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Electron-phonon coupling and the charge gap of spin-density wave iron-pnictide materials
from quasiparticle relaxation dynamics
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We investigate the quasiparticle relaxation and low-energy electronic structure in undoped SrFe,As, exhib-
iting spin-density wave (SDW) ordering using optical pump-probe femtosecond spectroscopy. A remarkable
critical slowing down of the quasiparticle relaxation dynamics at the SDW transition temperature Tspw
=200 K is observed. From temperature dependence of the transient reflectivity amplitude we determine the
SDW-state charge gap magnitude, 2Agpw/kgTspw=7.2+ 1. The second moment of the Eliashberg function,
M(hw)?)=110+ 10 meV?, determined from the relaxation time above Tgpy, is similar to SmFeAsO and
BaFe,As, indicating a moderate electron phonon coupling.
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The discovery of high-temperature superconductivity in
iron-based pnictides'~ has attracted a great deal of attention
recently. The question of the relative importance of the lat-
tice and spin degrees of freedom for the superconducting
pairing interaction becomes immediately apparent since the
superconductivity appears upon doping the parent materials*
which show the spin-density wave (SDW) ground state. Un-
derstanding the parent SDW compounds also from the point
of electron-phonon, and not only the spin-spin and spin-
charge interactions, is therefore beneficial for understanding
the nature of the superconducting coupling in the doped
compounds.

Time-resolved spectroscopy has been very instrumental in
elucidating the nature of the electronic excitations in super-
conductors, particularly cuprates>!® and recently also iron
pnictides.?>>* Moreover, the relaxation kinetics can give us
valuable information on the electronic structure® and
electron-phonon coupling.?

In this work we present a time-resolved femtosecond
spectroscopy study of SrFe,As, in the normal and the SDW
state. From the photoexcited carrier relaxation dynamics we
determine the electron-phonon coupling parameters and the
charge gap magnitude. We compare the results with recent
data®* in SmFeAsO and find that they are similar both in the
SDW and normal state with some minor differences in the
magnitude of the response at high temperatures.

Optical experiments were performed using the standard
pump-probe technique, with 50 fs optical pulses from a 250-
kHz Ti:Al,O; regenerative amplifier seeded with an
Ti: Al,O5 oscillator. We used the pump photons with doubled
(Awp=3.1 eV) photon energy and the probe photons with
1.55 eV photon energy. The pump and probe polarizations
were perpendicular to each other and oriented with respect to
the crystals to obtain the maximum amplitude of the re-
sponse at low temperatures. The pump and probe beam di-
ameters were determined by measuring the transmittance of
calibrated pinholes mounted at the sample position.?® Single
crystals of SrFe,As, were prepared by the self-flux method.?’
For optical measurements the cleaved crystals were glued on
a Cu plate mounted in an optical liquid-He flow cryostat.

In Fig. 1 we plot the temperature dependence of AR/R
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transients in SrFe,As,. Below Tgpw the transients are domi-
nated by the initial single exponential relaxation followed by
a weak structure at around 10 ps [see Fig. 1(b)]. At Typw a
critical slowing down of relaxation is observed in the form of
a long-lived relaxation tail which is following the initial
~1 ps exponential decay. Above Tspyw the amplitude of the
initial subpicosecond relaxation strongly drops and the struc-
ture on a longer time scale becomes apparent. The behavior
is similar to SDW SmFeAsO (Ref. 24) with the exception of
the subpicosecond relaxation amplitude above Tgpyw being
smaller in SrFe,As,.

The amplitude of the initial subpicosecond peak shows a
minor departure from the linear pump fluence (F) depen-
dence at the highest F (see Figs. 2 and 3) while the subpi-
cosecond relaxation time is virtually F independent (see
Fig. 3). At low T however, an additional nonexponential slow
relaxation component appears at the lowest fluence (see
Fig. 2) which can be (beyond 5-10 ps) attributed to the heat
diffusion out of the excitation volume?® as indicated by fits in
Fig. 2.

In a metal the photoexcited-quasiparticle relaxation time
is governed by transfer of energy from electronic degrees of
freedom to lattice degrees of freedom. Recently the problem
was solved analytically.”> In bad metals, above the Debye
frequency (wp), the relaxation time linearly depends on the
temperature, 7, where the slope is determined by the inverse
of the second moment of the Eliashberg function \{w?)
(Refs. 25 and 29)
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We find that above ~230 K our 7 data nicely follow the
predicted linear 7 dependence [see Fig. 4(a)] with AN{((iw)?)
=110+ 10 meV>. The phonon spectrum of SrFe,As, extends
up to ~40 meV with the acoustic phonon cutoff at
~10 meV.*® To estimate the electron-phonon coupling con-
stant, \, we determine the ratio \{(Aw)?)/\ by assuming that
the electron-phonon spectral function, &*F(w), has the
phonon density-of-states (DOS) shape’®?! and obtain.
M(fhw)?)/N=430 meV>. This gives A=0.25, which is
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FIG. 1. (Color online) (a) AR/R transients as a function of tem-
perature at pump fluence 17 uJ/cm?. (b) AR/R transients from (a)
at representative temperatures with single-exponential decay fits. A
divergent relaxation time at Tgpw=200 K is clearly seen in (a).

rather low to explain the superconducting critical tempera-
tures in doped compounds within a standard BCS model.! If
however, a’F(w) is for some reason enhanced in the low-
energy phonons region, N\ could easily reach significantly
higher values.
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FIG. 2. (Color online) Fluence dependence of normalized AR/R
transients in the SDW state. The black thin lies are single exponen-
tial decay fits and blue dashed lines the one-dimensional diffusion
(Ref. 28) fits. In the inset to (b) the relaxation pathway via interband
scattering, that is discussed in text, is schematically shown.
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FIG. 3. (Color online) Fluence dependence of the AR/R tran-
sient amplitude and relaxation time at different temperatures.

Owing to the multiband nature of iron pnictides it is pos-
sible, that due to optical selection rules some bands are not
directly detected in AR/R transients. However, at the tem-
peratures of interest the momentum (interband) scattering is
expected to be strong resulting in effective averaging of
M(Aw)?) over all the bands.

Below Tspyw the increasing amplitude of the subpicosec-
ond transients indicates the appearance of a bottleneck in the
photoexcited electron relaxation. The bottleneck is associ-
ated with opening of a T-dependent charge gap® due to SDW
formation and concurrent Fermi surface reconstruction.3>33
We use Eq. (6) from Kabanov et al.®

AR/R = np, = V[A(T) + kgT/2 1 + g\kgT/A(T)

Xexp[— kgT/A(T) ]}, (2)

which describes the photoexcited change in quasiparticle
density in the presence of a temperature-dependent gap,
A(T), to fit the amplitude T dependence below Tgpw
=200 K. The parameter g represents the ratio between the
relevant bosonic and electronic density of states. Relation (2)
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FIG. 4. (Color online) (a) The relaxation time at two pump
fluences and (b) amplitude at F=17 uJ/cm? as functions of tem-
perature. The black solid line in (a) is fit of Eq. (1) to 7 above
230 K. The black solid line in (b) represents the fit of Eq. (2).
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TABLE 1. Electron phonon coupling parameters and SDW gap magnitudes in SDW iron pnictides. The
experimental inelastic-neutron-scattering phonon spectra from Mittal e al. (Refs. 30 and 40) and Osborn et
al. (Ref. 41) were used to estimate A{(fiw)?)/\ assuming a’F(w) has the phonon DOS shape.

M(fiw)?) M(hw)?)/\

(meVz) (II]CVZ) N 2ASDW/kBTSDW
StFe,As, 11010 430 ~0.25 72+1
SmFeAsO (Ref. 24) 135+10 770 ~0.18 ~5
BaFe,As, ? ~65° 430 ~0.15 47+16

2We used the data from the supplemental material of Chia et al. (Ref. 22).
Only data just above Tgpw=130 K is available so the value might be underestimated.

was initially derived® for the case of a momentum indepen-
dent gap. The assumption behind Eq. (2) is that at a certain
time scale the bosonic spectrum can be divided in the low
and the high energy parts at the characteristic energy 2A(7)
determined by the structure of the electronic density of
states. During the relaxation a temporary quasiequilibrium is
achieved between the high-energy bosonic and electronic de-
grees of freedom resulting in the characteristic 7 dependence
in Eq. (2). Since the underlying assumption is rather general
the use of relation (2) can be extended to the momentum-
dependent gap case. In this case 2A(T) represents a typical
bosonic energy involved in the relaxation, which is directly
related to the characteristic energy scale of the gap.

Using a single Agpw(7) with the BCS temperature depen-
dence and 2Agpw/kgTspw=7.2 £ 1 results in a rather good
fit to the amplitude temperature dependence [see Fig. 4(b)].
The observed characteristic gap energy is close to the mag-
nitude of the largest of the two SDW gaps obtained from the
optical conductivity.?* Since the interband scattering is
strong, as argued below, the smallest of the gaps should
present the bottleneck for the hot carrier energy relaxation so
our data do not confirm the existence of the smaller gap
suggested by Hu et al.?*

Similarly to the case of SmFeAsO (Ref. 24) we observe
no decrease of the relaxation time with F as predicted by
Kabanov et al.® We also observe no divergence of the relax-
ation time with decreasing 7 such as in heavy fermion SDW
UNiGas,* which, similar to SrFe,As,,® remains metallic’’
upon the SDW gap opening. We can rule out the ballistic hot
electron escape as a source of the low-T relaxation-time di-
vergence cutoff’® due to the relatively high resistivity of
SrFe,As, (Ref. 36) and large optical penetration depth of
~60 nm at fwe=1.55 eV.* However, in iron pnictides,
due to the presence of ungapped electronic bands below
Tspw, the energy relaxation is not limited by the anharmonic

energy transfer from the high-frequency to the low-
frequency phonons, but rather by the interband scattering
(IBS) from the states at the edge of the SDW gap to the
states in ungapped band(s) with energies e—ez> kT [see
inset to Fig. 2]. Such scattering can be enhanced by the pres-
ence of impurities, which may explain the difference be-
tween the higher residual resistivity in SrFe,As, and lower
residual resistivity in UNiGas.

The absence of multiple relaxation components (apart
from diffusion) from the AR/R transients together with IBS
imply that mainly the hot carriers from the SDW gaped elec-
tronic bands contribute to the photoinduced reflectivity tran-
sients. This does not hinder the determination of N{(Aw)?) as
discussed above since the momentum scattering, which be-
comes faster than the energy relaxation rate at high tempera-
tures, results in an effective averaging of A\((fw)?) over all
the bands.

In conclusion, we compare in Table I our results in
SrFe,As, to SmFeAsO (Ref. 24) and BaFe,As,.?? In all three
compounds the second moment of the Eliashberg function is
moderate suggesting similar values of the electron phonon
coupling constant N as suggested by the density-functional
theory using linear response,®' unless o’F(w) is strongly en-
hanced in the low-energy phonons region, contrary to the
density-functional-theory prediction.’! Similarly in all three
compounds the temperature dependence of the relaxation be-
low Tgpyw indicates the appearance of a quasiparticle relax-
ation bottleneck due to opening of a charge gap at Tspw with
a BCS-type temperature dependence.
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