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Phase transformation in Si from semiconducting diamond to metallic 3-Sn phase
in QMC and DFT under hydrostatic and anisotropic stress
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Silicon undergoes a phase transition from the semiconducting diamond phase to the metallic S-Sn phase
under pressure. We use quantum Monte Carlo calculations to predict the transformation pressure and compare
the results to density-functional calculations employing the local-density approximation, the generalized-
gradient approximations PBE, PW91, WC, AMOS5, PBEsol, and the hybrid functional HSE06 for the exchange-
correlation functional. Diffusion Monte Carlo predicts a transition pressure of 14.0£1.0 GPa slightly above
the experimentally observed transition pressure range of 11.3—12.6 GPa. The HSEO06 hybrid functional predicts
a transition pressure of 12.4 GPa in excellent agreement with experiments. Exchange-correlation functionals
using the local-density approximation and generalized-gradient approximations result in transition pressures
ranging from 3.5 to 10.0 GPa, well below the experimental values. The transition pressure is sensitive to stress
anisotropy. Anisotropy in the stress along any of the cubic axes of the diamond phase of silicon lowers the
equilibrium transition pressure and may explain the discrepancy between the various experimental values as

well as the small overestimate of the quantum Monte Carlo transition pressure.
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I. INTRODUCTION

Phase transformations between insulating or semiconduct-
ing and metallic phases present a challenge for many current
theoretical methods. These transitions provide a testing
ground for comparing the accuracy of quantum Monte Carlo
(QMC) methods and novel exchange-correlation functionals
used in density-functional theory (DFT). In this work, we
investigate the diamond to SB-Sn phase transition in silicon
with QMC methods and with various types of exchange-
correlation functionals in DFT.

Under pressure, Si displays 11 phases with a steady in-
crease in coordination number and a transition from semi-
conductor to metal.! At ambient pressure, Si occurs in the
diamond structure. At a pressure of about 12 GPa, Si trans-
forms to the high-pressure 8-Sn structure.? This phase tran-
sition coincides with a semiconductor-to-metal transition and
an increase in the coordination number from 4 to 6. The
transformation reduces the space-group symmetry from cu-

bic Fd3m (227) to tetragonal I4,/amd (141). At the transi-
tion pressure, the volume decreases by 21%.%* It is notewor-
thy that the melting of Si at ambient conditions also displays
a transition both from fourfold to sixfold coordination and
from the semiconducting solid phase to a metallic liquid.

The observed transition pressure in Si from the diamond
to the 3-Sn phase depends strongly on the experimental con-
ditions and is affected by nonhydrostatic stresses. Under
nominally hydrostatic conditions in diamond-anvil cell ex-
periments using a pressure medium, the observed transition
pressure ranges from 11.3 to 12.6 GPa.>® Without a pressure
medium or under uniaxial compression, Si transforms at sig-
nificantly lower pressures of 8-9 GPa.*>"'% In shock compres-
sion, the transformation is observed in a range of 10-14
GPa_ll—l?ﬁ

Previous calculations using DFT determined the phase-
transition pressure for various semilocal exchange-
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correlation functionals. Comparing the results of zero-
temperature calculations directly with room-temperature
experiments requires taking into account the phonon contri-
butions to the free energy. Zero-point energy and finite-
temperature phonon entropy contributions to the free energy
lower the transition pressure by 1.0 GPa and 0.3 GPa,
respectively.'* Taking this into account, the previous hydro-
static compression calculations gave transition pressures of
5.7-6.7 GPa using the local-density approximation (LDA)
and 10.1-10.9 GPa using the PW9l functional, a
generalized-gradient approximation (GGA)—all below the
experimental range.'*"!7 For nonhydrostatic compression,
DFT calculations confirm the experimental observation that
stress anisotropies can lower the transition pressure. The
transition pressure decreases linearly with increasing devia-
tory stresses along one of the cubic axes.!”!3

In this study, we perform QMC and DFT calculations to
benchmark semilocal and hybrid exchange-correlation func-
tionals for the diamond to B-Sn transformation in Si and
determine how nonhydrostatic stress affects the transition
pressure. Section II introduces the DFT and QMC methods.
We analyze the accuracy of the various approximations in
our QMC calculations to determine the accuracy of the tran-
sition pressure prediction. Section III compares the results of
the QMC and DFT calculations for the transition pressure
between the two Si phases with the experimental results. The
LDA (Ref. 19) predicts a transition pressure that is too low.
The GGA functionals PBE (Ref. 20) and PW91 (Ref. 21)
improve the prediction but still underestimate the pressure.
The more recently developed GGA functionals WC (Ref.
22), AMO5 (Ref. 23), and PBEsol (Ref. 24) perform worse
than the PBE and PW91 functionals and predict transition
pressures more similar to the LDA. The hybrid functional
HSEO6 (Refs. 25 and 26) gives a transition pressure of 12.4
GPa, in excellent agreement with the range of experimental
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values of 11.3-12.6 GPa. Diffusion Monte Carlo predicts a
transition pressure of 14.0*£1.0 GPa, which is slightly
higher than the HSEO06 result and the range of experimental
values. We discuss the origin of the shortcomings for the
LDA and GGA functionals. For the LDA, the lack of gradi-
ent terms of the functional results in an underestimation of
the energy difference between the diamond phase and the
more homogeneous B-Sn phase. Based on a similar underes-
timation of the formation energies for interstitial defects in
Si,?”?8 we argue that the lack of nonlocal exchange in the
LDA and semilocal GGA functionals is responsible for the
remaining underestimation of the energy difference between
the semiconducting diamond and S3-Sn phases.

From the dependence of the energy on volume and c/a
ratio, we determine the effect of stress anisotropy on the
transition pressure. We show that stress anisotropies, which
may be present under experimental loading conditions, lower
the transition pressure and may explain the broad range of
experimental values. Section IV summarizes the results.

II. METHODS

To accurately compare the predictions of various
exchange-correlation functionals in DFT to QMC calcula-
tions, we have to either eliminate or control the physical and
numerical approximations in both computational methods.
For the DFT calculations we eliminate or control all approxi-
mations (other than the choice of the approximate exchange-
correlation functional) to determine the transition pressure
accurate to within 0.2 GPa. In our QMC calculations we
reduce the error introduced by the controlled approximations
to result in an uncertainty of the transition pressure of 1 GPa.
In the following, we describe our DFT and QMC approaches
and estimate the accuracy of the approximations.

A. Density-functional methods

The three main approximations for the density-functional
calculations, besides the choice of exchange-correlation
functional, are the description of the core electrons, the ac-
curacy of the basis set, and the Brillouin-zone integration.
For DFT calculations using semilocal exchange-correlation
functionals, we explicitly include the core electrons in the
calculation and avoid the pseudopotential approximation by
performing all-electron calculations using the linearized aug-
mented plane wave (LAPW) method implemented in the
WIEN2K code.?” The parameters of the LAPW basis and the
Brillouin-zone integration are chosen to achieve a total-
energy accuracy of 1 meV/atom. This requires a muffin-tin
radius Ryr=1.9a, and a value of Ryipk.x=8.0, where k,, is
the planewave cutoff of the basis. The Brillouin-zone inte-
gration is performed on a 9X9X9 k-point mesh for the
semiconducting diamond phase and a 15X 15X 15 k-point
mesh for the metallic 8-Sn phase. The calculations for the
hybrid functional HSEO6 are performed using the VASP pro-
gram (Vienna ab initio simulation program) employing the
projector augmented wave (PAW) method within the frozen-
core approximation.’®3! A cutoff energy of 500 eV and a
15X 15X 15 k-point mesh ensure convergence of the total
energy to 1 meV/atom.
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FIG. 1. (Color online) Accuracy of the frozen-core PAW
method. The energy of the diamond and B-Sn phases of silicon are
shown for the all-electron LAPW method (WIEN2K) and the frozen-
core PAW method (vAsP) using the PBE functional. The energies
are shifted such that the minimum energy of the diamond phase is at
zero. The differences in energy predicted by the two methods at any
given volume are within 5 meV/atom for the diamond phase and
within 10 meV/atom for the B-Sn phase. The transition pressures
agree within 0.2 GPa.

We test the accuracy of the frozen-core PAW approxima-
tion by comparing calculations for the PBE functional with
the all-electron LAPW method. Figure 1 illustrates the close
agreement between the frozen-core PAW and the LAPW
method for the diamond and -Sn phases of silicon. At any
given volume, the two methods agree to better than 10 meV/
atom and the transition pressures agree to within 0.2 GPa.

B. Quantum Monte Carlo methods

There are two forms of QMC methods that are commonly
used for electronic structure calculations, the simpler varia-
tional Monte Carlo (VMC) and the more sophisticated
diffusion Monte Carlo (DMC) method.3>* VMC calculates
quantum-mechanical expectation values using Monte Carlo
techniques to evaluate the many-dimensional integrals. Ac-
curacy of the VMC results depends crucially on the quality
of the trial-wave function but DMC can remove most of the
error in the trial-wave function. DMC is a stochastic projec-
tor method that projects out the ground state from the trial
wave function. To avoid the fermion sign problem, one typi-
cally imposes the boundary condition that the nodes of the
many-body wave function are the same as those of a trial
wave function. The resulting error, known as the fixed-node
error, can be reduced by improving the trial wave
function.3*33

The QMC calculations are performed using the CHAMP
code.® A norm-conserving Hartree-Fock pseudopotential
eliminates the 1s, 2s, and 2p electrons of Si from the
calculation.** The QMC trial-wave function consists of a
product of a single Slater determinant of DFT orbitals and a
Jastrow correlation factor. The orbitals of the Slater determi-
nant come from a DFT calculation with the CPW2000 code of
J.-L. Martins using the PBE functional. For the diamond

014101-2



PHASE TRANSFORMATION IN Si FROM...

TABLE I. Convergence of controlled approximations in QMC.
The parameters of the calculations are chosen to reduce the errors
introduced by the controlled approximations to below 20
meV/atom.

Convergence
Controlled approximation (meV/atom) Parameter value
Statistical error <3 30000 steps/Nyeom
Orbital interpolation grid <5 4.5-6.5 points/A
DMC population control <1 1000 walkers
DMC time step <5 7=0.025 Ha™!
Finite size <20 Up to 128 atoms

phase the L point was chosen to reduce the finite-size error.
For the -Sn phase the (1/2, 0, 0) k point was selected to
reduce the finite-size error and to avoid any fractional occu-
pancies of the orbitals. The Jastrow factor describes the
electron-electron and electron-nuclei correlations. Minimiz-
ing the energy in VMC optimizes the parameters of the
Jastrow factor.3>’ Finally, DMC calculations using the opti-
mized trial wave function determine the energy of the
phases.

Approximations in the QMC calculations can be classified
into controlled approximations with systematically-reducible
error and uncontrolled approximations whose errors are un-
known and are not systematically reducible.

Convergence of the controlled approximations. Controlled
approximations include the statistical error of the Monte
Carlo method, the interpolation grid for the numerical orbit-
als, the system size, the number of configurations (walkers),
and the time step in the diffusion Monte Carlo calculation.
Table I summarizes the accuracy of the controlled approxi-
mations in the QMC calculations. All the errors introduced
by the controlled approximations are reduced such that the
resulting transition pressure is accurate to within 1 GPa, cor-
responding to an energy accuracy of about 20 meV/atom.

QMC calculations for extended systems require a finite-
size extrapolation. The periodic boundary conditions em-
ployed in the calculation lead to artificial correlations of the
electrons. Several methods have been developed to reduce
the finite-size error such as the model periodic Coulomb
potential,®® the completion of the structure factor,® and the
finite-size exchange-correlation functional approach.*® Here
we use the last approach, which employs a local-density
functional fit to DMC calculations for finite system sizes.*!
The finite-size corrections are evaluated using the implemen-
tation of the finite-size exchange-correlation functional in the
PWSCF code.*?

Figure 2 shows the DMC energies for the diamond and
B-Sn structure of Si at their respective equilibrium volumes
as a function of the number of atoms. Extrapolation from the
raw DMC energies is difficult at best. Using the finite-size
exchange-correlation functional correction greatly improves
the extrapolation of the energy to infinite system size, par-
ticularly for the 8-Sn phase.*® Using calculations with up to
128 atoms in the unit-cell results in an extrapolation error
below 20 meV/atom leading to an uncertainty in the pre-
dicted transformation pressure of about 1 GPa.
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FIG. 2. (Color online) Finite-size extrapolation of the DMC en-
ergies for the diamond and B-Sn phases of Si. The zero of the
energy is taken to be the extrapolated value for the diamond struc-
ture including finite-size corrections. The finite-size corrections us-
ing the finite-size exchange-correlation functional method (Ref. 40)
greatly reduce the finite-size error and enable an accurate finite-size
extrapolation using the corrected DMC energies of the 16, 54, and
128 atom cells.

Uncontrolled approximations. The uncontrolled approxi-
mations in QMC include the pseudopotential approximation
for the core electrons, the locality approximation for the
evaluation of the nonlocal pseudopotential terms, and the
fixed-node approximation in DMC.

Alfe et al.¥® showed that core polarization, which is not
included in our QMC calculations, is important for the en-
ergy difference between the 8-Sn and the diamond phase and
lowers the energy difference by 30 meV/atom. To account
for this effect, we apply a constant energy shift of 30 meV/
atom to the DMC energy of the 5-Sn phase.

In DMC, the trial wave function is used to evaluate the
nonlocal part of the pseudopotential. This pseudopotential
locality approximation leads to a nonvariational error in the
DMC energies. Empirically, this error introduced by the
pseudopotential locality approximation is usually quite small
for well-optimized trial wave functions.*

The fixed-node error is difficult to estimate and could af-
fect the results of our calculation. Possible methods to im-
prove the nodes of the trial wave function include orbital
optimization®#® and backflow transformation.>* Both ap-
proaches are computationally very demanding and beyond
the scope of this work. Recent DMC calculations for self-
interstitials in Si (Ref. 47) provide an estimate of the size of
fixed-node error. These calculations show that the backflow
transformation significantly improves the accuracy of the
trial wave function; the variance is reduced threefold by the
backflow transformation. The total energy for the diamond Si
phase is only reduced by 12 meV/atom. Furthermore, a par-
tial error cancellation is observed for differences in total en-
ergy between the perfect bulk and the defects. We expect a
similar partial error cancellation of the fixed-node error be-
tween the diamond and the B-Sn phase.

II1. RESULTS
A. Comparison between quantum Monte Carlo and various
exchange-correlation functionals

Figure 3 compares the predictions of the different
exchange-correlation functionals for the energy as a function
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FIG. 3. (Color online) Comparison of the predicted equations of
state of silicon for diffusion Monte Carlo energies and the LDA,
PBE, and HSE06 exchange-correlation functionals. The energy is
given relative to the energy of the diamond phase at a volume of
20 A3. The DMC energy curve includes the core-polarization cor-
rection of 30 meV/atom described in Ref. 43.

of volume of the diamond and S-Sn phases of silicon with
the results of the diffusion Monte Carlo calculations. For
clarity, we show only the results for the LDA, PBE, and
HSEO06 functional.

Table II presents the equilibrium volume V), bulk modu-
lus B, and pressure dependence of the bulk modulus B’ for Si
in the diamond and B-Sn phases for the various theoretical
methods. For the diamond phase, we fit a Birch-Murnaghan
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equation of state*® to the energy as function of volume over
a range from 16.0 to 22.0 A3/atom. Comparing the results
with experiment shows an excellent agreement of the struc-
tural properties with experimental values for the more recent
GGA functionals, WC, AMOS, and PBEsol, and the hybrid
functional HSEO06. The LDA, as usual, underestimates the
volume, and the GGA functionals PBE and PWO91 overesti-
mate it. A similar agreement is also observed for the volume
V, at the experimental transition pressure of 11.7 GPa of Ref.
4. All semilocal functionals somewhat underestimate the
bulk modulus with the largest discrepancy observed for the
PBE and PW9I1 functional. All functionals reproduce the
pressure dependence of the bulk modulus very well. Within
statistical accuracy, the DMC results agree with the experi-
mental values for the diamond phase, especially for the equi-
librium volume V. The somewhat large error bars on B and
B’ make a comparison difficult.

For the B-Sn phase, we calculate the energy as a function
of volume V and c/a ratio. For each volume, we fit a cubic
polynomial to determine the minimum energy and corre-
sponding c/a ratio. Similar to the analysis for the diamond
phase, a Birch-Murnaghan equation of state*’ is then fit to
the resulting energies as a function of volume ranging from
13.2 to 17.1 A3/atom. Since the 3-Sn phase transforms un-
der decompression into the R8 phase, no experimental values
are available for the crystal structure at zero pressure. Instead
we compare the volume and c/a ratio at the experimental
transition pressure of 11.7 GPa of Ref. 4. The LDA and

TABLE II. Equation of state of the diamond and -Sn phases of silicon in DMC and DFT with various functionals. Shown are the
equilibrium volume, V{, the bulk modulus, B, and the pressure dependence of the bulk modulus, B’, for both phases and the c¢y/ay ratio for
the B-Sn phase. For comparison with experiment, we list the volume, V, and the c¢,/a, ratio at the experimental transition pressure of 11.7
GPa of Ref. 4. The experimental equilibrium volume of the diamond phase and the elastic properties are from Ref. 48. In addition, AE,
denotes the energy difference between the minima of the two phases. The transition pressure, p, includes zero-point and finite-temperature
corrections which lower the transition pressure by 1.0 GPa and 0.3 GPa, respectively (Ref. 14). The QMC transition pressure also includes
a core-polarization correction which lowers the energy difference between the diamond and 3-Sn phase by 30 meV/atom (Ref. 43).

LDA PBE PWOI1 WwC AMO5 PBEsol HSEO06 DMC Expt.

Diamond phase

Vo (A3/atom) 19.72 20.48 20.45 20.05 20.07 20.06 20.07 19.98(5) 20.0

B (GPa) 96.4 89.0 89.1 94. 2 93.1 93.9 99.1 98(7) 99.2

B’ 4.13 4.12 4.14 4.10 4.08 4.09 4.00 4.6(6) 4.11

V, (A3/atom) 17.86 18.42 18.40 18.12 18.13 18.13 18.21 18.14(5) 18.15

B-Sn phase

Vy (A3/atom) 14.82 15.36 15.47 15.11 14.82 15.02 15.10 15.2(1)

col agy 0.548 0.550 0.551 0.549 0.546 0.548 0.565 0.550°

B (GPa) 116.0 106.4 103.6 112.4 120.5 115.0 117.0 107(12)

B’ 4.59 4.57 4.52 441 4.54 4.52 4.35 4.6¢

V, (A3/atom) @ 13.63 14.04 14.11 13.86 13.67 13.80 13.89 13.9(1) 13.96

cla;® 0.544 0.544 0.546 0.544 0.543 0.543 0.557 0.550° 0.550
Phase transition

AE( (meV/atom) 206 287 324 214 152 184 390 424(20)

AVIVy (%) 22.6 22.2 21.4 22.7 24.7 23.4 21.6 20.8(1) 21.0(1)

p; (GPa) 5.8 8.4 10.0 6.0 3.5 4.8 12.4 14.0+1.0 11.3-12.6

“At the experimental transition pressure of Ref. 4.

The c¢/a ratio is not optimized in DMC and fixed at the experimental ¢/a=0.550.
€A value of B'=4.6 is assumed in the DMC Birch-Murnaghan equation of state.
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FIG. 4. (Color online) Comparison of predictions of the transi-
tion pressure for various exchange-correlation functionals with
DMC and experiment. The LDA approximation and all tested GGA
approximations, underestimate the transition pressure. The HSE06
hybrid functional agrees with the experiment. DMC slightly over-
estimates the transition pressure. The shaded region indicates the
estimate of the uncertainty of the DMC transition pressure from the
controlled approximations.

AMOS5 functional underestimate the volume at that pressure
while all other functionals agree quite well with the experi-
ment.

The transition pressure p, is determined from the equation
of state using the common-tangent rule. To compare the cal-
culated bare transition pressure with experimental values, we
need to include the effect of zero-point vibrations and finite
temperature, which differ in the two phases.'* The results for
p; shown in Table II include zero-point and finite-
temperature corrections, which lower the transition pressure
by 1.0 GPa and 0.3 GPa, respectively.'* Figure 4 compares
the predictions for the transition pressure among the various
exchange-correlation functionals and DMC with experi-
ments. Somewhat surprisingly, all semilocal functionals un-
derestimate the transition pressure, and the GGA functionals
provide a large range of pressure predictions from 3.5 to 10.0
GPa. The PWO1 functional predicts a pressure of 10.0 GPa
close to the experimental range from 11.3 to 12.6 GPa. The
more recent GGA functionals, WC, AMO05 and PBEsol, sig-
nificantly underestimate the transition pressure, similarly to
the LDA. The hybrid functional HSE06, however, predicts a
transition pressure of 12.4 GPa, in excellent agreement with
experiments.

The DMC calculations predict a transition pressure of
14.0£1.0 GPa. This value includes the same zero-point en-
ergy and finite-temperature phonon entropy contributions to
the free energy'* as the DFT values, and the core-
polarization correction by Alfe et al.** The error bar of 1 GPa
is an estimate of the combined uncertainties of the controlled
approximations.

Our DMC transition pressure of 14.0*x1.0 GPa is
slightly above the experimental range from 11.3 to 12.6 GPa.
The result is lower by 2.5 GPa than the DMC result of Alfe
et al.¥® of 16.5 GPa and agrees within error bar with the
auxiliary field QMC (AFQMC) result by Purwanto et al.>° of
12.6 0.3 GPa. The latter work estimated the transition
pressure from the energy difference at the experimental tran-
sition pressure, limiting any estimate of the accuracy of the
AFQMC method to the pressure value.

The work by Alfe et al.** and our study determined the
equation of state of both phases. Both DMC calculations
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accurately predict the structural and elastic properties of the
diamond phase demonstrating their accuracy. The two DMC
studies differ in their transition pressure prediction. The
higher transition pressure predicted by Alfe er al. originates
from a larger energy difference of 475+ 10 meV/atom (Ref.
43) versus 424 +20 meV/atom in our work (both numbers
include the core-polarization correction). The difference of
2.5 GPa or 50 meV/atom between the two DMC results
could be caused by differences in the pseudopotential local-
ity error, the finite-size extrapolation or the fixed-node error.
The main differences in our approach are the use of energy
minimization for optimizing the Jastrow factor parameters, a
different form of the Jastrow and the finite-size extrapola-
tion. An improved optimization of the Jastrow parameters by
the energy minimization method®>3’ factor would reduce the
error of many of the controlled approximations. It would also
reduce the uncontrolled pseudopotential locality error in
DMC. In our work we include a finite-size correction*® and
perform a finite-size extrapolation at each volume for the two
phases using the DMC energies for 16, 54, and 128 atom
cells while Alfe et al. use the DMC energy of the 128 atom
cells without extrapolation and finite-size corrections. The
combination of pseudopotential locality error and different
finite-size extrapolation could explain the change in the en-
ergy difference of 50 meV/atom.

B. Discussion of the phase stability

The differences in the transition pressure predictions of
the various methods are mostly determined by the relative
phase stability or energy difference between the two phases.
The good agreement of the HSE06 hybrid functional with the
experimental transition pressure indicates that the energy dif-
ference should be around 390 meV/atom. The semilocal
functionals all give energy differences that are too small
while the DMC energy difference appears to be a bit too
large. In the following, we discuss two arguments for the
observed ordering of the energy difference between the semi-
conducting fourfold coordinated diamond phase and the me-
tallic sixfold coordinated 3-Sn phase for the different func-
tionals.

We first show that the lack of gradient terms in the LDA
functional*'3! results in an underestimate of the energy dif-
ference between the two phases. Then, we argue that in order
to accurately predict the energy difference between the two
phases, the method also needs to predict the band gap accu-
rately. Both LDA and GGA functionals fail for the band gap.
The inclusion of exact exchange in the HSEO6 functional
recovers the band gap by improving the derivative disconti-
nuity of the Kohn-Sham potential for integer electron
numbers.>2-3*

To understand the trend of the various semilocal
exchange-correlation functionals we note that a similar en-
ergy ordering for the various functionals and an agreement
between the DMC and HSEOQ6 results also occurs for Si
single interstitial defects.”’” The interstitial atom and its
neighboring atoms have an increased coordination number of
5 or 6. For both the Si interstitial structures and the B-Sn
phase, the increased coordination results in a more homoge-
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neous charge density compared to the diamond phase. This
increased homogeneity explains why the LDA functional un-
derestimates the energy difference between the two Si phases
and the Si interstitial formation energies, respectively. The
lack of any gradient terms in LDA energetically favors more
homogeneous charge-density distributions.” GGA function-
als aim to correct this shortcoming of LDA. However, PBE
and PW91 violate the gradient expansion of Svendsen and
von Barth® for slowly varying density systems. Both func-
tionals have second-order expansion coefficients that are too
large. One might therefore expect PBE to overestimate the
effect of inhomogeneity. However, this analysis neglects the
effect of higher-order contributions. We observe that the
GGA functionals PBE and PW91 indeed improve the agree-
ment with DMC, HSEO06 and experiments but the resulting
energy difference between the phases is still too small. The
more recent GGA functionals, WC, AMO05, and PBEsol,
which are designed to improve the description of solids, re-
sult in energy differences between the phases at or even be-
low the LDA value and do not work for the transition pres-
sure. The gradient corrections alone appear insufficient.
Recent GW calculations by Rinke et al.?® showed that the
failure of LDA and GGA functionals for the interstitial for-
mation energies in Si is due to underestimation of the vertical
electron affinities of the interstitial defect configurations and
related to the band-gap problem. One might expect that this
underestimation of the band gap in LDA and GGA also af-
fects the accuracy of LDA and GGA functionals for the
semiconductor-to-metal transition in Si. Along a path in con-
figuration space going from the diamond to the B-Sn phase,
the band gap closes and the density of states at the Fermi-
level increases. The band-gap closure occurs too early for the
LDA and GGA functionals compared to HSEO6 and the den-
sity of states at the Fermi level is higher for the LDA and
GGA functionals as well. This difference in ground-state
properties predicted by the LDA and GGA functionals corre-
late with an energy difference along the path that is too low
for the LDA and GGA functionals. The inclusion of short-
ranged Hartree-Fock exchange in the hybrid HSE06 func-
tional is optimized to describe covalent bonds and improves
the band gap in semiconductors.>® This may be the reason for
the good agreement of the HSEO6 results for the transition
pressures in Si with experiments and for the interstitial for-
mation energies with GW calculations?® and DMC.?’

C. Effect of stress anisotropy on the transition pressure

The predicted transition pressure in DMC is at the upper
end of the experimental values. There are various possibili-
ties for why the DMC transition pressure prediction is some-
what high. DMC might overestimate the energy difference
between the metallic B-Sn phase and the semiconducting
diamond structure due to the fixed-node error of the trial
wave function. In order to obtain the transition pressure ac-
curate to within 1 GPa, one has to determine the energy
difference between the two phases to within 20 meV/atom.
Because of the large difference in the electronic structure of
the two phases, metallic versus semiconducting, it is possible
that a sufficiently accurate cancellation of fixed-node error
between the two phases does not occur.
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Another possibility is that the measured transition pres-
sure could be affected by kinetic effects and stress anisotro-
pies in the diamond-anvil cell experiments.!? Kinetic or
hysteresis effects typically lead to an increase in transition
pressure over the thermodynamic equilibrium transition pres-
sure. Stress anisotropy in the sample can lower the transition
pressure by stabilizing the [-Sn phase over the diamond
phase.!”:18

We determine the effect of nonhydrostatic stresses on the
transition pressure following the approach by Cheng et al.'’
The phase transformation from the diamond to the B-Sn
phase occurs when

Fy-F +W=0, (1)

where W is the work done by the system during the phase
transformation and F; and F), are the energies of the diamond
and the B-Sn phase, respectively. In our analysis we neglect
the effect of stress anisotropy on the zero-point energy and
finite-temperature phonon entropy contributions to the free
energy and simply include those corrections as determined
by Gaal-Nagy et al.'* We assume a uniform nonhydrostatic
compression along the cubic and tetragonal axes of the two
crystal structures with a stress tensor, o, of the form

p—A3 0 0
o= 0 p—A/3 0 , ()
0 0 p+2A/3

where p is the average applied stress and A is a measure of
the stress anisotropy between the x or y axes and the z axis.
For this loading condition, the work W is

@ @ @
W=mf ggm+%f QW%+%f Lhdl., (3)
M) 0 )

where p,, Py, and p, are the three diagonal entries of the
stress tensor o, and [, ly, and [, are the lattice constants of
the crystal structures. The virtual work under nonhydrostatic
loading is path dependent®” so we calculate the work along
the shortest path, following Ref. 17.

To determine the initial and final point of the path integral
for the virtual work, we calculate the energy E(V,c/a) of the
Si diamond and 3-Sn phases as a function of volume and c¢/a
ratio using the LDA, PBE, PW91, and HSEO6 functionals.
We leave out the WC, AMOS5, and PBEsol functionals since
they significantly underestimate the transition pressure. We
use a body-centered tetragonal unit cell for the simulations
with the three lattice vectors (\2ag,424ay,0), (\2aq,
—\2a,,0), and (0,0, ¢,). In these lattice vectors, the c¢/a ratio
of the diamond phase is \2 instead of one. Figure 5 illus-
trates the resulting energy landscape for the HSE06 func-
tional. The two minima correspond to the diamond and S-Sn
phases of Si. From the energy landscape E(V,c/a), we de-
termine the lattice parameters of the two phases as a function
of applied stress tensor o using the relations
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FIG. 5. (Color online) Energy landscape of Si as a function of
volume and c/a ratio for the HSE06 functional. The two minima
correspond to the diamond and B-Sn phases. For the chosen unit
cell, the ¢/a ratio of the diamond phase is given by V2 instead of 1.
The contour lines are shown for every 50 meV/atom.
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Equations (1) and (3) determine the equilibrium transition
pressures as a function of stress anisotropy A. Figure 6 com-
pares the resulting transition pressures for the LDA, PBE,
and HSEO6 functionals with the range of experimental val-
ues as a function of the applied stress anisotropy A. All three
functionals predict a similar behavior. The anisotropy in the
loading condition A linearly reduces the transition pressure
by 2.4A. The linear coefficient is similar for all three func-
tionals and close to the values determined previously for the
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FIG. 6. (Color online) Effect of stress anisotropy on phase-
transition pressure. The phase transformation from the diamond to
the B-Sn phase of Si is reduced by anisotropic stress along the [001]
direction. The transition pressure reduction is similar for the various
exchange-correlation functionals. For a stress anisotropy A along
the [001] direction compared to the other two cubic directions, the
transition pressure is reduced by 2.4A.
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LDA and PW91 functional.'”!® Considering that the me-
chanical strength of silicon under uniaxial compression at
ambient conditions is about 7 GPa, it may be reasonable to
assume that deviatory stresses on the order of 0.5 GPa could
be present in the diamond-anvil cell experiments with a pres-
sure medium and even larger deviatory stresses without a
pressure medium. This would lower the observed transition
pressure by 1.2 GPa compared to perfect hydrostatic com-
pression. This strong influence of the stress anisotropy may
explain the range of experimentally observed transition pres-
sures, particularly the differences in the diamond-anvil cell
experiments with and without a pressure medium. The effect
of stress anisotropy may also explain the difference between
the experimental values and the DMC prediction.

IV. CONCLUSION

We performed calculations of the transition pressure for
the high-pressure phase transformation in Si from the semi-
conducting diamond to the metallic 3-Sn phase. Compari-
sons with experimental values benchmark the accuracy of
DMC methods and various exchange-correlation functionals
in DFT. The hybrid functional HSE06 and the DMC method
predict similar transition pressures with values of 12.4 GPa
and 14.0*= 1.0 GPa, respectively, while semilocal LDA and
GGA functionals predict lower transition pressures ranging
from 3.5 to 10.0 GPa.

The DMC transition pressure is slightly above the experi-
mental range of values of 11.3-12.6 GPa while the HSE06
functional agrees with the experiments. The DMC energies
could be affected by fixed-node error which could be re-
duced using the backflow transformation.>* The LDA predic-
tion of 5.8 GPa is too low. The GGA functionals PBE and
PWOI1 improve the prediction but still underestimate the
pressure. The more recently developed GGA functionals,
WC, AMOS, and PBEsol, perform worse than the PBE and
PWO1 functionals and predict transition pressures more simi-
lar to the LDA. Comparison with DMC and GW calculations
for point defects in Si indicate that the underestimation of the
transition pressure may be related to the underestimation of
the band gap in Si.

Calculations for anisotropic loading conditions show that
the experimental transition pressure could be affected by
stress anisotropy. Stress anisotropy can dramatically reduce
the transition pressure for the diamond to SB-Sn transforma-
tion. An anisotropy of only 0.5 GPa along any of the cubic
axes reduces the transition pressure by 1.2 GPa, explaining
the range of transition pressures observed in the diamond-
anvil cell experiments with and without a pressure medium
and possibly also the difference between the experiments and
the DMC.
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