without the long-range order of the spin [S. Onoda and N. Nagaosa, Phys.
Rev. Lett. 99, 027206 (2007)]. In the present paper, we elaborate their analysis by considering the possibility
of a first-order transition which was not taken into account in their analysis. We find that the first-order
transition indeed occurs within the variational approximation, which significantly reduces the stability range of
the chiral phase while the chiral phase still persists in a restricted parameter range. Then, we perform an
extensive Monte Carlo simulation focusing on such a parameter range. Contrary to the variational result,
however, we do not find any evidence of the chiral phase. The range of the chiral phase, if any, is estimated to

be less than 0.1% in the temperature width.
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I. INTRODUCTION

In vector spin systems, frustrations often induce noncol-
linear or noncoplanar spin structures. Such canted spin struc-
tures generally accompany the order of the chirality.! Two
types of chirality has been discussed in the literature. One is
a scalar chirality which is defined as a scalar product of three
Heisenberg spins, X~§,~-(§j><§k). The scalar chirality takes
a nonzero value for a noncoplanar spin configuration. By
contrast, a vector chirality, which is a target of this paper, is
defined as a vector product of two Heisenberg (or XY) spins,
E~§,- X 5 ;- It takes a nonzero value even for a noncollinear
but coplanar spin configuration. The ordering of the vector
chirality is realized in, e.g., conventional helical magnets.

Although the chiral order inevitably appears in noncol-
linear or noncoplanar spin ordered states, it can be realized,
in principle, without accompanying the long-range order of
the spin. In such chiral ordered but spin disordered state, spin
correlation lengths are kept finite while the chirality shows a
long-range order.

In the past, the existence of such a chiral phase has been
discussed for several frustrated vector spin systems including
spin glasses”™ and regularly frustrated magnets.®° For ex-
ample, it has been suggested in the three-dimensional (3D)
Heisenberg spin glass that the glass order of the scalar chiral-
ity takes place at a temperature higher than that of the spin-
glass order.’= In regular systems, it has been suggested that
the two-dimensional fully frustrated XY models exhibits the
ordering of the vector chirality at a temperature higher than
that of the spin Kosterlitz-Thouless transition.®-8 Such occur-
rence of separate chiral and spin transitions is often called
“spin-chirality decoupling.”

In regularly frustrated 3D systems, however, there has
been no clear evidence of such an intermediate chiral phase
so far. For classical Heisenberg and XY antiferromagnets on
the 3D stacked-triangular lattice, Monte Carlo (MC) simula-
tions suggested the occurrence of a single magnetic phase
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transition from a paramagnetic phase to a helical magnetic
phase.!!"1% Based on a renormalization-group (RG) analysis,
Kawamura suggested that the phase transition of noncol-
linear magnets could belong to a new “chiral” universality
class distinct from the standard O(N) Wilson-Fisher univer-
sality class, whereas the transition could also be of first-order
depending on the parameter values of the system.!” Some
supports to this scenario were reported from field theoretical
approaches'®!® and MC simulations.'>"'4!1° Experimental
measurements of relevant critical exponents also seem con-
sistent with such a chiral universality class.?’* By contrast,
some authors argued that the transition might be weakly first
order.'>1%25 In any case, though the nature of the transition
has been somewhat controversial, it has been believed that
an intermediate chiral phase does not appear in 3D regular
systems.

Recently, Onoda and Nagaosa'® studied the possibility of
the vector chiral phase in regularly frustrated 3D Heisenberg
systems. Based on a Ginzburg-Landau (GL) Hamiltonian de-
scribing helical Heisenberg magnets and performing varia-
tional calculations, these authors suggested that the
Dzyaloshinskii-Moria interaction and/or the Coulombic four-
spin ring-exchange interaction could stabilize the chiral
phase even in 3D.

In this paper, motivated by the recent work by Onoda et
al., we wish to examine the nature of the phase transition of
the same GL Hamiltonian as studied by Onoda et al. by
means of a further analytical calculation and a MC simula-
tion on a discretized version of the model with particular
attention to the issue of the existence/nonexistence of an in-
termediate chiral phase. Note that Onoda and Nagaosa'® im-
plicit assumed in their analysis a continuous nature of the
transition, ignoring the possibility of a first-order transition.
We see in the present paper that a first-order transition indeed
occurs within the variational approximation, which signifi-
cantly reduces the stability range of the chiral phase. Yet, the
variational calculation predicts that the chiral phase still per-
sists for a certain restricted parameter range. With reference
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to the results of such variational calculation, we also perform
extensive MC simulations on the lattice discretized version
of the chiral GL model. In contrast to the variational results,
MC gives no evidence of the chiral phase. If it exists, the
stability range of the chiral phase is extremely narrow, its
width being less than 0.1% in the relative temperature.

The rest of the paper is organized as follows. In Sec. II,
we describe the GL model relevant to our present study and
briefly review the previous results on the model. In Sec. III,
we present the results of our variational calculation taking
account of the possibility of a first-order transition. In Sec.
IV, we explain the details of our MC simulations. MC results
are presented in Sec. V for the Heisenberg case and in Sec.
VI for the XY case. Finally in Sec. VII, we summarize our
main results and further discuss the possibility of the chiral
phase in regularly frustrated 3D spin systems. Appendices
are devoted to the details of the variational calculations.

II. CHIRAL GL MODEL

In this paper, we discus the possibility of the chiral phase
in regularly frustrated 3D vector spin systems based on the
following Ginzburg-Landau Hamiltonian'!!7

1 . R R
H= 5 dr{(Va)?> + (Vb)* + r(@ + b?) + u(@* + b*)?

+o[(a@-b)?-abh*}, (1)

where a(r) and b(r) are n-component vector fields associated
with the noncollinear spin structure at wave vectors =Q via

S(r) = d(r)cos(Q - r) + b(r)sin(Q - r). )

In order Eq. (2) to actually represent the noncollinear spin
structure, the quartic coupling v should be positive so that @
and b prefer to be orthogonal to each other. Note that in order
to bound the free energy, we need to limit the range of u and
v as

u>0 and v/u<4. (3)

This effective Hamiltonian can be derived from a micro-
scopic spin Hamiltonian with isotropic bilinear interactions
via the Hubbard-Stratonovich transformation.!” In such a
case, the ratio v/u becomes 4/3, while additional higher or-
der terms, which do not explicitly appear in Eq. (1), are also
generated. Hereafter, we call the GL Hamiltonian (1) the
“chiral GL model.”

In the mean-field approximation, a continuous transition
takes place at r=0.7 When v>0, the ordered phase is a
helical magnetic state characterized by

|ﬁ|2:|l;|2:—4# dll’; (O<v<4u) (4)
u-—uv

When v <0, the ordered phase is a linearly polarized sinu-
soidal state characterized by

> r >
|d’|2+|b|2:—z alb (v<0). (5)

When u<0 or v/u>4, the free energy is unstable and a
higher order term is needed to stabilize it. In such a case, the
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FIG. 1. The mean-field phase diagram of the chiral GL model in
the (u,v) plane. The dotted curve is an expected boundary of a
first-order transition when fluctuations are introduced.

transition generally becomes of first order. The mean-field
phase diagram is summarized in Fig. 1. It may be worthwhile
noting that, although the mean-field approximation predicts a
continuous transition for v/u <4, fluctuations might change
this result leading to a first-order transition, especially near
the boundary v=4u.

By means of a RG analysis of the chiral GL model, Kawa-
mura found a new fixed point distinct from the standard
Wilson-Fisher O(n) fixed point for certain range of the
parameters.!"!7 In his analysis, however, the possibility of
the chiral phase was not considered. Since the RG expansion
employed in Refs. 11 and 17 was an expansion from dimen-
sion four or from the many-component limit n — % where the
chiral phase is never expected to occur, the chiral phase
might be missed due to an intrinsic limitation of the method
employed even if it actually exists in 3D in a certain param-
eter range.

Other field theoretical approaches supported the existence
of a new fixed point.'®!° They also performed a direct Monte
Carlo simulation of the chiral GL model in case of n=2,""
and they found evidence of the new universality class, al-
though it concerned with a parameter range different from
the target of this paper, which corresponded to smaller v/u
values.

Recently, on the basis of a variational approximation,
Onoda and Nagaosa'® predicted that the chiral GL model in
3D might exhibit a chiral phase characterized by (d X b)
# 0 with (@)=(b)=0, if the quartic couplings v and u satisfy
the relation v/u>4/3. Although there has not been clear
evidence of the chiral phase in regularly frustrated 3D sys-
tems so far, the suggestion by Onoda ef al. promotes us to

further examine the possible appearance of the chiral phase
in the 3D chiral GL model.

III. ANALYTICAL CONSIDERATION

In this section, we study the ordering of the 3D chiral GL
model analytically, either by the variational calculation (Sec.
[T A) or by the mapping to the nonlinear ¢ model (Sec.
I1I B).
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A. Variational approximation

In this section, following the analysis by Onoda and
Nagaosa,'® we study the ordering of the 3D chiral GL model
based on the variational approximation. Although some re-
sults were already reported by these authors, we will also
present them for the sake of completeness. The main differ-
ence of our analysis from that of Onoda et al. is that we
consider the possibility of a first-order transition which was
not considered by Onoda et al. In fact, a first-order transition
is realized within the variational approximation, significantly
reducing the stability range of the chiral phase.

First, we deal with the case of the Heisenberg spin (n
=3), assuming that the macroscopic vector chirality appears
in the z direction. The variational Hamiltonian for the chiral
GL model may be given by

Ho= % f dr{(V6@)* + (V8b)* + r[(8a,)” + (8a,)* + (8b,)

+(6b,)°1+ r [(8a,)* + (8b,)°] = h,(8a b, — 8a,éb,)},
(6)

where &3 and b represent the deviations of the fields from
their average values with respect to the variational Hamil-
tonian Hy, i.e., da(r)=a(r)—{@, and &b(r)=b(r)— (b,
where (- --), being the average with respect to H,,.

In terms of the new two-component vectors &, 3, and ¥
defined by

1 1
a) = E(ax+ by)’ a = \”TE(ay - bx),

1 1
Blz_/_(ay"'bx)’ B2=_/_(_ax+by)’
\1’2 \1’2

Y1 = az’ Y2 = bz (7)
the variational Hamiltonian H, can be diagonalized as
4 hel oo oo
H()= _2 |:(q2+r— E)&aq . 5a’_q

27y

hK -4 A N >
+ <q2+r+ E)éﬁq : 5B—q+ (q2+rL)57q' 57—11 >

(8)
where V represents the volume of the system.

Let us denote ffE(&)O, EE(,@)O, and C=(7y),, with da
=a-A, 6B=pB-B, and §y=y—C. Then, the spin order pa-
rameter and the vector chirality order parameter are given by
A -B,
A, + B,

L \'ECI |
B -A;
By, +A,

|26, |

t\ﬂ| -

(@ =~
AY

-

P
>
~
S
1
= |_
|

PHYSICAL REVIEW B 82, 014404 (2010)

. - ey a2 h
i X bY).=(@ - g=A—B+ =D, ———————.
(<a >0)z <a B >0 V% (112""’\\)2_}1;2/4

)

The chiral phase is characterized by A=B=C=0 and h,#0.

In order to determine the optimal values of the variational
parameters ry,r | ,hK,E E , C within the present variational
approximation, we employ the so-called Feynman inequality

Fo+{H-Hpo=F, (10)

where F(F;) is the free energy associated with the Hamil-
tonian H(H,). The optimal values of the parameters are then
determined by minimizing the left-hand side (lhs) of Eg.
(10). The detailed form of the lhs is given in Appendix.

Let us assume A;=m=0 and other mean values are all
zero in the ordered state, the vector chirality (@ X b) pointing
along the z direction. In order to avoid the ultraviolet diver-
gence, we introduce here an upper cutoff of wave vector A.
Various parameters are then rescaled as

- r - u - U
r: _’ u = N = N
A2 22N T 2mA
- n ~ ry ~ h,

2m?
A

~2=

(11)

By taking the derivatives of the lhs of Eq. (10) with respect

to 7y, ¥, h,, and m, and setting them to zero, we get the
following conditions for the optimal parameter values:

F=F+ (31,7_ Z>(ﬁ2+gi+ 0'2)+2<ﬁ— %)0'27, (12)
FJ_=r+2(ﬁ—§>(rﬁ2+0'i+ op) + 4o, (13)

~ 3~ _ )
h=2 e (m +02a—0'z), (14)

R A

where the variances of a~ vy and o-i~ o'f/, are given by

2

1
R R
q 0

q+7F-hJ2
o= 2 (B, B-gho= 2[ - - _4q,
q 0 g*+ 7 +hJ2
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2

1
= o2 q
0%/ = E <67q : 57—q>0 = Q'f 2~
q

04qg try

dq. (16)

Note that Eq. (15) has the following two types of solutions:

m=0, (17)
~2=M. (18)
2(u —0/4)

The latter case corresponds to the standard helical phase
while the chiral phase corresponds to the former case.
As discussed by Onoda and Nagaosa'® a solution with

m=0 and l;,(#O is possible if v and # satisfy a relation
o/u>4/3. Setting 7ni=0 in Eq. (14), we get

1 2
fi = I (30 - 4i) dqq—,?. (19)
0 (@P+F)-htd

A solution with h # 0 exists only if U is lager than u The
transition to the chlral phase occurs when 7 is equal to ?ﬁ 2

satisfying the relation

(30 - 4u)f dq(q +~(c))2 =1. (20)

From Eq. (18), one sees that a continuous transition to the

helical phase occurs at r“—h /2. By substituting /,, =27, into
Eq. (19), the value of 7 ”H—”u ) at the chiral-to- hehcal transition
is obtained as

3o - 4u)J dg———— 2+2 =1L (21)
ru

From Egs. (20) and (21), one can show that Fﬁs) is always
greater than ?ﬁ The region ?ﬁ I=F =7 e ) then corresponds to
the chiral phase.

In order to discuss how the ordering proceeds when the
“temperature” 7 is varied, we need to calculate the “transition
temperatures” 7, and 7 correspondmg to ?ﬁ) and rlf) Al-
though the inequality rHC) <A s always holds, the relation be-
tween the corresponding 7. and 7; is not trivial depending on
the values «# and ¢. For a fixed ratio 0/u, we can show that
there is a critical value i, such that 7,>7, for #<u,. and 7;
<F, for > i, (details are given in Appendix). Note that only
the latter situation means the existence of the chiral phase.
Indeed, in the case of it <<it,, a first-order transition from the
paramagnetic phase to helical phase occurs directly without
an intermediate chiral phase.

Figure 2 exhibits 7. and 7, as a function of /i for the
case of #=0.1 and 0.5. For #=0.1, an inequality 7.<7; is
satisfied for 4/3=<0/u<4 (there may be a tiny region of
7.>T, in a close vicinity of 0/#=4/3). The chiral phase does
not exist for this small value of . By contrast, for #=0.5, an
inequality 7.>7; is satisfied for 4/3=0/u=<3.68, and the
chiral phase exists for this large .

So far, we have considered only the case of m=0. How-
ever, if a first-order transition really occurs, a continuous
transition to the chiral phase at 7, might be interrupted by
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FIG. 2. (Color online) The “transition temperatures” 7, and 7, as
functions of 0/# for the case of (a) #=0.1 and (b) #=0.5, where 7.
and 7y are the para-to-chiral and the chiral-to-helical continuous
transition points.

such a first-order transition, and we need to examine the case
of m # 0 simultaneously, choosing the state giving the lower
free energy within the variational approximation. This point
has not been examined in Ref. 10. The first-order transition
point is located by comparing the free energies [the lhs of
Eq. (10)] of the m=0 and  # 0 solutions. The explicit form
of the free energy is given in Appendix.

In Fig. 3, we show the numerically calculated transition
temperatures as functions of i for several values of 0/ii. The
first-order transition temperature, 7, is usually greater than
7,. It means that the transition to the helical phase is of first
order within this variational approximation. Recall here that,
even in the typical ¢* model describing a ferromagnet, the
same variational approximation predicts an artificial first-
order transition contrary to the reality. Therefore, the first-
order nature of the transition might also be an artifact of the
variational approximation employed here. In case of v/u
=2.0, we see from Fig. 3(a) that 7, >7.>F,, at least for &
<10. It means that a continuous transition to the chiral phase
is not realized, and alternatively, a first-order transition to the
helical phase occurs at a higher temperature. On the other
hand, an inequality 7; <7, is satisfied for 0/#=3.5. In this
case, with decreasing the temperature a continuous transition
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FIG. 3. (Color online) The transition temperatures 7, 7, and 7;
as functions of i for the case of (a) v/#=2.0 and (b) 0/u=3.5,
where 7, and 7, are the para-to-chiral and the chiral-to-helical con-
tinuous transition points which would occur if the possibility of a
first-order transition would be neglected, and 7, is the para-to-
helical (or chiral-to-helical) first-order transition point.

0 : : : :
a Chiral = ool WS
(@ Para - Pt
10 L L.+ “Continuoys- -~ 9
Ist order Jitae ~ continuous
20 L '.' /// |
" 7/
8
i )
S a0 ]
Helical
40 | J
ol -t S Heisenberg
- @ = 200/(27%)
-60 . . s ‘ s s .
0 05 1 15 2 25 3 35 4

/i

PHYSICAL REVIEW B 82, 014404 (2010)

to the chiral phase occurs first, and then, the system goes into
the helical phase through a first-order transition at 7=7.

The phase diagram of the 3D chiral GL model in the
(F,0/u) plane is shown in Fig. 4 for lager ii. The dotted and
the dashed curves represent continuous transitions which
would occur if we would ignore the possibility of a first-
order transition. The chiral phase predicted by Onoda and
Nagaosa'® occupies the region between these two curves.
The solid curve represents the first-order transition from the
paramagnetic phase to the helical phase which is found in
this work. Although the range of the chiral phase is largely
reduced due to the first-order transition, the chiral phase still
persists for 7/i=2.5 in the case of #=200/(27) ~3.22.

Thus, within the variational approximation, the chiral
phase appears for sufficiently large i and ¢/u. The range of
the chiral phase becomes wider for larger iz, as can be seen
from Fig. 3.

For the case of the XY spin (n=2), the same analysis as
was done in the Heisenberg case can also be performed by
simply removing the r, term from the variational Hamil-
tonian (6) and neglecting the ¥ term: see Appendix. The
results are qualitatively the same as those of the Heisenberg
case, only the values of the transition temperatures being
different. Hence, we conclude that the chiral phase exists
within the variational approximation for sufficiently large it
and 0/ even for the XY case.

B. u— o limit

In this section, we consider the behavior of the chiral GL
model in the limit of u— o with keeping r/u and v/u con-
stant. In this limit, the model described by the Hamiltonian
(1) reduces to the NLo model?® given by

1 - N
Hlo = p= f dr{i(Va)> + (Vb)>+R[V(@ X b)]?} (22)
with conditions

0 T .

.
continuous

-2 ¢ o Helical
el B Heisenberg
16 b7~ @ = 200/ (27°) |

218 L L L
2 2.5 3 35 4

/1

FIG. 4. (Color online) Phase diagram of the Heisenberg (n=3) chiral GL model in the (7,5/#) plane for #=200/(27°). The right figure
is an enlarged view of the vicinity of the chiral phase. The red hatched (blue filled) area represents the chiral (helical) phase. The dotted and
dashed curves represent continuous transition lines which would occur if the possibility of a first-order transition would be neglected in the
analysis. The chiral phase predicted by Onoda and Nagaosa (Ref. 10) occupies the region between these two curves. The solid curve
represents the first-order transition line from the paramagnetic phase to the helical phase which is newly found in this work. The stability
range of the chiral phase is largely reduced compared with that reported by Onoda et al.
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ld*=p=1, alb. (23)

From a simple saddle point analysis, one can derive the
relation between the variables 7 and R of the NLo model and
the parameters of the chiral GL model. Indeed, the chiral GL
model Hamiltonian (1) can be rewritten by introducing r*
=r/u and v*=v/u as

G % f dr{(Vay + (V6y)+3 f dr{r'(@ +5°) + (@ +b°)?

+v'[(@-b? - @b’ (24)

Note that the second term of the right-hand side becomes
much larger compared with the first term in the limit of u
— 0, Therefore, one can apply the saddle point approxima-
tion to the partition function associated with Eq. (24)

Z.= f Da(r) f Db(r)exp(-H,). (25)

Since the second term of Eq. (24) contains only on-site in-
teractions, one can easily evaluate the minimization condi-
tions for the second term as

*

-
4-v*’

jal* = b= - (26)
alb. (27)

In the limit of u— e, the functional integral of the parti-
tion function is approximated by an integral within a sub-
space constrained by the above conditions, yielding

Z,~ f f Da(r)Db(r)
al?=|pP=1,a1b

%

Xexp{— Si : f dr[(Vd’)2+(V5)2]}, (28)

20"

where we rescale the fields d@(r) and b(r) so that they satisfy

|@>=|b|>=1. Thus, one sees that the chiral GL model in the
u— o0 limit reduces to the NLo model with the correspon-
dence

-r

(29)

1
T 8u-2v’

R=0. (30)

It also suggests that, in the limit of u— %, the properties of
the chiral GL model is independent of the value of v/u,
depending only on the scaled parameter T given by Eq. (29).

Note that the chiral GL model corresponds to the R=0
sector of the NLo model. Although David and Jolicoeur?
predicted that the stable chiral phase existed for sufficiently
large R, there has been no report of the chiral phase for R
=0.27-30 It indicates that for sufficiently large u there is very
little chance for the chiral phase to be stabilized.

By combining this result with that obtained from our
variational analysis in the previous section, it seems most
natural to expect that the chiral phase has the highest chance
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to be stabilized for intermediate values of u and for larger
values of v/u. Hence, in the following section, we perform
extensive MC simulations focusing on such a parameter re-
gion in search for the possible chiral phase.

IV. MONTE CARLO SIMULATION
A. Method

In this and following sections, we investigate the ordering
properties of the chiral GL model numerically by MC simu-
lations. For this purpose, the model is discretized on a 3D
simple cubic lattice with lattice constant € as

R AS biva—b;)
Hezlzeg E(aiﬂf_ai) +E< it~ i)
25 L € P €

+ r(c?l-2 + l;lz) + u(ﬁiz + 512)2 +v[(d;- 5[)2 - *125:2] )

(31)

where d; and l;,- are n-component vectors at the site 7, while
i+ u represents the nearest-neighbor site of i in the w direc-
tion (u=x,y,z). We introduce rescaled parameters as

r'=ér, (32)
u' = eu, (33)
v =ev, (34)
a = €"a,, (35)
b] = €b,. (36)

The € dependence of the Hamiltonian (31) is then removed
as

H=13 {z (@ a2+ S (Bl - 5L
2% M M
+r'[(@)?+ (b)) +u'[(@)? + (b)*T
co'l(@ By (d;)Z(E,-')Z]}. (37)

Such discretization and scaling procedure just corre-
sponds to the cut-off procedure made for the continuum
model (1). Setting A =17/ €, the parameters (r',u’,v’) in Egs.
(32)—(34) can be related to (7,u,0) in Eq. (11) as

r/ u! v/

7<—>?, ﬁHﬁ’ l7<—>ﬁ. (38)
Note that a proportionality coefficient 1/(27°)=0.016
means that it=1 corresponds to a rather large value of u’
=02.

We perform extensive MC simulations on the lattice chi-
ral GL model described by Eq. (37) for both cases of the
Heisenberg spin (n=3) and the XY spin (n=2) by using the
standard Metropolis method. We consider " as the “tempera-
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ture” and the simulation is performed with the statistical
weight of exp(—H) at each temperature. The lattice is a L
X L X L simple cubic lattice with 8 =L =60. Periodic bound-
ary conditions are imposed in all directions. In updating a;
and l;l’ vectors, we adopt the polar coordinate in spin space
and apply the type of Metropolis updating where appropriate
windows are set for the proposed values of the variables so
that the acceptance ratio becomes 0.25-0.6. When we simu-
late extreme cases where u’, v’, and r’ are much larger than
unity, these adjustment procedures based on appropriate po-
lar coordinate turn out to be efficient for thermalization. In
case of the XY spin (n=2), we also try the exchange of the
directions of the @, and 51' vectors according to the Metropo-
lis rule, which turns out to be efficient in relaxing the chiral-
ity vector d; X 5,-.

Typically, our single MC run contains 6 X 105 MC steps
per spin (MCS) at each temperature r’'. In most cases, a
gradual cooling protocol is employed. For large systems and
near the transition temperature, we perform longer runs of up
to ~1.8 X 107 MCS. In calculating physical quantities, ini-
tial (1-3) X 10° MCS are discarded for thermalization and
averages are calculated over subsequent (3—5) X 10° MCS.
Error bars are estimated by making 3-5 independent runs at
each temperature and lattice size.

B. Physical quantities

In this section, we introduce various physical quantities
measured in our MC simulation. We define the “specific
heat” as the variance of the energy per spin

_1 _
C= N(<H2> (H)?). (39)

Note that in the present model the specific heat defined by
Eq. (39) is not equivalent to the one defined by the tempera-
ture derivative of the energy, %, where E =1%,(H> is the in-
ternal energy per spin, although both quantities are expected
to exhibit similar singular behaviors at the transition.

In order to measure the spin order, we define the spin

order parameter by

(s zayy @

We also define the chiral order parameter by

cw((Eaxap)y @

The finite-size correlation lengths of the spin and of the
chirality are defined on the basis of the Ornstein-Zernike
form of the correlation function by

(o 1[G

“ laml V Calg,n)
where a stands for either the spin (s) or the chirality (c), C,,
being the Fourier transform of the spatial correlation func-
tion

I, (42)
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Cylq) = (|a,* +1b,%. (43)

Colg) =@ x b"),P, (44)

where a’, l;;, and (@' X l;’)q represent the Fourier transform
of a, b/, and a; Xl;l.', respectively. In our simulation, we
take ¢,,=(27/L,0,0) corresponding to one of the minimum
wave vectors compatible with periodic boundary conditions.

We also measure the Binder ratios of the spin and of the
chirality. For the spin, we have

¢ =| DY - DY <<E 5"’)4> ) <<E 5;)4>
T

while, for the chirality, we have

(B

(B

i

(45)

s=| D -Dp

The coefficients D(l”‘) and D(;“) (a=s,c) are determined so
that, in the thermodynamic limit, g, vanishes in the high-
temperature phase and gives unity in the ordered phase. In
the Heisenberg case (n=3), one has D(ls):5/2, D(ZS):3/4,
D\9=5/2, and DY’=3/2 while for the XY case (n=2), one
has D=2, DY=1, D\)=3/2, and D'=1/2.

V. SIMULATION RESULTS: HEISENBERG (n=3) CASE

In this section, we present the results of our MC simula-
tion for the Heisenberg case (n=3). As a typical example, we
deal with the case of ' =200 and v'/u’=3.5 here. For these
parameters, the variational calculation of Sec. III predicts
that the chiral phase is stabilized in a relatively wide tem-
perature range between r! =-23.6 and r.=-15.5. The rela-
tive difference between ré and r;, a measure of the width of
the chiral phase, might be given by

-t
5 =2 (47)
|rL+r.S|

The variational calculation predicts a rather large value of
or' =0.42 for these parameter values.

First, we show in Fig. 5 the temperature (') dependence
of the spin and the chiral order parameters. On decreasing
the temperature, both order parameters rise up sharply
around " =-69.6, implying the occurrence of a phase tran-
sition around this temperature as can be seen from the figure.
Each order parameter rises up at mutually close temperatures
such that their relative difference is much smaller than the
one predicted from the variational calculation.

Figure 6 exhibits the temperature (r') dependence of the
specific heat. It exhibits only a single peak with no evidence
of successive transitions. Note that the peak height of our
largest size L=60 is much larger than that of other sizes. This
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FIG. 5. (Color online) The temperature (r’) dependence of the
spin and the chiral order parameters of the Heisenberg (n=3) chiral
GL model for various sizes. The Hamiltonian parameters are set
u'=200 and v'/u’'=3.5.

may be a signature of a weak first-order transition occurring
in the thermodynamic limit. In fact, as shown in Fig. 7, the
energy distributions for L=60 shows double peaks character-
istic of a first-order transition at the peak temperature al-
though the energy distributions of smaller sizes show only a
single peak. In view of the fact that the parameter value
studied here v'/u'=3.5 is close to the mean-field tricritical
line v’ /u’ =4, the occurrence of a weak first-order transition
seems consistent with the previous RG observation since
fluctuations extend the region of first-order transition.

From the data of the order parameters and of the specific
heat, we now expect that, even if the chiral phase exists, it is
limited to a very narrow temperature range, never spreading
as wide as or=42% predicted from the variational theory.

In order to further examine the possibility of an interme-
diate chiral phase, we show in Figs. 8 and 9 the temperature

“m -
u' = 200 Heisenber
120F o/ /i) =355 L=10 g
o
100 | L=30 s :
L=40 +——
L:60|—0—|
80 | 1
Q
60 | 1
40
20
0

FIG. 6. (Color online) The temperature (r’') dependence of the
specific heat of the Heisenberg (n=3) chiral GL model. The Hamil-
tonian parameters are set u’'=200 and v'/u’=3.5.

PHYSICAL REVIEW B 82, 014404 (2010)

18 . . | |
16 | Heisenberg |
:%8, r::-gg.gg .........
V=35 60, '=60.38 —
12} _
—~~
Ko} _
N—"
A st _
6 I -
4 I 4
\\
2+ S \; |
_.»ﬁg’( \ \m

0 1
-20.2 -20.1 -20 -199  -198  -19.7

E

FIG. 7. (Color online) The energy distribution at the specific-
heat peak temperature of the Heisenberg (n=3) chiral GL model for
various sizes. The Hamiltonian parameters are set u’=200 and
v'/u"=325.

(r") dependence of the Binder ratios and of the correlation-
length ratios, respectively. As can be seen from Fig. 8, the
Binder ratio of different sizes intersect almost at a common
temperature for both cases of the spin and of the chirality at
least for L =40, whereas, for L=60, the crossing point shows
a downshift to lower temperature. This sudden change in the
crossing behavior observed at L=60 probably reflects the
weak first-order nature of the transition observed in the spe-
cific heat and the energy distribution of this size. Indeed,
both the spin and the chiral Binder ratios of L=60 show a
deep negative dip, which is a characteristic of a first-order
transition. Recall here that just above a first-order transition
T=T; the Binder ratio is expected to exhibit a divergent
negative dip in the thermodynamic limit. The crossing tem-
peratures of the correlation-length ratios depend on the sys-
tem sizes only weakly for both cases of the spin and the
chirality, as can be seen from Fig. 9.

Although the difference in the crossing temperatures be-
tween different physical quantities, either the Binder ratio or
the correlation-length ratio, or those between different sizes,
is sometimes of appreciable amount, we note that the differ-
ence in the crossing temperatures between the spin and the
chirality is quite small for a given quantity and given sizes.
In Fig. 10, we show the size dependence of the spin and the
chiral crossing temperatures for both cases of the Binder ra-
tio and the correlation-length ratio. The size is taken here as
an average of the two sizes yielding the crossing point, L,
=(L,+L,)/2. As can be seen from the inset, the difference is
already very small even for small systems, of order 0.01
which corresponds to 0.1% relative difference, and tends to
further decrease with increasing the system size. If we take
the crossing temperatures of the Binder ratio between our
two largest sizes L=40 and L=60, the spin and the chiral
crossing temperatures, taken here as a measure of the respec-
tive transition temperature, are r,=-69.599(2) and r.=
—69.598(2), which coincide within the errors. The relative
difference between the spin and the chiral transition tempera-
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FIG. 8. (Color online) The temperature (r’) dependence of the
Binder ratio for (a) the spin and (b) for the chirality, of the Heisen-
berg (n=3) chiral GL model. The Hamiltonian parameters are set

u'=200 and v'/u'=3.5. Insets are enlarged views of the transition
region.

ture is then limited to or' <0.008%. Note that this upper
limit is significantly smaller than the corresponding estimate
obtained from the variational calculation or' =42%. Hence,
it turns out that the MC results are rather pessimistic about
the occurrence of the chiral phase.

We also try to estimate the bulk transition temperature
themselves by extrapolating the crossing temperatures to L
=o0: see the main panel of Fig. 10. Such an extrapolation
procedure is hampered somewhat by the sudden change in
the behavior observed at L=60. This effect seems relatively
minor for the correlation-length ratio. By performing a
power-law fit of the form r/,  (L)=r! (L=%)+cL™% to the
data of §&/L and of ¢&/L, we get r., (L=%)=
-69.603*0.006 from  &/L, and  rl,, (L=%0)=
—69.600 = 0.004 from &,./L. These estimates are consistent
with our estimate based on the Binder ratio given above.

We also perform similar MC simulations for other param-
eter values, including u'=1,10,100,200,1000 and v'/u’
=2.0,3.5. For all these parameter values, there is no evidence
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FIG. 9. (Color online) The temperature (r') dependence of the
correlation-length ratio for (a) the spin and (b) for the chirality, of
the Heisenberg (n=3) chiral GL model. The Hamiltonian param-
eters are set u'=200 and v’/u’=3.5. Insets are enlarged views of
the transition region.

of the chiral phase as in the case of u’=200 and v'/u’=3.5
shown above. In case of u'=1,10 and v'/u’=3.5, signatures
of a strong first-order transition are observed. By contrast,
for other parameter values, the transition seems to be con-
tinuous, at least in the range of lattice sizes studied here. We
summarize our estimates of the spin and the chiral transition
temperatures in Table I, where each transition temperature is
estimated from the crossing temperatures of the Binder ratio
between the sizes L=L; and L=L,. For all cases studied, the
difference or' is less than 0.1%.

Finally, we compare the transition temperature of the lat-
tice chiral GL model as estimated from our MC with that of
the NLo model. In Fig. 11, we plot the transition temperature
estimated from our MC versus the parameter 8u'-2v'. For
u' >100, the transition temperature can be well fitted by the
NLo model relation in Eq. (29), if one identifies T in Eq.
(29) as the transition temperature of the lattice NLo model
reported in Ref. 29. It also indicates that the spin and the
chirality order simultaneously and there exists only single
transition in the large 8u'-2v’ region, since a common belief
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FIG. 10. (Color online) The size dependence of the crossing
temperatures of the Binder ratio and the correlation-length ratio for
both cases of the spin and the chirality of the Heisenberg (n=3)
chiral GL model. The size is taken here as a mean of the two sizes
L,,=(Li+L,)/2, where L, and L, are the two liner system sizes
yielding a crossing point. The crossing points associated with the
L=60 data are indicated by arrows. Inset exhibits the size depen-
dence of the difference between the crossing temperatures of the
spin and of the chirality for both cases of the Binder ratio and the
correlation-length ratio.

is that there is only single transition in the NLo model with
R=026-29

VI. SIMULATION RESULTS: XY (n=2) CASE

Next, we present the result of our MC simulation for the
XY case (n=2). As a typical example, we deal with the case
of u'=200 and v'/u’=3.5 again. For these parameters, the
variational calculation of Sec. III (and Appendix) predicts
that the chiral phase is stabilized in a wide temperature range
between r;=-21.6 and r.=-13.4. The relative difference
between r, and r| is 6r=0.47.

As we discussed in Sec. 111, the model reduces to the NLo
model in the limit of u’ — . Previous studies showed that,
for the case of n=2, the NLo model discretized on a 3D
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FIG. 11. (Color online) The transition temperatures of the
Heisenberg (n=3) chiral GL model estimated from our Monte Carlo
simulations are plotted versus the GL Hamiltonian parameter
8u'-2v’. The line shows the relation in Eq. (29) with T=3.062,
which is the transition temperature of the NLo model reported in
Ref. 29 (Note that we multiply the transition temperature by two
due to the difference in the definition).

lattice exhibited a single first-order transition into the mag-
netic ordered state.?”% Meanwhile, the variational calcula-
tion predicts the stable chiral phase for sufficiently large u’
and v'/u’.

First, we show the temperature (r’) dependence of the
spin and the chiral order parameters in Fig. 12. On decreas-
ing the temperature, both order parameters rise up sharply
around " =-47.7, implying the occurrence of a phase tran-
sition around this temperature. Each order parameter rises up
at mutually close temperatures such that their relative differ-
ence is much smaller than the one predicted from the varia-
tional calculation. The observed onset of the order param-
eters seems steeper than the one observed in the Heisenberg
case. Such a sharp rise of the order parameters is suggestive
of a first-order transition.

We show in Fig. 13 the temperature (r') dependence of
the specific heat, in Fig. 14 the energy distribution near the
transition temperature. The specific heat exhibits only a
single peak with no evidence of successive transitions. Note
that the peak height grows rapidly with increasing the system

TABLE I. The spin and the chiral transition temperatures and its relative difference for various parameter
values of the Heisenberg (n=3) lattice GL Hamiltonian, estimated from the crossing points of the Binder

ratio of the two sizes L=L; and L,.

u’ v'/u' r! rl Sr (%) L1,L2
1 2.0 —2.4497(5) —2.4496(8) <0.06 16,24

10 2.0 -17.193(1) —17.194(1) <0.006 24,32
100 2.0 —-135.49(2) —135.48(2) <0.04 24,32
200 2.0 -266.17(4) -266.12(5) <0.06 16,24
1000 2.0 -1310.9(3) -1310.7(3) <0.07 16,24
100 3.5 -36.919(3) -36.919(3) <0.02 24,32
200 3.5 -69.599(2) -69.598(2) <0.008 40,60
1000 3.5 -330.89(4) -330.88(2) <0.02 16,24
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FIG. 12. (Color online) The temperature (') dependence of the
spin and the chiral order parameters of the XY (n=2) chiral GL
model for various sizes. The Hamiltonian parameters are set u’
=200 and v’ /u’'=3.5.

size L, consistently with a first-order nature of the transition.
In fact, the energy distribution near the transition point
shows double peaks characteristic of a first-order transition.
Due to the difficulty in thermalizing the system exhibiting a
rather strong first-order transition, the lattice sizes in the XY
case are restricted to be smaller than those in the Heisenberg
case.

Although we observe a rather strong first-order transition
from the paramagnetic phase into the helical magnetic phase,
there still remains a possibility that a chiral phase is stabi-
lized between the tiny temperature region between the para-
magnetic phase and the helical phase. Since the variational
calculation of Sec. III predicted a continuous transition from
the paramagnetic phase to the chiral phase, we examine here
the possibility of a continuous transition occurring at a tem-
perature higher than the first-order transition temperature. If
such a transition really occurs, chirality-related dimension-

600 T T T
XY
| L=8 8~ i
L=16 =
L=20 ——
400 | 1
© 300

200

100

FIG. 13. (Color online) The temperature (') dependence of the
specific heat of the XY (n=2) chiral GL model. The Hamiltonian
parameters are set ' =200 and v'/u’'=3.5.
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FIG. 14. (Color online) The energy distribution near the
specific-heat peak temperature of the XY (n=2) chiral GL model for
various sizes. The Hamiltonian parameters are set u’=200 and
v'/u"=35.

less quantities of various sizes, e.g., the chiral correlation-
length ratio and the chiral Binder ratio, are expected to ex-
hibit a crossing behavior at a higher temperature than the
first-order transition temperature.

Figure 15 exhibits the temperature (r') dependence of the
spin and chiral correlation length ratios. One can see from
the figure that, with decreasing the temperature, both & /L
and &./L rise up sharply around r’=-47.75, close to the
specific-heat peak temperature. The crossing temperatures
between our two largest sizes L=16 and L=20 are r,=
—47.758(5) for the spin and r.=-47.753(3) for the chirality.
The relative difference between the spin and the chiral cross-
ing temperature is or’' <0.03%. The spin and the chiral
crossing points coincide within the errors, and are close to
the first-order transition temperature estimated above.

We show in Fig. 16 the temperature (r') dependence of
the spin and the chiral Binder ratios. As expected for a first-
order transition, the Binder ratios exhibit a deep negative dip,
which grows with L. In addition, the Binder ratios exhibit a
crossing on the positive side of g at a temperature slightly
below the dip temperature: see the insets. The observed be-
havior of the chiral Binder ratio is hardly compatible with a
continuous chiral transition occurring at a temperature higher
than the first-order transition temperature in the thermody-
namic limit. The crossing temperatures between our two
largest sizes L=16 and L=20 are r,=—47.777(9) for the spin
and r,=-47.776(8) for the chirality. The relative difference
between the spin and the chiral transition temperatures is
then estimated to be or' <0.04%

We also perform similar MC simulations for the case of
v'/u’=2.0 and u’'=100, located rather far from the mean-
field tricritical line v’/u’=4.0. Even in this case, we find a
signature of a first-order transition such as the double-peak
structure in the energy distribution. Furthermore, no evi-
dence of successive transitions is observed. The behaviors of
the correlation-length ratios and the Binder ratios are quali-
tatively the same as in the case of v’/u’=3.5 and u’=200,
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FIG. 15. (Color online) The temperature (') dependence of the
correlation length ratios for (a) the spin and (b) for the chirality, of
the XY (n=2) chiral GL model. The Hamiltonian parameters are set
u'=200 and v'/u'=3.5. Insets are enlarged views of the transition
region.

and the relative difference between the spin and the chiral
transition temperature is limited to 67r<<0.05%.

VII. SUMMARY AND DISCUSSION

In this paper, the nature of the phase transition of regu-
larly frustrated vector spin systems in three dimensions was
investigated based on the chiral GL model both by analytical
calculations and Monte Carlo simulations. We first per-
formed a variational calculation which was an extension of
the previous calculation by Onoda and Nagaosa,'® and
showed that the chiral phase was stabilized in a certain re-
stricted parameter range. We considered the possibility of a
first-order transition, which was not considered by Onoda et
al. We then found that a first-order transition indeed occurred
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FIG. 16. (Color online) The temperature (') dependence of the
Binder ratio for (a) the spin and (b) for the chirality, of the XY (n
=2) chiral GL model. The Hamiltonian parameters are set u' =200
and v'/u'=3.5. Insets are enlarged views of the transition region.

in this model significantly reducing the stability range of the
chiral phase. Yet, we observed that the chiral phase still per-
sisted for sufficiently large u and v/u within the variational
approximation. We also showed that in the limit of u — o the
chiral GL model reduced to the NLo model without the cou-
pling between the chiralities [R=0 in Eq. (22)]. Previous
analysis of the NLo model predicted only a single phase
transition directly from the para to the helical phase, which
means that there is very little chance for the chiral phase to
be stabilized for sufficiently large u.

With reference to these analytic results, we next per-
formed extensive MC simulations on the lattice discretized
version of the 3D chiral GL model in search for the possible
chiral phase. In contrast to the expectation based on the
variational results, however, we did not find any numerical
evidence of the chiral phase for both cases of the Heisenberg
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model (n=3) and the XY model (n=2). From the data of the
correlation length ratios and the Binder ratios, we conclude
that for all cases studied the stability range of the chiral
phase, if any, is less than 0.1% in the relative temperature
width.

A possible cause of the appearance of the chiral phase in
the variational calculation might be the fact that, for the
chirality, only the linear term éa,éb,— da, b, is contained in
the variational Hamiltonian (6), while the quadratic terms are
also present for the spin. This imbalance inherent to the
variational calculation might lead to an underestimate of
chirality fluctuations compared with spin fluctuations.

Although we could not find any evidence of the chiral
phase in the chiral GL model in Eq. (1), there still remains a
possibility of the chiral phase originated from some other
mechanisms not included in the chiral GL model. If we con-
sider, for example, the direct interaction between the chirali-
ties, R[V(@xb)]% it enhances the ordering of the chirality.
For sufficiently large R, the chiral phase is trivially stabi-
lized. In fact, David and Jolicoeur?® showed on the basis of
the NLo model that the chiral phase is stabilized for suffi-
ciently large R. However, for smaller R, which is more real-
istic, their analysis indicated that the chiral phase disap-
peared and there was a single transition from paramagnetic
phase to the helical phase.?® To get further insight into the
effect of the R term, we also performed a MC simulation of
the chiral GL model with a weak chirality-chirality interac-
tion (the R term) with u' =200, v'/u’=2.0, and R=0.1. The
results turn out to be qualitatively the same as those of the
original chiral GL model with R=0, and ér’ estimated from
the crossing temperature of the Binder ratios is also very
small, or' <0.02%.

Another mechanism to stabilize the chiral phase in 3D
regularly frustrated system was proposed by Villain.?' He
suggested that a chiral phase might be realized in quasi-one-
dimensional XY spin systems when the interchain coupling is
sufficiently weak.?! In purely one-dimensional frustrated XY
spin systems, it has been known that, with decreasing the
temperature, the chirality correlation length increases expo-
nentially, while the spin correlation length diverges as a
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power law. By taking into account the effect of the weak
interchain coupling, Villain predicted that the chiral phase
could exist in an intermediate temperature regime above the
helical phase. As far as the authors know, however, a direct
numerical evidence of such a chiral phase in quasi-one-
dimensional system is still lacking. Thus, it is an interesting
open problem to observe the chiral phase by numerical simu-
lations of such quasi-one-dimensional frustrated spin models.
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APPENDIX: DETAILS OF A VARIATIONAL
APPROXIMATION
1. Free energy

In this appendix, we explicitly show the form of the trial
free energy Fo+(H —"H)o. Since the variational Hamiltonian

(6) is diagonalized with respected to &, 3, and 7 as given in
Eq. (8), the term F is easily calculated as

Fo=- log{ f 11 dsi,dsb, exp(- Ho)}

q

ar
_ _g {mg[m]

+log[+] +log{L} .
V(g* +r +hJ2) Vig*+r))
(A1)

In calculating the second term (H—H,),, we rewrite Eq.
(1) in terms of a, B, and vy defined by Eq. (7), to get

H =% dx{r(&2+BZ+ A +(Va)+ (VB2 + (V)2 + (u— 41_1U>(&4+'é4) + 2(14 + }Lv>&2'é2+ uyt + 2(14 - iv>7z(&z+’éz)

+o2yya(@- B+ (¥ = o) (aB) - angz)]}-

(A2)

By substituting @= Sa+A, etc., into Eq. (A2), (H—"Hy)o is calculated via simple Gaussian integrals as

Vv h - - > h -
(H = Holo= 5{ [F— <r| - EK) +4<u - Z)A2+ 2(u+ Z)B% 2<u - Z)Cz}g (8a, - da_y)+ [r— <r| + ?") + 2(u+ Z)AZ

4

U
4

i u-2) 2 - B)éz}z (5B, 8o+ [r_wz(u_-)<A’2+§2)+4u52}2 (8%, 7.0
q q

4

+ 2<u - 3) [(% (8a,- 5&_q>0)2 + (% (8B, 5B_q>0>2] + 2(14 + f—l)(ﬁq‘, (8@, 5&_‘1)0)(% (8B, 5[§_q>0>
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+ 2u(§ (57, 5«7_q>0)2 + 2<u - Z)(% (67, 5«7_‘1)0)[(% (5, - 5&_q>0) + (% (5B, 5B_q>0)]

> > 1 - _ 1\, = > 1 V>, - o
+rA*+B*+C?) + (u - Zv)(A4 +BY + 2(14 + ZU>AZBZ +uC*+ 2<u - Zv)Cz(A2 +B?)

+0[2C,C5(A - B) + (C2 - CH(A,B, —AIBZ)]}.

(A3)

In the case of Aj=m, A,=0, B=0, and C=0, as assumed in Sec. III A, the trial free energy is simplified as

VA? (! 1 1 1
For{H=Hoo=~ 5| dqylogl ————— | +log| —————| +log| ———
2m Jo G+ =hJd2 g +F+hJ2 q +7L

VA | _
+m{lr-l’]+

where we introduced the cut-off wave vector A and scaled
various parameters as in Eq. (11). By taking the derivatives
of Fy+(H—H,), with respect to 7, 7, h,, and 7i, and set-
ting them to zero, we can get the conditions for the optimal
parameter values given in Egs. (12)—(15).

2. Relation between 7, and 7,

In this appendix, the relation between the para-to-chiral
and the chiral-to-helical continuous transition temperatures,
7. and 7, is investigated. We prove here the existence of a

critical value i, such that 7,>7, for i <<ii, and 7,<7, for it

>,.
To simplify the notation, we define a function

! q2 ' 1
g(’”)Ef 2, dg=1-\ratan—=. (A5)

09qg tr \r

By using g(r), the variances of &, B, and ¥ are calculated
as

O%z: zg(ﬁl - ]/’;K/Z)v
05=2g(7 +hJ2),

o =2g(7). (A6)

The conditions of optimal parameter values Eqgs.
(12)—(14) may be given with m=0 by

=T+ 2(3'7— g)[g(Fu —1,J2) + g(F)+ h,J2)]

+4<iz— g)g(ﬂ), (A7)

}'; —~
5 +4(:7— %>ﬁ2:|(fi+ [7— 7 -

+ 2(;7— §>(ai+ o) + 2<ﬁ+ g)a‘ia’%+ 2iio%,+ 2(5— g)a@(aﬁ+ o) + T + (ﬁ—

SE
ENQRSH

+ 2<ﬁ+ >ﬁ2:|oé+ [7— R+ 2(:7— 2)%2}&‘;

17) n~14} + const.,

(A4)

N

4

ri=r+ 4(ﬁ— g)[g("u — d2) + g(7) + h,J2)] + 8ag (7 ),

(A8)

1= (30 - 4i)[g(F| - hJ2) - g(Fy+ hJ2)Vh,.  (A9)

The equations determining the critical parameters fﬁ and

rII , Egs. (20) and (21), are also given by

(30— 4i)fF)) =1, (A10)
(30 - 4i)[2(0) - g27")] = 27", (A1)
where the function f(r) is defined by
d 1] 1 1 1
fn=-% —[ ——atan—= - } (A12)
dr 2 \J \r +r

Originally, Eqs. (A7)—(A9) are the equations determining

the variational parameters 7y, 7, and A, as functions of the
Hamiltonian parameters 7, iz, and 0. One can also regard 7

given as a function of EK, i, and v. In order to discuss the
relation between 7, and 7., we examine here the behavior of
'r’(ﬁk;ﬁ, 0) around ﬁk=0 for given & and 0. Because of sym-
metry, d7/dh, is equal to zero at i,=0 (at 7=7,). Hence, the
sign of the second derivative of F(EK) at the chiral transition
point EKHO determines the relation between 7; and 7.
Namely, 7, <7, if d*7/dh><0, and 7,>F, if d*F/dh>>0.

By taking the second derivatives of Eqs (A7)-(A9) with
respect to &, and setting rH—?ﬁ ) F L—rH and h,,=0, the sec-

ond derivative d*7/dh> is given by
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FIG. 17. (Color online) Phase diagram of the XY (n=2) chiral GL model in the (7,5/i) plane for #=200/(27). The right figure is an
enlarged view of the vicinity of the chiral phase. The red hatched (blue filled) area represents the chiral (helical) phase. The dotted and
dashed curves represent continuous transition lines which would occur if the possibility of a first-order transition would be neglected in the
analysis. The chiral phase predicted by Onoda and Nagaosa (Ref. 10) occupies the region between these two curves. The solid curves
represents the first-order transition line from the paramagnetic phase (or the chiral phase) to the helical phase. As in the Heisenberg case, the

stability range of the chiral phase is largely reduced compared with that reported by Onoda et al.

&’F 1) Cils) [P
— =[1+ (167 - 20)f(7" {——_ - (A17)

dh,.’z( [ ( )f I )] lZfI(;ﬁC)) CZ(S) f(r)f (r )
. 5 We have 7,>7, if and only if 7> r*(s) while 7,<F, if
3 - 2t (417— 5)(4ﬁ+ iG] 79 <r*(s). From Eq. (A10), ) is an increasing function of
: fr(;l(lc)), u for fixed s=0/ i, the critical value i,(s) corresponding to r*

1+ (4ir + ﬁ)f("uc)) is given by
(A13)

where f'(r) and f"(r) are the first and the second derivatives
of f(r), respectively. By use of Eq. (A10), Eq. (A13) can be
rewritten as

1
Bs=fr)

it (s) (A18)

&’F { Ci(s) [f’(ﬁc))]z } . ){ f’(rlc))} Thus, the same conclusion can be restated in terms of i as

—_—= - 5 o H(s _# s F>7 i F A>T ) . .. ~ .

Iz Cy(s) f(ﬁ Iz (;,<” ) 7 (fﬁ ) >y 1.f and on?y if ui(sz Th1§ c.rltlcal value uc(s)~1s an
K increasing function of s=0/% and is in the range 0 <u, <o

(A14)

where we set s =0/ while the functions C;(s) and C,(s) are
defined by

for 4/3<v/u<4.

3. Variational approximation for the XY spin (n=2)

1 16 -2s
Cils)=—|1+——|, Al5 . . L
1(s) 12[ 3s—4 } ( ) In this appendix, we show the results of the variational
calculation for the XY case (n=2). As mentioned in Sec. III,
s ( s) d+s the variational Hamiltonian for the XY case may be given by
3——+|4-=
4 2/3s—-4
Cy(s) = . (A16)
4s
14
Note that C,(s) and C,(s) are positive for 4/3 <s<4. It is Ho= EE [(qz +r- —) éa, - éa.,

easily confirmed that C,(s)/ C,(s) is an increasing function of
s, lying in the range 1/3<C;(s)/Cy(s)<2/3 for 4/3<s
< 4. One can also show that the function [f'(r)*/[f(r)f"(r)]
is an increasing function of r in the range between 1/3 and
2/3 for r>0. Hence, there exists a critical value *(s) such
that d*7/dh%>0 for 79 <r*(s), and d’F/dh:<0 for 7
>r*(s), where r*(s) is given by the solution of the equation

) e\ = =
+|q +r||+3 OBy - OBy (A19)
As in the Heisenberg case, we assume that A;=m=0,
A,=0, and B=0. The trial free energy Fo+(H —H,)p is then
calculated as
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VA3 (! 1 1
]—"0+(7'(—7'(0>0=——712 dgi log| ———— [ +log| —————
27 ) PHF—-hJ2 G +F+hJ2
EK o0 g 72 a2 +2l i g ( 4 4)
+ u+4 m-(og+ u—4 o+ 0p

+4(17— g)rﬁ{|a‘i+ [7— 7 -
4 2

)oﬁo‘%+7ﬁ1'2+<ﬁ—

LSS

+2(17+

By taking the derivatives of Fy+(H —"H,), with respected

to 7, EK, and m, and setting them to zero, we get the follow-
ing conditions for the optimal parameters values:

7|=7+<3L7—§)(n”12+a'i+02ﬂ), (A21)
T 3. _ ) 2 2

hK=2<Zv—u)(m +0'a—0'ﬁ), (A22)
0={2(ﬁ—g)ﬁi2—(7—%)}m. (A23)

The difference between these equations and the corre-
sponding equations of the Heisenberg case in Egs. (12)—(15)
is only the terms related to 7, or 0'27 which are simply absent
in the XY case. Especially, Eq. (A22) is exactly the same as
Eq. (14). Therefore, when 0/u>4/3, there is a continuous
transition to the chiral phase at the same critical value of 7
=?ﬁc) as in the Heisenberg case. The continuous transition
between the chiral phase and the helical phase also occurs at
the same critical value 'r]=?ﬁs) as in the Heisenberg case. On
the other hand, if one analyzes how the ordering proceeds
when the temperature 7 is varied, the transition temperatures
of the XY spins differ from those of the Heisenberg model
quantitatively. Both 7, and 7, are generally higher than the
corresponding transition temperatures of the Heisenberg
model.

PHYSICAL REVIEW B 82, 014404 (2010)

7] ) m* t + const. (A20)

N

By use of the same technique as in previous section, one
can show that there is the critical value &, such that 7.>7;
for > i,.. From Egs. (A21) and (A22), the same form of

equation for d7?/ dﬁi with Eq. (A14) can be derived, where
the functions C,(s) and C,(s) are different from those of the
Heisenberg case and are given by

1 12-5
CI(S)EE{1+3S_4}, (A24)
s
3-,
Cy(s) = 35——4 (A25)

Again, C,(s) and C,(s) are positive for 4/3 <s<4 while
the ratio C,(s)/ C,(s) has the same characteristics as those of
the Heisenberg case such that it is an increasing function of s
satisfying 1/3<C,(s)/ C,(s) <2/3. Therefore, we reach the
same conclusion as in the Heisenberg case, i.e., 7.> 7, if and
only if it >ii.(s). Note that the value of i.(s) differs from that
of the Heisenberg model due to the difference in the function
CI(S)/Cz(S).

In the same manner as in the Heisenberg case, we find
that a first-order transition to the helical magnetic phase oc-
curs and this first-order transition reduces the stability range
of the chiral phase. However, even in case of the XY spin, the
chiral phase still persists for a certain parameter range. In
Fig. 17 we show a typical phase diagram of the XY case. One
can see qualitatively similar structure to the one of the
Heisenberg spins (see also Fig. 4).
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