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Observation of a Dirac point in microwave experiments with a photonic crystal
modeling graphene
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We present measurements of transmission and reflection spectra of a microwave photonic crystal composed

of 874 metallic cylinders arranged in a triangular lattice. The spectra show clear evidence of a Dirac point, a
characteristic of a spectrum of relativistic massless fermions. In fact, Dirac points are a peculiar property of the
electronic band structure of graphene, whose properties consequently can be described by the relativistic Dirac
equation. In the vicinity of the Dirac point, the measured reflection spectra resemble those obtained by
conductance measurements in scanning tunneling microscopy of graphene flakes.
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I. INTRODUCTION

Graphene is a monolayer of carbon atoms arranged in a
honeycomb lattice.'> Due to its peculiar electronic properties
this carbon allotrope recently attracted a lot of attention in
condensed matter physics. The conduction and the valence
band of the electronic energy in graphene form conically
shaped valleys that touch each other at the corners of the
Brillouin zone.? As a consequence, close to these touch
points the energy of the electron depends linearly on its qua-
simomentum vector. This linear dispersion relation implies
an energy independent velocity and the related wave equa-
tion is the Dirac equation.* Thus, although the Fermi velocity
is typically 300 times smaller than that of light, the energy
spectrum of the electrons in graphene is similar to that of
massless relativistic fermions.*”” However, graphene with its
Dirac spectrum is not an exception. Photonic crystals, an
optical analog of ordinary crystals, possess similar particular
properties.®? The unusual transmission properties near a
Dirac point predicted in Ref. 9 were observed experimentally
both in sonic and in microwave photonic crystals.!%!!

The photonic crystal considered in the present work is
two-dimensional and composed of rows of metallic cylinders
which are arranged to form the triangular lattice schemati-
cally shown in the left part of Fig. 1. Electromagnetic waves
propagating in such a periodic structure exhibit a dispersion
relation with a band structure similar to the electronic band
structure in a solid. That for the triangular lattice of metallic
cylinders with radius R=0.25a, where a is the lattice con-
stant, is shown on the right part of Fig. 1. It was obtained by
solving numerically the Helmholtz equation with the finite
difference method.'? In this so-called band diagram the fre-
quency f is plotted as function of the quasimomentum com-
ponents (k,,k,) for the first two propagating modes. Around
the corners of the first Brillouin zone the bands have the
shape of cones and the band structure resembles that of the
electronic energy in graphene.>> In fact both systems have
the same Bravais lattice and the wave functions with quasi-
momentum at the corners of the first Brillouin zone possess
the same symmetry group.'? In the literature the touching
point is referred to as Dirac point>'* and its frequency as the
Dirac frequency.
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In the vicinity of a touching point the Hamiltonian gov-
erning the spectrum can be written as a 2 X2 matrix in the
basis of the doublet states which are degenerate at the Dirac
frequency and has the form'*

H=wpl +vp(8k, 6, + 5,6,). (1)

Here, 6, and &, are the Pauli matrices, Sk=(5k,, k,) is the
displacement vector with respect to a corner of the first Bril-
louin zone, w=2f, with f denoting the excitation frequency,
wp is the Dirac frequency, and vp=|Ve(k)| is the group ve-
locity which is approximately constant close to the Dirac
point. Diagonalization of H in Eq. (1) yields

w(|5l€|) =wp * vp\ 5k)2( + éki, (2)

which reproduces the linear dispersion relation around the
tips of the cones of the Brillouin zones shown in Fig. 1. The
substitution &k, — —id, and 6k, — —id, in Eq. (1) leads to the
Dirac equation ) V
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FIG. 1. (Color online) Left: triangular lattice of metallic cylin-
ders. The arrows indicate the two different directions 'M and I'K in
the triangular lattice; the radius R of the metallic cylinders equals
R=0.25a, where a is the lattice constant. Right: the plot of the
numerically determined band structure f(kx,ky), as function of the
quasi momentum components (k,,k,). The solid lines indicate the
hexagonal Brillouin zone.
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FIG. 2. Scheme of the experimental setup. The photonic crystal
consists of altogether 8§74 metallic cylinders arranged in a triangular
lattice. Electromagnetic waves are transmitted from the horn an-
tenna through the lattice to the wave guide antenna. The antennae
and the lattice are oriented with respect to each other such that the
waves impinge the lattice in I'M direction (see Fig. 1).
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where ¢, i, represent the amplitudes of the degenerate dou-
blet state at the Dirac frequency. Thus, despite of the fact that
photons are bosons in the vicinity of wp the waves in a
photonic crystal can be effectively described by the Dirac
equation for fermions with spin 1/2.

II. EXPERIMENTAL SETUP

The similarity of the band structure of a macroscopic pho-
tonic crystal with the electronic band structure of graphene,
which is experimentally much more difficult to access, al-
lows the experimental study of various relativistic phenom-
ena. The photonic crystal used in the experiments is com-
posed of a total of 874 metallic cylinders with radius R
=5 mm and height /=8 mm squeezed between two metallic
plates. The experimental setup is shown in Fig. 2. Each cyl-
inder is screwed to the top and bottom copper plate to ensure
a proper electric contact even at high frequencies and thus
reproducibility of the measurements. The resulting photonic
crystal consists of 38X 23 cylinders and has a size of 400
X900 mm. Below a certain excitation frequency f.=c/2h,
with ¢ being the speed of light and & the gap between the
plates, only the lowest transverse magnetic mode with the
electric field perpendicular to the plates can propagate. Con-
sequently, like for two-dimensional microwave billiards,'>10
the propagating modes correspond to solutions of the two-
dimensional scalar Helmholtz equation, which is mathemati-
cally identical to the Schrédinger equation for the corre-
sponding quantum multiple-scattering problem.

III. TRANSMISSION MEASUREMENTS

To determine the band structure of the photonic crystal,
transmission measurements are performed with nearly plane
waves. To produce and detect them a two-dimensional horn
antenna a and a wave-guide antenna b are placed, respec-
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FIG. 3. Left: the measured transmission spectrum from the horn
to the wave guide antenna. Right: numerically calculated band
structure f(|k]) with X chosen along the I'MKI' path. The inset
shows the Brillouin zone of the lattice and the irreducible Brillouin
zone I'MK.

tively, on the opposite sides of the crystal 240 mm apart from
it (see Fig. 2).

Both are screwed tightly to the top and bottom plate and
are attached to waveguide-to-coaxial cable adapters. Trans-
mission (reflection) spectra are measured with an Agilent
PNA-L 5230 vectorial network analyzer (VNA). Microwave
power is emitted into the region of the photonic crystal via
one antenna a and the magnitude and phase of the transmit-
ted (reflected) power at the other (same) antenna b(a) is de-
termined relative to the input signal, thus yielding the com-
plex valued scattering matrix element S,,(f). Systematic
errors due to the attenuation of microwave power in the co-
axial cables and the reflection at the connectors were re-
moved by a proper calibration of the VNA. Ribbons of mi-
crowave absorption foam were placed between the plates at
their edges to avoid disturbing reflections.

The photonic crystal is arranged such, that the waves pro-
duced by the horn antenna impinge it in I'M direction (see
Figs. 1 and 2). The left part of Fig. 3 shows a measured
transmission spectrum |S,,(f)|* through the photonic crystal
in I'M direction. It shows two stop bands, one below 11.5
GHz and one between 18 and 19.8 GHz, where the transmis-
sion is reduced by 4 orders of magnitude. In between we
observe transmission with a broad minimum around 14 GHz.
The right part shows the calculated band structure along the
path 'MKI" (see inset of Fig. 3) inside the first Brillouin
zone. The first and second bands touch at the corner K of the
Brillouin zone. The positions of the experimental stop bands
are in good agreement with the band gaps in the calculated
band structure. The minimum in the transmission spectrum is
located around the Dirac frequency and indicates a partial
band gap'” between the first and second band expected for
the transmission of plane waves in I'M direction. However,
since the incident wave is not perfectly plane and thus con-
tains components with propagation direction different from
the I'M one, this band gap is not as well pronounced as the
other two. Altogether the experimental transmission spec-
trum resembles the predicted band structure of the photonic
crystal.

IV. CONNECTION OF THE REFLECTION SPECTRUM TO
THE LOCAL DENSITY OF STATES

A very effective method to localize a Dirac point is to
measure the frequency dependence of the local density of
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states (LDOS). It is defined as the imaginary part of the
Green’s function for the photonic crystal, L(7,f)=
—1/7 Im G(#,7,f). According to Ref. 18 it can be written in
terms of the frequencies f,(k) and the wave functions
i, (k,7) of the nth propagating mode as

S kPP - (B, (4)

BZ n 2m

1
L(7.f) = .
BZ

where the integration over the quasimomentum k extends
over the first Brillouin zone with area Ap,. Using the disper-
sion relation Eq. (2) and that the modulus squared of the
wave function depends only weakly on & close to the Dirac
point yields

4m (lr)?)

Az vp

f=/fp

Up

L(7e.f) = : (5)

Here, {|¢(r;)|?) denotes the average over k of the modulus
squared of the wave functions in the vicinity of the Dirac
point. Equation (5) reflects the well-known theoretical
result>”! that near the Dirac frequency the LDOS tends to
zero linearly in f. The LDOS can be determined from the
measured reflection spectra |S,,,(f)|*> with the antenna placed
at a position 7, within the crystal. The connection between
the LDOS and the measured reflection spectra is established
via the scattering matrix formalism for microwave
resonators'>?? originally developed in the context of
compound-nucleus reaction theory.”! Within this formalism

the scattering matrix can be written in the form S’(f):(l
—iK)(1+iK)™", where K=W'(E—H)™'W with H denoting the
Hamiltonian for the photonic crystal and W the matrix cou-
pling the open channels, as, e.g., the antenna channel to the

modes of the photonic crystal. Expressing K in terms of the
Green’s function of the photonic crystal, G(7,,7,,E+i€)
=3¢, (7) ¢, (F,)(E+ie—E,)™" leads to the relation

L(7f)

1- |Saa(f)|2 o .
|G (7P f) + AP

(6)

Here, G(7,,7,.f) denotes the renormalized Green’s
function?” and the constant A depends on the coupling of the
antenna to the photonic crystal. In the vicinity of the Dirac
point one can neglect the frequency dependence of the de-
nominator, i.e., replace it by a constant B(7,,fp) and finally
gets the relation between the experimental observable
IS,.(f)|* and the LDOS

|Saa(f)|2 o« l- B(Fa’fD)L(Fa’f) . (7)

Thus, according to Eq. (5), the reflected power |S,,,(f)|* tends
linearly to unity in the vicinity of the Dirac frequency. This is
the “fingerprint” used to identify the Dirac point.

V. REFLECTION SPECTRA

For the measurement of the reflection spectra a wire an-
tenna consisting of a metallic pin of 1 mm in diameter was
lead through a 3-mm-wide drilling in the top plate. The left
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FIG. 4. Left: a reflection spectrum measured with the wire an-
tenna located in the middle of the crystal in the center of a triangle
of cylinders as schematically shown in the inset. The sharp reso-
nances at the edges of the bands are related to the so-called van
Hove singularities. Right: for comparison the computed band dia-
gram from Fig. 3 is shown.

part of Fig. 4 shows the reflection spectrum measured with
an antenna placed in the middle of the photonic crystal as
shown in the inset of this figure. The location of the antenna
is chosen in the center of three cylinders forming a triangle
to minimize the disturbance of the propagating mode at the
Dirac frequency. The experimental reflection spectrum has a
clearly pronounced maximum around =14 GHz, i.e., within
the frequency range where the Dirac point is expected, and
shows the characteristic cusp structure. The sharp resonances
at the edges of the bands are related to the so-called van
Hove singularities.”? In the vicinity of the Dirac point, the
measured reflection spectra closely resemble those obtained
by conductance measurements in scanning tunneling micros-
copy of graphene flakes deposited on a graphite substrate.’*

The description of the experimental reflection spectrum
around the Dirac frequency based on Egs. (5) and (7) allows
to express the measured quantity |S,,(f)|? in terms of a three-
parameter formula

|Sua(f)|2 =D- C|f_fD s (8)

where the parameter D takes into account that due to Ohmic
losses the reflection deviates from unity even in the case of
vanishingly small LDOS. The parameter C describes the
slope of the cusp in the reflection spectrum close to the Dirac
frequency. The upper and the lower parts of Fig. 5 show the
experimental reflection spectra in the frequency range 11-17
GHz for two different antennae together with the fit of Eq.
(8) to the data. The spectrum shown in the upper panel of
Fig. 5 was measured with an antenna placed in the middle of
the crystal that shown in the lower panel was obtained with
one placed six rows apart from the crystal boundary. In the
former case the antenna reached 2 mm into the space be-
tween the plates, in the latter only 0.5 mm. The upper spec-
trum is well described by Eq. (8) and the values of the fit
parameters are D=0.826*+0.003, C=0.413 £ 0.006, and the
Dirac frequency f,=13.797*+0.004 GHz is in good agree-
ment with the calculated value f,=13.81 GHz. The group
velocity vp at the Dirac point cannot be extracted from C
because the value of {|y(7})[*>) in Eq. (5) is unknown. The
shape and position of the cusp are recovered in the lower
reflection spectrum in Fig. 5. The obtained values of the
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FIG. 5. Two measured reflection spectra in the vicinity of the
Dirac frequency. The upper spectrum was measured with an an-
tenna placed in the middle of the crystal, the lower one with an
antenna placed six rows apart from the boundary of the crystal. The
smooth solid lines are fits of Eq. (8) to the experimental spectra.

parameters are D=0.988 £0.001, C=0.329£0.003, and f)
=13.793£0.002 GHz. The value for the Dirac frequency
differs slightly from that determined for the antenna placed
in the middle of the crystal but the difference is within the
standard error of the fit. The value of the parameter D is
closer to unity in the latter case because the antenna reaches
less into the space between the plates and thus couples
weaker to the propagating modes. This is also reflected in the
slope C of the cusp, which is not as steep. Moreover, the
cusp at the Dirac frequency is rounded in the lower spec-
trum. This is attributed to the proximity of the antenna to the
crystal boundary. The fluctuations observed in the reflection
spectra around the mean behavior given by Eq. (8) are attrib-
uted to quasibound modes trapped in the photonic crystal.

Figure 6 shows the reflection spectra measured for photo-
nic crystals of different sizes. One can observe the formation
of the cusp structure with increasing crystal size. Moreover
the period of the fluctuations decreases, thus corroborating
our interpretation as an effect due to the quasibound states.
The value of the Dirac frequency determined from the fit,
indicated by a dashed line, does not vary.

VI. SUMMARY

In summary, we have measured the transmission and the
reflection spectra of a photonic crystal with a triangular lat-
tice composed of metallic cylinders. A cusp structure was
observed in the reflection spectra close to the expected Dirac
frequency and related to the local density of states in the
photonic crystal, providing clear evidence for the existence
of a Dirac point. The experimental setup presented in this
work is well suited for the study of effects connected with
so-called edge states in graphene'*?> and the predicted
pseudodiffusive transmission at the Dirac point. However,
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FIG. 6. Reflection spectra measured with a wire antenna for
photonic crystals of different sizes. The upper panel shows the re-
flection spectrum for an empty space between two conducting
plates. The other spectra correspond to systems containing 3, 7, 37,
91, and 874 cylinders, respectively. The icons to the right of the
spectra show the shape of the corresponding sample. The Dirac
frequency is marked by a dashed line.

the most direct application is the experimental investigation
of properties of the eigenvalues and eigenfunctions of a
Dirac billiard, by inserting the photonic crystal setup into a
closed resonator box.?
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