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We demonstrate that the forced transient dynamics of a nonlinear �nonisochronous� auto-oscillator is quali-
tatively different from the dynamics of a quasilinear oscillator described by the classical Adler’s model. If the
normalized amplitude � of the driving force exceeds a certain critical value �cr, the transition to the synchro-
nized regime becomes oscillatory with a frequency proportional to ���−�cr and a synchronization time that
is almost independent of �. The discovered effect is illustrated on the example of a strongly nonlinear spin
torque nano-oscillator �STNO� where the finite transient synchronization time can limit the possible range of
STNO modulation frequencies.
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Nonlinear �or nonisochronous� auto-oscillators, i.e., auto-
oscillators where the generated frequency depends on the
oscillation amplitude, have several unique properties that
make them qualitatively different from the common quasilin-
ear �or isochronous� auto-oscillators.1,2 Recently, nonisoch-
ronous auto-oscillating systems have become extremely im-
portant due to the large interest in nanosized magnetic spin
torque nano-oscillators �STNO� �Refs. 3–5� that possess
strong and nontrivial nonlinear properties.6 STNOs are also
interesting for microwave applications due to their unique
combination of attractive properties, such as a wide range of
generated frequencies,7 fast modulation rates,8,9 and easy in-
tegration into modern on-chip nanoelectronic circuits.

Recently, several experimental groups have performed
studies of STNO synchronization �or injection locking� to an
external microwave current.10–13 These experimental results
were analyzed, without exception, using the classical theory
of injection locking of quasilinear isochronous auto-
oscillators developed in 1946 by Adler.14 In Adler’s theory a
simple dynamical equation for the phase difference � be-
tween the auto-oscillation and the injected driving signal is
obtained in the form

d�

dt
= − �� − F sin��� . �1�

Here ��=�e−�0 is the mismatch between the frequency of
the injected signal �e and the frequency of free auto-
oscillations �0 and F is proportional to the amplitude of the
injected signal. Despite its simplicity, Eq. �1� correctly de-
scribes phase locking of quasilinear �or isochronous� auto-
oscillators of different physical nature and allows one to find
all the major characteristics of the phase-locking process. In
particular, Eq. �1� predicts the stationary characteristics, such
as the frequency interval of phase locking �����F and the
stationary phase relation �A=−arcsin��� /F� between the
driving signal and the locked oscillations. In addition, Eq. �1�
allows one to analyze the transitional process in phase lock-
ing and predicts that the phase � approaches its locked value
�A monotonically—approximately exponentially with a time

constant �A=1 / �F cos �A� that is inversely proportional to
the amplitude of the driving signal F.

In this Brief Report we show that for nonlinear auto-
oscillators and sufficiently large periodic driving signals,
F	Fcr, Adler’s model breaks down and fails to describe
both the stationary and transitional properties of the synchro-
nization process. The most striking discrepancies are: �i� pro-
nounced transient oscillations of the auto-oscillator phase
difference � during its approach to synchronization and �ii� a
synchronization time �s, which is independent of the driving
amplitude F. Although the obtained results are general and
equally applicable to any nonisochronous auto-oscillator,
they are particularly important for STNOs, where the critical
amplitude of the driving signal which represents the bound-
ary between the regions of Adlerian and non-Adlerian tran-
sitional dynamics is surprisingly small.

The above-mentioned qualitative discrepancies between
the transitional synchronization dynamics of a nonisochro-
nous auto-oscillator and the Adler’s model were discovered
in our direct numerical simulations of STNO synchronization
to an external microwave current. In these macrospin simu-
lations �similar to the ones performed in Refs. 12 and 15� we
assumed that the STNO has a standard spin-valve geometry
consisting of a thin permalloy “free” layer separated by a Cu
spacer from a synthetic antiferromagnet “fixed” layer placed
in a bias magnetic field directed perpendicular to the layers
and tilting the in-plane magnetization of the “fixed” mag-
netic layer at an angle 
0 to the bias field. In such a case, the
normalized �unit-length� uniform magnetization vector m of
the STNO free layer obeys the Landau-Lifshitz-Gilbert-
Slonczewski equation of the form15–17

dm

dt
= − �
�m � Hef f + �m �

dm

dt
+ �
��Jm � �m � p� .

�2�

Here �
� /2
=28 GHz /T is the modulus of the gyromag-
netic ratio for electron spin, Hef f =Hez−Ms�m ·z�z is the ef-
fective magnetic field, �0He=1.5 T is the external magnetic
field applied along the normal z to the STNO free layer,
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�0Ms=0.8 T is the saturation magnetization of the free
layer, �=0.01 is the Gilbert damping constant, and �J is the
spin torque magnitude defined as �J= ��I

2�0MseV , where � is the
Planck constant, �=0.35 is the dimensionless spin torque
efficiency, I is the applied current, �0 is the magnetic
permeability of free space, e is the electron charge, and
V=3�104 nm3 is the volume of the free layer. The unit
vector p=cos�
0�z+sin�
0�x in Eq. �2�, which defines the
direction of spin polarization in the current I, coincides with
the magnetization direction of the STNO fixed layer, which
we set to 
0=60°.

The critical dc bias current I= Idc= Ic at which the stable
auto-oscillations appeared in the model Eq. �2� was
Ic=2.32 mA. The total applied current in the nonautono-
mous �driven� regime contained the constant part
Idc=3 mA �supercriticality parameter �= Idc / Ic=1.29
resulting in a free-running STNO frequency of
�0 / �2
�=25.3 GHz� and the variable �microwave� part
Irf : I�t�= Idc+ Irf sin��et�, where �e is the driving frequency.
The normalized amplitude of the microwave signal �or
modulation depth� �= Irf / Idc was varied. In the phase-locked
regime the generated STNO frequency becomes exactly
equal to �e and a fixed �independent of the initial conditions�
phase difference �0 develops between the driving microwave
current and the STNO oscillation.

The results of the macrospin numerical simulations dem-
onstrating the STNO transition from the free running to
phase-locked regime are shown in Fig. 1 for various ampli-
tudes of the driving current Irf. The STNO was first prepared
in a free-running state �Irf =0� for 50 ns to achieve a stable
free-running regime �only the last 5 ns of the free-running
regime are shown in Fig. 1�a��. At t=0 the microwave cur-
rent Irf was switched on with �e=�0. Since �e and �0 coin-
cide, the phase locking manifests itself only by establishing a
fixed phase relations between these oscillations. Figure 1�a�
shows the time dependence of cos���t��=m�t� ·p �which is

proportional to the STNO output signal� for the normalized
driving amplitude �= Irf / Idc=0.5. One can clearly see a tran-
sient beating of the envelope of the STNO signal, which
indicates an oscillatory approach to the phase-locked state.
This oscillatory transition is shown explicitly in Fig. 1�b�,
where we plot the time dependence of the phase difference
��t� between the phasors representative of the STNO output
signal and the external signal, respectively, for several values
of �.

First of all, we note that the stationary value of the phase
difference �0 is substantially different from zero ��0�90°�
in contrast with what one would expect from Eq. �1� for
��=�e−�0=0. This significant intrinsic phase shift found
for the first time in Ref. 12 is caused by the strong nonlin-
earity of the STNO generation frequency.6,18,19 Second, one
can see from Fig. 1�b� that the transient dependence of ��t�
is monotonic only for extremely small values of �, whereas
for all reasonable modulation depths, strong phase oscilla-
tions develop in the transient regime. The critical modulation
depth, separating regions of monotonic �Adlerian� and oscil-
latory �non-Adlerian� transitional dynamics is as small as
�cr=0.0012 �dashed curve in Fig. 1�b��.

To confirm that the observed transient oscillations are not
an artifact of the macrospin approximation we have also per-
formed full-scale micromagnetic simulations �similar to the
simulations performed in Ref. 20� of injection locking of an
STNO with the free layer in the form of circular nanopillar
�diameter D=55 nm, thickness d=3 nm, exchange constant
A=1.0�10−11 J /m, and all other parameters the same as in
the macrospin case�.21 Figure 1�c� shows the simulated tran-
sient phase dynamics for several values of modulation depth
�. It is clear from Fig. 1�c� that micromagnetic simulations
also demonstrate the transition from an Adlerian �monotonic�
to a non-Adlerian �oscillatory� regime. The critical modula-
tion depth for the nanopillar STNO �cr=0.0018 is close to
the one obtained in the macrospin case. We would like to
note that since the values of �cr are so small, injection lock-
ing of STNOs almost always takes place in the non-Adlerian
regime.

Another striking feature of the non-Adlerian transient dy-
namics is the very weak Irf dependence of the synchroniza-
tion time �time needed to reach the phase-locked state�. For
example, the envelopes of ��t� for �	�cr in Figs. 1�b� and
1�c� have essentially the same time constant �s whereas the
classical Adler’s model Eq. �1� predicts that the time constant
in these two cases should differ by a factor of 10. This is
further illustrated in Fig. 2, where we show the dependence
of the frequency of transient phase oscillations � on �
�panel �a�� and the decay constant �s=1 /�s of these oscilla-
tions �panel �b�� both from macrospin simulations �filled
dots� and micromagnetic simulations �empty squares�. Oscil-
lations appear for �	�cr, and their frequency � increases
with � and reaches gigahertz values for accessible modula-
tion depths ��0.5. The decay rate �s increases approxi-
mately linearly with � �following the Adler’s model Eq. �1��
only for ���cr, whereas in the non-Adlerian region
�	�cr it remains virtually constant. This upper limit in �s is
expected to also have consequences for frequency modula-
tion of STNOs since it may limit the maximum modulation
frequency.
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FIG. 1. �a� Time dependence of the STNO signal calculated in a
macrospin approximation for �= Irf / Idc=0.5; Irf was switched on at
t=0 after allowing the STNO to settle into a stable free-running
precession for 50 ns. �b� Macrospin and �c� micromagnetic simula-
tions of the transient behavior of the phase difference between the
STNO signal and the injected microwave current Irf for different
values of �.
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To understand the origin of the observed non-Adlerian
transient synchronization dynamics, we consider a generic
model of a nonlinear �or nonisochronous� auto-oscillator,
where the generation frequency ��p� is a function of the
generated power p.6 In such an oscillator, even small power
fluctuations, �p= p− p0, from the free-running power p0 may
result in significant deviations of the generated frequency,
��p�−��p0��N�p. Since the nonlinear frequency shift co-
efficient N=d��p� /dp adds the term N�p to Eq. �1�, which
couples fluctuations in frequency and power, the original
single Adler’s equation must be replaced with a set of equa-
tions where the fluctuations of the generated power are also
accounted for

d�

dt
= − �� − F sin � + N�p , �3a�

d�p

dt
= − 2�p�p + 2p0F cos � . �3b�

Here ��t�=��t�−�et is the phase difference between the
STNO signal and the external signal, F is the normalized
external signal amplitude, and �p is the damping rate of
power fluctuations. For a linear oscillator �N=0� one re-
trieves the original Adler’s model, Eq. �1�.

For the macrospin STNO model, all parameters in Eq. �3�
can be calculated analytically6 to give: p0= ��−1��H / �2�M�,
N=2�M, �p=��H��−1�, F=� ·��H tan�
0� / �4�p0�,
�H= �
��Ha−Ms� is the ferromagnetic resonance frequency,
and �M = �
�Ms, and these expressions are valid for moderate
supercriticalities ��1.5. In the micromagnetic case, the pa-
rameters can be estimated using the same expressions.

The only stable stationary solution of Eq. �3� has the form

�0 = arctan��� − arcsin���/��0� , �4a�

�p0 = p0
��� + ���0

2 − ��2

�1 + �2��p
, �4b�

where �=Np0 /�p is the dimensionless nonlinearity param-
eter �in our case ��1 /�=100� and ��0=�1+�2F is the
nonlinearity-enhanced frequency interval of phase locking.6

The first term in Eq. �4a� describes the above-mentioned in-
trinsic phase shift of a strongly nonlinear STNO.

Linearizing Eq. �3� near the stable solution in Eq. �4�, one
can study the transient synchronization regime and find the
decay rate � of phase and power deviations from the station-
ary phase-locked state

� = �p +
1

2
F cos �0 ��	�p −

1

2
F cos �0
2

− 2��pF sin �0.

�5�

For a quasilinear ��=0�, or Adlerian, auto-oscillator, Eq.
�5� gives �1=2�p and �2=F cos �0. �1 describes the damp-
ing rate of the power deviations �p and �2 the decay rate of
the pure phase deviations �−�0. The synchronization time
�=1 /� quantifies the overall time needed to reach a phase-
locked state. Since �p�F for realistic parameters, the syn-
chronization time of an Adlerian oscillator is given by
�A=1 / �F cos �0��1 /F.

To analyze the case of a strongly nonlinear �����1� auto-
oscillator, we note that in this case one can neglect F cos �0
and simplify Eq. �5� to

� = �p�1 � �1 − F/Fcr� = �p�1 � �1 − �/�cr� , �6�

where the critical signal amplitude is Fcr=�p / �2� sin �0� or,
in terms of the critical modulation depth,

�cr �
�

tan 
0
�� − 1�3/2�2�H

�M
. �7�

For the material parameters used in our macrospin simula-
tions we get the analytical value �cr=0.0012, which is in
excellent agreement with the simulated result.

For �	�cr the decay rates � become complex �see Eq.
�6�� and describe an oscillatory approach to the phase-locked
state. The frequency of these transient oscillations is given
by

� = �p
��/�cr − 1, �8�

where both �p=0.36 ns−1 and �cr=0.0012 can be calculated
using the material parameters in our macrospin simulation.
The calculated ���� is shown as a dashed line in Fig. 2�a�
and describes the simulated result perfectly. An equally good
agreement �solid black line in Fig. 2�a�� is found in the mi-
cromagnetic case where the value �p=0.3 ns−1 was found
numerically from the decay constant �s in the non-Adlerian
regime �	�cr �see below�.

The decay constant �s of the phase oscillation is given by
the smallest of �’s in Eq. �6� when both of them are real
�Adlerian regime�, and by their real part when they are com-
plex �non-Adlerian regime�

FIG. 2. Dependence of the frequency � of �a� the transient
STNO phase oscillations and �b� its decay constant �s on the nor-
malized driving amplitude �.
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�s = ��p�1 − �1 − �/�cr� � � �cr

�p � 	 �cr.
� �9�

In Fig. 2�b� we plot the analytically calculated �s using the
parameters of our macrospin and micromagnetic simulations.
The agreement between the analytical calculation and the
simulated results is again remarkable. Note, that in the non-
Adlerian regime �	�cr the decay rate �s=�p is constant,
and measurements of �s in this regime can be used to find
the intrinsic damping rate �p of the STNO.

Thus, the above presented analytical analysis shows that
the transient non-Adlerian synchronization dynamics of ST-
NOs observed in our numerical simulations is a general ef-
fect, which is present in any nonisochronous auto-oscillator.
Our analysis also provides quantitative analytic expressions
for both the frequency Eq. �8� and damping rate Eq. �9� of
the transient phase oscillations in a nonisochronous auto-
oscillator.

We can suggest a way to observe the transient phase os-
cillations of an STNO. If the injected current is pulsed with
the repetition rate on the order of 1 /�p, large sidebands at the
frequencies �0�� should appear in the spectrum of the
STNO oscillations. Since the transient frequency � may be
significantly larger than the STNO generation linewidth, both
the position and the shape of these sidebands can be mea-
sured experimentally, providing important information about
such intrinsic STNO parameters as the nonlinear frequency
shift N and the damping rate �p of power fluctuations. In Fig.
3 we show the results of numerical simulations of an STNO
phase locking to a pulsed microwave driving signal with a
repetition period of 16 ns. One can clearly see the sidebands
caused by the intrinsic transient STNO phase oscillations and
their expected dependence on the modulation depth.

In conclusion, we have shown that the transient nonauto-
nomous dynamics of an STNO for a sufficiently strong ex-

ternal signal cannot be described by the classical Adler’s
model. The reason for this non-Adlerian behavior is the
strong nonlinearity of the auto-oscillator generation fre-
quency, which couples power and phase fluctuations. While
directly applicable to STNOs, this is a general property of all
nonisochronous auto-oscillators.
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FIG. 3. �a� Time dependence of the STNO signal when subject
to a pulsed microwave current with �=0.5. �b� Spectrum of the
STNO oscillations. Vertical lines in �b� indicate the free-running
frequency �0 and expected positions of the sidebands �0��.
�Other narrow sidebands are due to the direct frequency modulation
at the pulse repetition rate.�
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