Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant

J. T. Luo, Y. C. Yang, X. Y. Zhu, G. Chen, F. Zeng, and F. Pan*

Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China (Descind 10 May 2010) provided memory interactional 10 July 2010, problem of 20 July 2010)

(Received 19 May 2010; revised manuscript received 10 July 2010; published 29 July 2010)

To investigate the relationship between the electromechanical response, d_{33} , of doped ZnO and the dopant ionic size, the chemical state and ionic size of Fe in Fe-ZnO films were modulated through doping with various Fe concentrations and postannealing. We found that an enhanced d_{33} of more than 110 pC/N is obtained in Fe-ZnO films when Fe³⁺ with an ionic radius of 0.64 Å substitutes for the Zn²⁺ (0.74 Å) site. The d_{33} (less than 7 pC/N) is smaller than that of undoped ZnO films (11.6 pC/N) when Fe²⁺ (0.76 Å) substitutes for Zn²⁺. The enhanced electromechanical response is ascribed to polarization rotation induced by the external electric field. The microscopic origin is considered. Substitution of Fe³⁺ with smaller ionic size for Zn²⁺ results to the easier rotation of noncollinear Fe-O1 bonds along the *c* axis under the applied field. Thus, the external electric field needed for polarization rotation is smaller. When bigger Fe²⁺ substitutes for Zn²⁺, rotation of Fe-O1 bonds becomes more difficult and thus the d_{33} is smaller. A general mechanism is derived. Doping ZnO with a small ion produces enhanced electromechanical responses whereas doping ZnO with a big ion results in decreased electromechanical responses. This mechanism is useful for guiding the design of new wurtzite semiconductors with enhanced electromechanical responses.

DOI: 10.1103/PhysRevB.82.014116

PACS number(s): 77.84.Bw, 77.65.-j, 77.80.Fm, 77.55.-g

I. INTRODUCTION

Zinc oxide (ZnO), a versatile material, has a growing technological importance because its many favorable properties.^{1,2} One of the distinctive properties of ZnO is it exhibits the largest electromechanical response, d_{33} , among the known tetrahedral semiconductors,³ making it suitable for devices in microelectromechanical and communication systems.⁴ However, performances of the device might be restricted by its relatively small d_{33} to some extent. As an important parameter evaluating electromechanical response, the d_{33} value of ZnO is ~9.9 pC/N for a bulk and ~ 12.4 pC/N for an oriented film,^{5,6} which is approximately one order of magnitude lower compared to common piezoelectric perovskite ceramics. Unfortunately, the high toxicity of lead in perovskite materials and the large lattice mismatch with silicon limit their application.⁷ If the d_{33} of nontoxic and simple-structured ZnO could be increased to be comparable with perovskite piezoelectrics, ZnO can be used as a candidate for lead-free piezoelectric materials and the performance of available ZnO-based devices can be qualitatively improved. Interestingly, we have obtained 2.5 at. % V-doped ZnO films (Zn_{0.975}V_{0.025}O) and 6 at. % Cr-doped ZnO films $(Zn_{0.94}Cr_{0.06}O)$ with maximum d_{33} values of ~170 and ~120 pC/N, respectively.^{8,9} Using V-doped ZnO films as the piezoelectric layer, we have fabricated surface acoustic wave devices with improved performances.¹⁰ Similar electromechanical response improvement can also be found in V-doped ZnO nanofibers.¹¹ In our previous works, we have also found that 2 at. % Cu-doped ZnO films have a d_{33} of ~13.6 pC/N, and Fe- and Co-doped ZnO films with the same doping concentration have d_{33} values of $\sim 6 \text{ pC/N}$ and ~ 11 pC/N, respectively.¹² Thus, the question that immediately emerges is why ZnO films doped with moderate V, Cr, and Cu have enhanced d_{33} values, whereas ZnO films doped with 2 at. % Fe and Co have decreased d_{33} . Although V, Cr,

and Cu dopants may improve crystallographic quality, and thus enhance d_{33} more or less, because the undoped and V-, Cr-, and Cu-doped ZnO films are highly oriented, this effect becomes limited. Notably, V is in +5 oxidation state in $Zn_{0.975}V_{0.025}O$ and Cr is in +3 oxidation state in $Zn_{0.94}Cr_{0.06}O.$ Both V^{5+} (0.59 Å) and Cr^{3+} (0.63 Å) radii are smaller than that of Zn^{2+} (0.74 Å). In the corresponding TM-doped ZnO, Cu, Fe, and Co exist at the chemical state of +2. The sizes of Fe²⁺ (0.76 Å) and Co²⁺ (0.79 Å) are bigger than that of Zn^{2+} but Cu^{2+} (0.72 Å) is a little smaller. Therefore, one can hypothesize that the d_{33} value of ZnO could be enhanced by doping it with a transition metal ion that is smaller than that of Zn^{2+} whereas doping ZnO with a bigger sized ion may decrease its d_{33} . This mechanism, if correct, would be useful for guiding the design of new semiconductors with enhanced electromechanical responses. The chemical state of Fe in Fe-ZnO may be different at different conditions and Fe ionic size may be changed with a change of its chemical state in Fe-ZnO. Therefore, we chose Fe-ZnO films to verify this mechanism.

In this study, we report the tremendous difference in electromechanical response between $Zn_{0.988}Fe_{0.12}O$ and $Zn_{1-x}Fe_xO$ ($x \ge 2.6$ at. %) films. Postannealing in O₂ and H₂ ambience was performed to verify the relationship between the electromechanical response of Fe-doped ZnO and the size of the Fe ion.

II. EXPERIMENT

A series of $Zn_{1-x}Fe_xO$ (*x*=0, 1.2, 2.6, 4, 5.6, and 7.4 at. %) films were deposited on Si (100) single-crystal substrates by direct current reactive magnetron cosputtering using a Zn target (99.99% purity, 120 mm diameter). Several Fe pieces (99.99% purity, 5 mm × 2 mm) were added uniformly around the sputtering race track. In order to adjust the concentration of Fe in the deposited films, the number of Fe

FIG. 1. (Color online) XRD patterns of $Zn_{1-x}Fe_xO$ (x=0, 1.2, 2.6, 4, 5.6, and 7.4 at. %) films.

pieces in the sputtering area was varied. Substrates were placed parallel to the target surface at a distance of about 67 mm. The base pressure of the chamber was lower than 5 $\times 10^{-4}$ Pa, and the working pressure was a mixture of Ar (0.3 Pa) and O_2 (0.5 Pa), which were controlled by two different flow meters. Presputtering was performed for 15 min to remove contaminations on the targets. The deposition rate was 0.05 nm/s and the substrate temperature during deposition was 200 °C. The thickness of the samples was \sim 280 nm, as measured by a stylus profiler. The Fe concentration was determined by induced coupled plasma atomic emission spectroscopy and confirmed by x-ray fluorescence. The microstructure of the films was characterized by x-ray diffraction (XRD) using Cu $K\alpha$ radiation (40 kV, 200 mA) with $\lambda = 1.5408$ Å. Fe $L_{2,3}$ edge x-ray absorption spectrum (XAS) and x-ray photoelectron spectroscopy (XPS) were used to characterize the local environment of the Fe ion and its chemical state in ZnO films.

III. RESULTS AND DISCUSSIONS

The XRD patterns of $Zn_{1-x}Fe_xO$ (x=0, 1.2, 2.6, 4, 5.6, and 7.4 at. %) films are shown in Fig. 1. A peak appears at ~34°, which corresponds to the (002) diffraction of the ZnO hexagonal wurtzite structure. All films are single-phased with a *c*-axis-preferred orientation, and no evidence of any other Fe secondary phases and impurities are detected. Compared with undoped ZnO films, there is a relative shift of the (002) peak to a lower angle for $Zn_{1-x}Fe_xO$ ($x \ge 2.6$ at. %), whereas $Zn_{0.988}Fe_{0.12}O$ has a relative shift of the (002) peak to a higher angle. A similar peak shift has also been observed in Co-doped ZnO and V-doped ZnO films.^{13,14} Changes in the (002) diffraction peak indicate that Fe is incorporated into the wurtzite lattice. In addition, the relative intensity of the (002) diffraction peak decreases when Fe is doped into ZnO films, indicating that Fe deteriorates crystal quality.

The valence of Fe in ZnO:Fe films was characterized by XPS (Fig. 2). The Fe 2p XPS spectrum of the Zn_{0.988}Fe_{0.12}O film is different from that of Zn_{1-x}Fe_xO ($x \ge 2.6$ at. %) films. The Fe $2p_{1/2}$ and Fe $2p_{3/2}$ peaks in the Zn_{0.988}Fe_{0.12}O film are located at 724.7 eV and 710.6 eV, respectively, which are almost same as the values reported for Fe₂O₃:Fe $2p_{1/2}$ at 724.9 eV and Fe $2p_{3/2}$ at 710.7 eV.¹⁵ A shake-up contribution

FIG. 2. (Color online) Fe 2*p* XPS spectra of $Zn_{1-x}Fe_xO$ films (*x*=1.2, 2.6, and 7.4 at. %).

at about 718.6 eV is consistent with available literature, which also indicate that Fe has a +3 oxidation state.¹⁶ The Fe $2p_{3/2}$ and Fe $2p_{1/2}$ signals in the Zn_{0.974}Fe_{0.026}O film are centered at 709.6 eV and 722.7 eV, respectively, which are very close to that of Fe²⁺ in FeO (709.30 eV for Fe $2p_{3/2}$ and 722.3 eV for Fe $2p_{1/2}$) according to the handbook of XPS (Ref. 17) and previous reports.¹⁸ With increasing Fe concentration, no significant change in chemical shift and signal was found for Fe $2p_{1/2}$ and Fe $2p_{3/2}$. Based on the XPS results, Fe in the Zn_{0.988}Fe_{0.12}O film exists in the form of Fe³⁺, whereas Fe chemical states in Zn_{1-x}Fe_xO ($x \ge 2.6$ at. %) films are believed to be Fe²⁺. The chemical state of Fe in Fe-ZnO films changes from Fe³⁺ to Fe²⁺ with an increase in the amount of Fe dopant, similar to that reported by other studies.^{19,20}

Fe $L_{2,3}$ edge XAS obtained by the BL08U beam line of the Shanghai Synchrotron Radiation Facility was used to characterize the local environment and chemical states of Fe ion in Fe-ZnO films. The XAS spectra are highly sensitive to the valence state: an increase in the valence state of the transition metal ion by one causes a shift in the XAS $L_{2,3}$ spectra by 1 or more electron volt toward higher energies. The Fe $L_{2,3}$ -edge XAS spectra of Zn_{0.974}Fe_{0.026}O, Zn_{0.988}Fe_{0.012}O, and Zn_{0.974}Fe_{0.026}O annealed in O₂ are shown in Fig. 3. All Fe $L_{2,3}$ line shapes are consistent with a tetrahedral coordination, as expected of Fe ions substituting for Zn in the ZnO

FIG. 3. (Color online) Room-temperature XAS spectra near Fe $L_{2,3}$ edges of $Zn_{1-x}Fe_xO$ films (x=1.2 and 2.6 at. %) and $Zn_{0.974}Fe_{0.026}O$ films annealed in O₂.

wurtzite lattice.²¹ However, the XAS spectrum of $Zn_{0.974}Fe_{0.026}O$ is different from that of $Zn_{0.988}Fe_{0.12}O$.

Ferric oxide, which consists of trivalent Fe ions, is well known to exclusively exhibit doublet peaks at both L_2 and L_3 edges in its XAS spectrum.²² The $Zn_{0.988}Fe_{0.12}O$ film shows a dominant peak near 710 eV, accompanied by double peaks near 721 and 723 eV, which are characteristic of Fe³⁺ ions. The XAS spectrum of Zn_{0.974}Fe_{0.026}O films does not show any doublet peak at both L_2 and L_3 edges. Peak positions for L_2 and L_3 edges are located at ~708 eV and ~720 eV, respectively, and have slightly lower photon energies than the corresponding L-edge peak position of Fe₂O₃. The line shape and L-edge peak position of $Zn_{0.974}Fe_{0.026}O$ films is coincident with that of FeO, indicating that Fe has a +2 oxidation state in $Zn_{0.974}$ Fe $_{0.026}$ O films.^{23,24} The Fe $L_{2,3}$ -edge XAS spectrum of $Zn_{1-x}Fe_xO(x > 2.6 \text{ at. }\%)$ is the same as that of $Zn_{0.974}Fe_{0.026}O$ (not shown in figure). Therefore, Fe^{3+} substitutes for Zn when Fe doping concentration is below 1.2 at. %. When the Fe doping concentration is above 2.6 at. %, Fe²⁺ substitutes for Zn. From the above analysis and the XPS and XRD results, one can conclude that Fe³⁺ successfully substitutes for the Zn^{2+} site in the $Zn_{0.988}Fe_{0.12}O$ film whereas in $Zn_{1-x}Fe_xO$ ($x \ge 2.6$ at. %) films, Fe^{2+} substitutes for the Zn²⁺ site.

The electromechanical responses of films were characterized by a commercially available scanning probe microscope (SPM, Seiko Instruments SPI4000 & SPA300HV). Figure 4 shows the electromechanical response dependence of the applied voltage for Zn_{0.988}Fe_{0.012}O, Zn_{0.974}Fe_{0.026}O, and $Zn_{0.974}Fe_{0.026}O$ films annealed in O₂. Figure 4(a) shows that the Zn_{0.988}Fe_{0.12}O film has a typical well-shaped displacement-voltage (D-V) butterfly loop with a displacement maximum of ~ 1.25 nm appearing at -8.9 V. This result shows a strain as high as 0.45% and indicates the ferroelectric behavior of the Zn_{0.988}Fe_{0.12}O film. A similar ferroelectricity has also been observed in Li-doped ZnO systems.^{25–27} A similar ferroelectricity in $Pb_{1-r}Ge_rTe$ and $PbS_{r}Te_{1-r}$ is ascribed to the following the phenomenon: when the size of the dopant ion is smaller than the host ion, the dopant ion can occupy off-center positions, thus locally inducing electric dipoles and resulting in ferroelectric behavior.^{28,29} Glinchuk et al.³⁰ reported that the ferroelectricity of nonperovskite semiconductors, such as ZnO:Li, Be, and Mg, depends on a difference in the ionic size of the impurity and the host lattice ion as well as on the doping concentration. In the $Zn_{0.988}Fe_{0.012}O$ film, smaller Fe³⁺ ions substitutes for Zn²⁺ and occupies off-center positions, inducing ferroelectricity.

Every point on the *D*-*V* curve is considered to contain information about piezoelectric deformation under the corresponding electric voltage. The electromechanical response hysteresis loop $(d_{33}$ -*V*) can be calculated from the *D*-*V* curve based on the law of converse piezoelectric effect. The d_{33} -*V* loop clearly shows that the Zn_{0.988}Fe_{0.12}O film is switchable and ferroelectricity is retained [Fig. 4(a)]. A maximum d_{33} value of ~200 pC/N can also be found in Fig. 4(a). Considering that SPM characterization is a local method, measurements were conducted repeatedly on different points of Zn_{0.988}Fe_{0.12}O films and an average d_{33} (~127 pC/N) was obtained from over ten measurements. The value is compa-

FIG. 4. (Color online) Displacement-Voltage (D-V) loop and the corresponding electromechanical response curve: (a) $Zn_{0.988}Fe_{0.12}O$ film, (b) $Zn_{0.974}Fe_{0.026}O$ film, and (c) $Zn_{0.974}Fe_{0.026}O$ annealed in O_2 .

rable to the d_{33} of some lead-free piezoelectric materials, making this a sort of lead-free and biocompatible piezoelectric material. The measured d_{33} of undoped ZnO films in our work is 11.6 pC/N, which is in agreement with 12.4 pC/N for a similarly oriented film.¹⁰ Thus, the average d_{33} value for Zn_{0.988}Fe_{0.12}O films is about one order of magnitude larger than that of undoped ZnO films. Although the improved crystallographic quality can increase d_{33} value, the crystallographic quality of Zn_{0.988}Fe_{0.12}O is not as good as the undoped ZnO film (Fig. 1). Therefore, the enhanced d_{33} of Zn_{0.988}Fe_{0.12}O cannot be ascribed to crystallographic quality improvement. A similar enhancement of the electromechanical response has also been observed in V- and Cr-doped ZnO systems.^{8,9,11}

FIG. 5. The average electromechanical response d_{33} as a function of Fe concentration *x* in $Zn_{1-x}Fe_xO$ (*x*=0, 1.2, 2.6, 4, 5.6, and 7.4 at. %) films.

For the last two decades, the electromechanical responses of ferroelectric and piezoelectric perovskite oxides have been intensively studied.^{31,32} Park et al.³³ reported that single-Pb(MgNb)O₃-PbTiO₃ (PMN-PT) crystal and Pb(ZnNb)O₃-PbTiO₃ (PZN-PT) solid solutions exhibit giant electromechanical responses on the order of $\sim 2500 \text{ pC/N}$, which is about one order of magnitude higher than that of traditional piezoelectric ceramics. The enormous electromechanical response is ascribed to polarization rotation. The electric field applied noncollinearly along the pseudocubic [001], rather than in the rhombohedral [111] direction, causes polarization to rotate with much less energy, leading to a large strain response.^{33,34} In this study, $Zn_{0.988}Fe_{0.12}O$ films also show ferroelectricity so a similar mechanism can be used to explain the remarkable electromechanical response in $Zn_{0.988}Fe_{0.12}O$ films. The phenomenological equation for d_{33} can be expressed via a factor linking electrostrictive characteristics³⁵

$$d_{33} = 2Q_{\rm eff}\varepsilon_0\varepsilon_r P_s,\tag{1}$$

where $Q_{\rm eff}$ is the effective electrostriction coefficient; and P_s , ε_0 , and ε_r are the spontaneous polarization, the permittivity of free space, and the relative permittivity, respectively. Ferroelectricity exists in Zn_{0.988}Fe_{0.12}O films, and the spontaneous polarization, P_s , is switchable, which results in a large relative permittivity, ε_r .³⁶ Therefore, induced spontaneous polarization by Fe³⁺ substitution in the Zn_{0.988}Fe_{0.12}O film and the accompanying high permittivity are considered to be mainly responsible for the large electromechanical response.

SPM characterizations were also performed on $Zn_{0.974}Fe_{0.26}O$ films and the electromechanical response dependence of the applied voltage is shown in Fig. 4(b). The typical butterfly loop is not observed and the maximum displacement is less than 0.04 nm. The average electromechanical response of $Zn_{0.974}Fe_{0.26}O$ films from 10 measurements is 7 pC/N, which is smaller than that of undoped ZnO films (11.6 pC/N). To systematically investigate the electromechanical responses of Fe-doped ZnO films, SPM characterizations were also performed on films with other Fe concentrations. Figure 5 shows the average electromechanical response as a function of Fe concentration *x* in $Zn_{1-x}Fe_xO$ films. Except for a significant enhancement of electrome-

FIG. 6. (Color online) The $(2 \times 2 \times 1)$ supercell of Fe-doped ZnO system: (a) Fe³⁺ substitutes for Zn²⁺ site and (b) Fe²⁺ substitutes for Zn²⁺ site.

chanical response in $Zn_{0.988}Fe_{0.12}O$ films, all electromechanical responses in other Fe-doped ZnO films are smaller than that of undoped ZnO films because of structural deterioration (Fig. 1).

To date, the similar crystallographic qualities of Zn_{0.974}Fe_{0.026}O and Zn_{0.988}Fe_{0.12}O have been confusing because these have tremendously different electromechanical responses. Apparently, there are some intrinsic factors that result in a drastic difference in electromechanical response. Unfortunately, unlike the electronic properties of ZnO,^{37,38} the electromechanical properties of these materials are poorly understood. Dal Corso et al. and Hill and Waghmare³⁹ reported piezoelectric constants (e_{33}) under zero field but the electromechanical coefficients (d_{33}) are the response of strain to a nonzero electric field. Karanth and Fu⁴⁰ studied the microscopic origin of the large electromechanical response in an undoped ZnO system under a nonzero electric field. They proposed that the large electromechanical response of ZnO originates from the strong coupling between strain and polarization. The dominant effect of the electric field in wurtzite semiconductors does not elongate the polar chemical bonds, as commonly believed. Rather, it serves to rotate the noncollinear bonds along the polar c axis, i.e., Zn2-O1 bonds (Fig. 6), toward the direction of the applied field. This produces strain, which is the microscopic mechanism of a large electromechanical response in undoped ZnO. This suggests that the electromechanical response in wurtzite materials is mainly governed by ease of bond bending and rotation. This microscopic explanation also works in Fe-doped ZnO films with consideration of the rotation of Fe-O1 bonds, in addition to Zn2-O1 bonds (Fig. 6). Hence, the electromechanical response of our samples is mainly determined by the ease of Fe-O1 bond bending and rotation. In Zn_{0.988}Fe_{0.12}O films, Fe^{3+} ions substitute for Zn^{2+} and the ionic radius of Fe^{3+} (0.64 Å) is smaller than that of Zn^{2+} (0.74 Å), which makes the switch of the Fe^{3+} -O1 bond toward the *c*-axis convenient. Moreover, Fe³⁺ has a higher positive charge than Zn²⁺ ions and noncollinear Fe³⁺-O1 bonds have a stronger polarity than Zn2-O1 ones. Hence, Fe³⁺-O1 bonds can rotate more easily under an applied field than Zn2-O1 ones [Fig. 6(a)]. This subsequently results in a large electromechanical re-

TABLE I. Electromechanical responses (pC/N) of $Zn_{1-x}Fe_xO(x=0, 1.2, and 2.6 at. \%)$ films with a series of post treatments.

Post treatment	x=0	<i>x</i> =1.2 at. %	<i>x</i> =2.6 at. %
As deposited	11.6	127	7
Step 1	12.1	128	120
Step 2	11.8	9	7
Step 3	12	120	110

sponse according to the prediction of Karanth. On the other hand, Fe^{2+} ions substitute for Zn^{2+} in $Zn_{0.974}Fe_{0.026}O$ films and the ionic radius of Fe^{2+} (0.76 Å) is larger than that of Zn^{2+} [Fig. 6(b)], which make the rotation of Fe^{2+} -O1 bonds become more difficult than that of Zn2-O1. This is the reason why the electromechanical response is smaller than that of undoped ZnO films. Thus, one viewpoint can be deduced; the electromechanical response of ZnO can be enhanced when smaller Fe^{3+} , which has a higher positive charge, substitutes for Zn²⁺ and decreases when bigger Fe^{2+} substitutes for Zn²⁺.

To further strengthen this argument, we modulated Fe chemical states and ionic sizes in $Zn_{1-x}Fe_xO(x=0, 1.2, and$ 2.6 at. %) films by a series of postannealing treatments at 500 °C for 60 min. Step 1, samples were annealed under O₂. Step 2, samples were annealed under H₂. Step 3, samples were again annealed under O2. The electromechanical responses of all samples after each step were measured by SPM and the average electromechanical responses are shown in Table I. Although all samples possess improved electromechanical responses after the first step, as can be seen in line 3 of Table I, the increase in the electromechanical response of Zn_{0.974}Fe_{0.026}O is remarkable. Postannealing may have improved the crystallographic quality and thus enhanced the electromechanical response more or less. Since both undoped ZnO and Zn_{0.974}Fe_{0.026}O films are in the same condition, this effect should be the same for undoped ZnO and Zn_{0.974}Fe_{0.026}O films. However, the increase in electromechanical response of Zn_{0.974}Fe_{0.026}O (120 pC/N) is one order of magnitude larger than that of undoped ZnO (12.1 pC/N). Therefore, an increase in electromechanical response of $Zn_{0.974}Fe_{0.026}O$ seems to result from some other factor besides crystallographic quality improvement. Figure 4(c)shows the electromechanical response dependence of the applied voltage for Zn_{0.974}Fe_{0.026}O film after Step 1. A typical well-shaped displacement-voltage (D-V) butterfly loop indicating the ferroelectric behavior of the Zn_{0.974}Fe_{0.026}O film can be found in the figure. Hence, the enormous increase can be ascribed to spontaneous polarizations and the accompanying high permittivities. To investigate the changes in the chemical state and ionic size of Fe in the Zn_{0.974}Fe_{0.026}O film after Step 1, XPS measurement was performed. Figure 7 shows the Fe 2p spectrum of the as-deposited $Zn_{0.974}Fe_{0.026}O$ film after Step 1. The dominant chemical state of Fe ion changes from Fe^{2+} to Fe^{3+} . A similar change in Fe chemical state can also be found in the Fe $L_{2,3}$ edge XAS shown in Fig. 3. Thus, after Step 1, Fe³⁺ substitutes for the Zn²⁺ site in Zn_{0 974}Fe_{0 026}O films, and Fe ionic sizes become smaller than that of Zn²⁺, which results in an easier rotation of the Fe-O1

FIG. 7. (Color online) Fe 2p XPS spectra of $Zn_{0.974}Fe_{0.026}O$ films as deposited and after Step 1 treatment.

bond [Fig. 6(a)]. As a result, the electromechanical response is significantly enhanced. On the other hand, after Step 2, the electromechanical responses of $Zn_{0.988}Fe_{0.12}O$ and $Zn_{0.974}Fe_{0.026}O$ films decrease dramatically, (Table I, line 4). From the Fe 2p XPS spectra shown in Fig. 8, the Fe²⁺ fraction increases at the cost of the Fe³⁺ state, and the dominative valence of the Fe ion changes from Fe³⁺ to Fe²⁺ in Zn_{0.988}Fe_{0.12}O films after Step 2. Therefore, Fe²⁺ substitutes for the Zn^{2+} site in the $Zn_{0.988}Fe_{0.12}O$ film, and the Fe ionic size becomes bigger than that of Zn²⁺, resulting in a difficult rotation of the Fe-O1 bond. Accordingly, the electromechanical response decreases significantly. After Step 3, the dominant chemical state of Fe ion in Zn_{0.988}Fe_{0.12}O films returns to Fe^{3+} (Fig. 8) and the electromechanical response is again enhanced (Table I, line 5). The electromechanical response of the Zn_{0.974}Fe_{0.026}O film is also enhanced. Thus, the electromechanical response of ZnO can be enhanced when smaller Fe^{3+} ions substitute for Zn^{2+} and decreased when bigger Fe²⁺ ions substitute for Zn²⁺. This is a general mechanism; that is, when smaller ions substitute for Zn^{2+} in ZnO, they enhance electromechanical response, and when bigger ions substitute for Zn²⁺ in ZnO, electromechanical responses decrease. Such a principle can be used for guiding the design of new wurtzite semiconductors with enhanced electromechanical responses.

It is easy to use this general mechanism to explain the question posed in the introduction. When moderate amounts

FIG. 8. (Color online) Fe 2p XPS spectra of $Zn_{0.988}Fe_{0.012}O$ films as deposited after Step 2 and after Step 3 treatment.

of V, Cr, and Cu dope ZnO films, substitution of V⁵⁺ (0.59 Å), Cr³⁺ (0.63 Å), and Cu²⁺ (0.72 Å) for Zn²⁺ (0.74 Å) make the V-O1, Cr-O1, and Cu-O1 bonds rotate easier in the direction of the applied field and enhance the corresponding electromechanical responses. On the other hand, when 2 at. % Fe- and Co-doped ZnO films, a bigger ionic size in the Zn²⁺ site makes the rotation of the Fe-O1 and Co-O1 bonds difficult and decreases the electromechanical responses in TM-doped ZnO and in piezoelectric single-crystals PMN-PT and PZN-PT have the same microscopic origin, i.e., polarization rotation. This is the key to understanding the electromechanical responses in tetrahedral semiconductors and in ferroelectric perovskites, which is significant in bridging these two seemingly unrelated fields.

IV. CONCLUSION

In summary, we have developed a method of enhancing the electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of Fe dopant. An enhanced electromechanical response as high as 127 pC/N is obtained in Zn_{0.988}Fe_{0.12}O films, whereas the electromechanical responses of Zn_{1-x}Fe_xO ($x \ge 2.6$ at. %) films are smaller than that of undoped ZnO films. After annealing in O₂, the electromechanical response of the Zn_{0.974}Fe_{0.026}O film increases up to 120 pC/N and the dominant chemical state of Fe changes from Fe²⁺ to Fe³⁺. On the other hand, the electromechanical response of the Zn_{0.988}Fe_{0.12}O film decreases to 9 pC/N and the Fe²⁺ fraction increases at the cost of the Fe³⁺ state when it is annealed in H₂. The electromechanical response of doped wurtzite semiconductors and the ionic size of dopants is related in that the substitution of smaller dopant ions for the host ones enhances the electromechanical response. The enhanced electromechanical responses make Fe-doped ZnO a promising candidate for leadfree, environment-friendly, and biocompatible piezoelectric materials.

ACKNOWLEDGMENTS

We thank the SSRF for the local structure and chemical state measurements. This work was supported by National Hi-tech (R&D) Project of China (Grants No. 2007AA03Z426 and No. 2009AA034001), the National Natural Science Foundation of China (Grants No. 50871060 and No. 50772055), and the National Basic Research Program of China (Grant No. 2010CB832905).

*panf@mail.tsinghua.edu.cn

- ¹Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science **291**, 1947 (2001).
- ²F. Pan, C. Song, Y. C. Yang, X. J. Liu, and F. Zeng, Mater. Sci. Eng. R. **62**, 1 (2008).
- ³A. Dal Corso, M. Posternak, R. Resta, and A. Baldereschi, Phys. Rev. B **50**, 10715 (1994).
- ⁴T. Shibata, K. Unno, E. Makino, Y. Ito, and S. Shimada, Sens. Actuators, A **102**, 106 (2002).
- ⁵M. H. Zhao, Z. L. Wang, and S. X. Mao, Nano Lett. **4**, 587 (2004).
- ⁶J. A. Christman, R. R. Woolcott, Jr., A. I. Kingon, and R. J. Nemanich, Appl. Phys. Lett. **73**, 3851 (1998).
- ⁷C. L. Chen, H. H. Feng, Z. Zhang, A. Brazdeikis, Z. J. Huang, C. W. Chu, F. A. Miranda, F. W. Van Keuls, R. R. Romanofsky, and Y. Liou, Appl. Phys. Lett. **75**, 412 (1999).
- ⁸Y. C. Yang, C. Song, X. H. Wang, F. Zeng, and F. Pan, Appl. Phys. Lett. **92**, 012907 (2008).
- ⁹Y. C. Yang, C. Song, X. H. Wang, F. Zeng, and F. Pan, J. Appl. Phys. **103**, 074107 (2008).
- ¹⁰ J. T. Luo, F. Zeng, F. Pan, H. F. Li, J. B. Niu, R. Jia, and M. Liu, Appl. Surf. Sci. **256**, 3081 (2010).
- ¹¹Y. Q. Chen, X. J. Zheng, and X. Feng, Nanotechnology **21**, 055708 (2010).
- ¹²X. B. Wang, C. Song, D. M. Li, K. W. Geng, F. Zeng, and F. Pan, Appl. Surf. Sci. **253**, 1639 (2006).
- ¹³K. J. Kim and Y. R. Park, Appl. Phys. Lett. 81, 1420 (2002).
- ¹⁴J. T. Luo, X. Y. Zhu, B. Fan, F. Zeng, and F. Pan, J. Phys. D 42, 115109 (2009).
- ¹⁵T. Yamashita and P. Hayes, Appl. Surf. Sci. 254, 2441 (2008).
- ¹⁶A. Gupta, A. Kumar, U. V. Waghmare, and M. S. Hegde, Chem.

Mater. 21, 4880 (2009).

- ¹⁷B. V. Crist, Handbook of Monochromatic XPS Spectra: The Elements and Native Oxides (Wiley, New York, 2000).
- ¹⁸P. Mills and J. L. Sullivan, J. Phys. D 16, 723 (1983).
- ¹⁹L. M. Wang, J. W. Liao, Z. A. Peng, and J. H. Lai, J. Electrochem. Soc. **156**, H138 (2009).
- ²⁰S. Kumar, Y. J. Kim, B. H. Koo, S. K. Sharma, J. M. Vargas, M. Knobel, S. Gautam, K. H. Chae, D. K. Kim, Y. K. Kim, and C. G. Lee, J. Appl. Phys. **105**, 07C520 (2009).
- ²¹ P. Wu, G. Saraf, Y. Lu, D. H. Hill, R. Gateau, L. Wielunski, R. A. Bartynski, D. A. Arena, J. Dvorak, A. Moodenbaugh, T. Siegrist, J. A. Raley, and Y. K. Yeo, Appl. Phys. Lett. **89**, 012508 (2006).
- ²²S. W. Ryu, J.-Y. Kim, Y.-H. Shin, B.-G. Park, Y. Son, and H. M. Jang, Chem. Mater. **21**, 5050 (2009).
- ²³T. J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Lüning, J. Stöhr, and R. L. White, Phys. Rev. B 64, 214422 (2001).
- ²⁴J.-S. Kang, G. Kim, H. J. Lee, D. H. Kim, H. S. Kim, J. H. Shim, S. Lee, H. Lee, J.-Y. Kim, B. H. Kim, and B. I. Min, Phys. Rev. B **77**, 035121 (2008).
- ²⁵M. Joseph, H. Tabata, and T. Kawai, Appl. Phys. Lett. **74**, 2534 (1999).
- ²⁶N. J. Dhananjay and S. B. Krupanidhi, Appl. Phys. Lett. 89, 082905 (2006).
- ²⁷N. J. Dhananjay and S. B. Krupanidhi, J. Appl. Phys. **101**, 104104 (2007).
- ²⁸Q. T. Islam and B. A. Bunker, Phys. Rev. Lett. **59**, 2701 (1987).
- ²⁹Z. H. Wang and B. A. Bunker, Phys. Rev. B 46, 11277 (1992).
- ³⁰M. D. Glinchuk, E. V. Kirichenko, V. A. Stephanovich, and B. Y. Zaulychny, J. Appl. Phys. **105**, 104101 (2009).
- ³¹M. E. Lines and A. M. Glass, Principles and Applications of

Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1979).

- ³²R. E. Cohen, Nature (London) **358**, 136 (1992).
- ³³S.-E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997).
- ³⁴A. L. Kholkin, E. K. Akdogan, A. Safari, P.-F. Chauvy, and N. Setter, J. Appl. Phys. **89**, 8066 (2001).
- ³⁵H. X. Fu and R. E. Cohen, Nature (London) **403**, 281 (2000).
- ³⁶N. J. Dhananjay and S. B. Krupanidhi, J. Appl. Phys. **99**, 034105

(2006).

- ³⁷O. Dulub, U. Diebold, and G. Kresse, Phys. Rev. Lett. **90**, 016102 (2003).
- ³⁸A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thorton, and N. M. Harrison, Phys. Rev. Lett. 86, 3811 (2001).
- ³⁹N. A. Hill and U. Waghmare, Phys. Rev. B 62, 8802 (2000).
- ⁴⁰D. Karanth and H. X. Fu, Phys. Rev. B **72**, 064116 (2005).