PHYSICAL REVIEW B 82, 012405 (2010)

General relation between entanglement and fluctuations in one dimension
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In one dimension very general results from conformal field theory and exact calculations for quantum spin
chains have established universal scaling properties of the entanglement entropy between two parts of a critical
system. Using both analytical and numerical methods, we show that if particle number or spin is conserved,

fluctuations in a subsystem obey identical scaling as a function of subsystem size in one dimension. We

investigate the effects of boundaries and subleading corrections for critical spin and bosonic chains.
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I. INTRODUCTION

Entanglement entropy, which measures nonlocal correla-
tions in a quantum system, plays an important role in such
diverse areas as the study of black holes' and quantum
computation.” More recently, much attention has been fo-
cused on entanglement in condensed-matter systems® and, in
particular, on the role of entanglement in quantum phase
transitions at zero temperature.* A significant discovery aris-
ing from this investigation has been the universal scaling of
entanglement entropy in one-dimensional quantum critical
systems described by conformal field theory (CFT).">7 De-
spite these advances, the experimental relevance of these
theories has remained unclear; the same feature that makes
this quantity so universal—mainly, the fact that entanglement
entropy is defined without reference to the observables of a
system—has precluded its measurement in real quantum
many-body systems. Recently, however, it was shown® for
the special case of free fermions that the entanglement en-
tropy can be related exactly to the statistics of charge fluc-
tuations, suggesting that entanglement entropy could be ac-
cessed through the fluctuations.

In this Brief Report we propose that the fluctuations of a
conserved charge is an interesting quantity to study in rela-
tion to entanglement entropy beyond the free-fermion case.
In particular, we show that in one-dimensional critical sys-
tems with particle number or spin conservation, the variance
of the fluctuations in a subsystem (henceforth “fluctuations”)
behaves very similarly to the entanglement entropy even
when there are interactions. Fluctuations, like entanglement
entropy, diverge logarithmically as a function of subsystem
size in conformally invariant systems with a globally con-
served charge.

The entanglement entropy of a subsystem A of size x
embedded in a larger system of size L is given by the von
Neumann entropy S(x,L)=-Tr p4 In p, of the reduced den-
sity matrix p, for subsystem A. For a critical system de-
scribed by a CFT with central charge c, the entanglement
entropy at zero temperature for L — % was shown to have the
universal behavior’
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where s; is a nonuniversal constant. For later comparison it
is useful to note that this was achieved by computing the
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quantity Tr p, and differentiating with respect to n at n=1.
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The versatility of this formalism lay in the fact that Tr p
transforms simply under conformal mappings, allowing
S(x,L) to be computed for finite L, finite temperature, and
different boundary conditions.

Now for the same setup, consider the number fluctuations
in subsystem A

Fa=((Na= (N2, 2)

where N 4 counts the number of particles in subsystem A. For

spins we replace N by §%. We expect that the fluctuations will
behave similarly to the entanglement entropy, since for a
pure state F,=Fp, where B is the remainder of the system.
As noted for entanglement entropy, this symmetry implies
that generically, the fluctuations reside mainly on the bound-
ary between the two subsystems, leading to an area law with
possible logarithmic corrections.” Indeed, it is easy to show
that all even-order cumulants of the particle number satisfy
this property, which suggests that only the even cumulants
should play a role. Moreover, F,=0 for separable states and
for pure valence-bond (VB) states F, coincides (up to a
constant factor) with both the von Neumann and VB
entropies.'® On the practical side, for most systems in any
dimension the fluctuations are easier to compute numerically
than the VB entanglement entropy, which was introduced
partly for its computational convenience relative to the von
Neumann entropy.

We first consider Luttinger liquids (LLs), which describe
the low-energy properties of many one-dimensional
systems.!! From LL theory in the limit L— we have
mF L= d(x)— $(0)]*), where ¢ is the “charge” field, so
that at zero temperature

#ﬂﬁﬂ:Kmi 3)

with K the Luttinger parameter and a a short-distance cutoff.
As for entanglement entropy,> the same result with
K—K/2 and x—2x is obtained when there is a boundary,
due to the constraint ¢(0)=constant. An interesting confir-
mation of the LL result comes from the v=1/m fractional
quantum Hall states,'> for which K=v. A detailed
calculation!? shows that in the time domain, charge fluctua-
tions across a quantum point contact with quantum Hall
wires are given by 72 F(t)=v In(¢/ §) with short-time cutoff
4, as might be expected from Eq. (3) and Lorentz invariance.
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The logarithmic scaling of fluctuations extends beyond
LLs and holds generally for critical models described by a
CFT with a conserved U(1) current (i.e., fixed total particle
number or spin component), which is always described by a
massless free boson. As for entanglement entropy these re-
sults therefore extend simply to finite size, finite temperature,
and different boundary conditions via conformal mapping.
To see this, note that if we define the characteristic function

X
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which transforms simply under conformal mappings, then
m Fy=—1m"M}(0)=g In(x/a). The prefactor g can always be
fixed by considering the physical meaning of the charge, but
we can give a heuristic argument for its value as follows. At
finite temperature 1/8 (we set i=kz=v=1, where v is the
effective velocity) the mapping z—z'=(8/2)In z in Eq. (4)
gives

PF(x.B) =g 1n(ﬁsinh2> . (5)
ma B

For sufficiently large x> 8 such that interactions across the
boundary can be neglected (which is possible since correla-
tions decay exponentially), we may consider the subsystem A
to be a grand canonical ensemble in equilibrium with a bath
consisting of the remainder of the system.'* This is of course
only possible if the total particle number is fixed. Then from
standard statistical mechanics one has F(x, 8) ~ kx/ 3, where
Kk=dn/du is the compressibility (susceptibility y=dm/dB for
spins), so that by matching Eq. (5) for x> 8,a we find

g=TUK. (6)

We have put in the velocity v for completeness. Note that
this is consistent with the LL expression since K=mv«."
Equation (6) turns out to be quite general, as we will see
later. These results generalize the logarithmic scaling of fluc-
tuations noted for noninteracting fermions'® to conformally
invariant, interacting systems. Interestingly, to leading order
the entanglement entropy and fluctuations both obey loga-
rithmic scaling, and

S(x) _c
mFx)  3mvk’

x>a. (7)

Of course, there are subleading corrections to both quanti-
ties, which we study in detail. In many cases the subleading
terms of the entanglement entropy and fluctuations also be-
have similarly, especially when there are boundaries. Indeed,
in the presence of boundaries the logarithmic prefactors for
both quantities are half of their periodic values, so that Eq.
(7) remains unchanged.

In the following we study the detailed behavior of fluc-
tuations in several important models, including systems that
are not described by LLs.

II. XXZ MODEL

We first consider the spin-1/2 XXZ Hamiltonian
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for —1 <A =1 where the model is gapless (the point A=—1
is not conformally invariant). At A=0 it reduces to an
exactly solvable problem of free fermions. Using the
Jordan-Wigner transformation we can use the methods
of Ref. 17 to compute the correlation matrix G;;, which in
the limit L—o° is found to be G!**=§;—sinc[m(i-;)/2]
for periodic boundary conditions (PBCs) and G?jbc
=6;j—sinc[ 7(i—j)/2]+sinc[m(i+/)/2] for open boundary
conditions (OBCs), where sinc x=1 for x=0 and sin x/x
otherwise. For exact diagonalization the slightly more com-
plicated finite-L expressions were used. The entanglement
entropy was numerically computed as in Ref. 6 while
Fxx(€) =3 [(Si85)— (S5 ]=(£-2{ _,G}) /4 for a block
of ¢ sites.

For €>1, an analytical result was obtained for the en-
tanglement entropy for PBCs:'®

Sxxlb.L) = Jlog, L+, ©)

where c=1, s; =1.047, and we use log, for the entropy. For
easier comparison to numerical data we always work with
the formula for finite L which corresponds to the mapping
€ — (L/)sin(7r€/L). Similarly, we find that the spin fluctua-
tions for PBCs are given by

P Fyx(€,L)=In £ + f, (10)

plus O(€72) corrections, where f;=1+y+In2 and 7y is Eul-
er’s constant. This is consistent with K=1 in the correspond-
ing LL description. Equation (10) was also derived in a dif-
ferent context.'® Figure 1 compares the exact diagonalization
result to the analytical results for both the entanglement en-
tropy and spin fluctuations for PBCs; even for 100 sites the
agreement is excellent.
For OBCs the spin fluctuations are given by

- 1)f
272(20) 7 (20)
X[In(2€) + y+1n 2] (11)

1
f())(b)((:(g,L) = Efxx(ze,l‘) +

plus O(¢72) corrections. The result is very similar to the os-
cillating form found in Ref. 20 for the entanglement entropy
in the presence of a boundary with an additional oscillating
contribution «<(—=1)¢(In €)/€. As shown in Fig. 1, the en-
tanglement entropy is described well by

Y
SOXI’)E(€,L)=§10g2(2€)+—1+a1 ! D (12)
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The XXZ model is solvable for all A by Bethe ansatz, but
extracting the exact fluctuations is not practical. However,

from LL theory we know that for |A|<1 its asymptotic be-
havior (for PBCs) is'!
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FIG. 1. (Color online) Results from exact diagonalization for the
entanglement entropy (squares) and spin fluctuations (circles) for a
spin-1/2 XX chain with PBCs (upper symbols) and OBCs (lower
symbols, inset shows zoom around the chain center), L=100. For
PBCs solid lines are the analytical results in Egs. (9) and (10). For
OBCs, solid lines are the analytical result [Eq. (11)] for the fluctua-
tions and a fit to Eq. (12) for the entropy with ¢=0.997 and
51=1.050 (the exact values are c=1 and s;=1.047). The fluctua-
tions are scaled by 4.

R 1 24,(-1)
R s D)

where only the leading terms are shown with
K=(1/2)[1-(cos™" A)/7]"! and A, a nonuniversal constant.
From Eq. (13) we find

-1
#fﬂA@=Km€+ﬁ—A}E%- (14)
plus O(£72) corrections while the entanglement entropy is
given by Eq. (9) with ¢=1 but a different constant. In the
derivation of Eq. (14) a term proportional to € was sup-
pressed, since it arises from the short-distance physics not
taken into account by Eq. (13) and we are guaranteed by Eq.
(3) that the leading term is olIn €. It is interesting that the
logarithmic divergence arises from the 1/7 term in the cor-
relation function, which for K<1 is the subleading contri-
bution at large r. Thus the diverging fluctuations are due to
short-distance correlations.

Since K=1 for the XX model the oscillating term can be
neglected to O(€72) in agreement with our previous result in
Eq. (10). The same is true for A <0, because K> 1. In con-
trast, for A>0 the oscillations grow larger as we approach
the Heisenberg point A=1 where K=1/2. Interestingly, al-
though the same oscillating terms are not present in the en-
tanglement entropy itself, they were recently shown to be a
feature of the Rényi entropies.?! At exactly the Heisenberg
point the otherwise irrelevant umklapp term cos(4¢) be-
comes marginal, and the oscillating part of the spin-spin
correlatlon function acquires a logarithmic correction
Aj(- 1)’\ln r/r. In this case the corresponding term in the
fluctuations is o(— 1)(\1n €/€. More importantly for finite L
the Luttinger parameter K is also renormalized. Figure 2
shows the fit of density-matrix renormalization-group
(DMRG) (Ref. 22) data to Eq. (14) with excellent agreement
between the fitted K and the Bethe ansatz solution for
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FIG. 2. (Color online) DMRG results (circles) for the spin fluc-
tuations in a spin-1/2 XXZ chain with PBCs, L=100. Only
A=-0.2-0.9 are shown (from top to bottom, in 0.1 increments).
Solid lines are fits to Eq. (14). (Inset) Fitted Luttinger parameter K
for |A|=0.9 (dots) with the solid line showing the Bethe-ansatz
solution. The first and last ten sites were dropped for fitting
purposes.

|A|=0.9. The fluctuations, and indeed all higher-order cumu-
lants, can be extracted simply from the reduced density ma-
trix of the subsystem in the usual DMRG implementation
without the need for correlation functions.

III. OTHER SPIN CHAINS

The isotropic Heisenberg model at A=1 is also an ex-
ample of the SU(2) Wess-Zumino-Witten (WZW) nonlinear
o model with (integer) topological coupling constant k23
which describes the low-energy physics of many other spin
chains. Critical Heisenberg chains with half-integer spin be-
long to the k=1 universality class with central charge c=1,%*
for example, and we can deduce 7> Fyw(x) ~ (k/2)In(x/a).
An interesting case where we can compute the fluctuations
analytically is the Haldane-Shastry (HS) model with 1/7°
interactions,” which has exactly known spin-spin correla-

tion function (8% S%)— (S,+r><SZ> —1)'Si(7rr)/ (47r) with

+r-i

Si(x)=[3dt(sin 1)/ . For large £ we find

4
—In €+ fs— e (15)

Fus(€) = To?

1
272
plus O(¢72) corrections, where f5 is an integral whose value
is f3=0.197. This is consistent with the WZW fixed-point
predictions and, in particular, with the spin-1/2 Heisenberg
chain without the umklapp term. This also shows that the
logarithmic scaling is not affected by long-range interactions.

A case where k>1 is the spin-s Takhtajan-Babujan (TB)
chain.?* Using DMRG we have checked the case k=2s=2
and hence 7 Frg(x)~In(x/a) with corresponding central
charge c=3k/(2+k)=3/2.2° This also explicitly confirms the
result g=mvy=s=k/2 in Eq. (6). Another interesting
example is the open-boundary Uimin-Sutherland model
which is a critical spin-1 chain with SU(3) symmetry, be-
cause both the entanglement entropy and spin fluctuations
exhibit oscillations with a period of three sites due to the
higher symmetry.
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IV. BOSE-HUBBARD MODEL

The Hamiltonian for the one-dimensional Bose-Hubbard
model is?’

PN U
Hyy=~12, (bb;y, +He.) + 52 aa;=1),  (16)

i

where b; is the bosonic annihilation operator on site i, 7;

=l;jl;,<, t is the tunneling amplitude and U is the on-site re-
pulsion. The model describes interacting bosons on a lattice
and can be realized with cold atoms trapped in an optical
lattice.”® As an example, we consider the case of half-filling
since it approaches the XX model as U— . The low-energy
physics of the model is that of a LL,'! so that the density
fluctuations are given also by Eq. (14). However, because
K =1 the oscillations are absent for PBCs and very weak for
OBCs. We have confirmed all of these results with DMRG
and obtained curves similar to those shown in Fig. 1 for the
XX model.

V. GAPPED MODELS

For gapped models, we expect that the fluctuations will
obey a strict area law like entanglement entropy, although the
ratio is no longer fixed by conformal arguments. This can be
checked explicitly for the Affleck-Kennedy-Lieb-Tasaki
model,? for example, where analytical results are available
but also the VB picture makes the relation intuitive.”
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VI. CONCLUSION

From the theory of quantum critical phenomena one ex-
pects an intimate relation between entanglement and fluctua-
tions. In one dimension this expectation is borne out by Eq.
(7): like entanglement entropy, the number fluctuations scale
logarithmically in critical models described by a CFT with a
globally conserved charge. Moreover, our detailed investiga-
tion of the effects of boundaries and subleading corrections
for several important models suggests that although fluctua-
tions do not directly measure the entanglement entropy, they
can further understanding of nonlocal correlations more gen-
erally, especially in quantum critical systems. This has clear
advantages: first, fluctuations are accessible in experiments,
perhaps most easily for cold atoms in an optical lattice. Sec-
ond, from the computational point of view they are easier to
calculate, both analytically and numerically, than entangle-
ment entropy and VB entropy. Notably, fluctuations are eas-
ily computed in quantum Monte Carlo even for d>1. One
particularly interesting and challenging open question is
whether the L%!In L scaling of both S and F in free
fermions'® holds more generally for interacting fermions.>°
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