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We study the distribution of local magnetic susceptibilities in the two-dimensional antiferromagnetic
S=1 /2 Heisenberg model on various random clusters in order to determine whether effects of edge disorder
could be detected in NMR experiments �through the line shape, as given by the distribution of local Knight
shifts�. Although the effects depend strongly on the nature of the edge and the cluster size, our results indicate
that line widths broader than the average shift should be expected even in clusters as large as �1000 lattice
spacing in diameter. Experimental investigations of the NMR line width should give insights into the magnetic
structure of the edges.
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Experimental, theoretical, and computational studies of
two-dimensional �2D� quantum spin systems have taken a
prominent place in condensed matter physics during the past
two decades. The S=1 /2 Heisenberg model has successfully
explained the bulk antiferromagnetism in the parent com-
pounds of the high-Tc cuprates,1,2 as well as other quasi-2D
materials.3,4 It has also been realized that controlled studies
of systems with impurities can give additional valuable in-
formation on the electronic structure and interactions in these
strongly-correlated materials.5 Impurity effects are also of
interest in their own right, as they reflect fascinating quan-
tum phenomena not present in translationally invariant
systems.6–9

In this paper, we address the physics of defects beyond
single-spin impurities in 2D antiferromagnets, by consider-
ing various forms of edge disorder. Prominent effects of ef-
fectively free chain ends are known in 1D systems, where
detailed comparisons of theories, computational model stud-
ies, and experiments are possible.10,11 In contrast, 2D edges
have not been paid much attention to, presumably because
one would naively expect their influence to be relatively
small in experiments probing spatially averaged properties,
due to typically small edge-to-bulk ratios. With the increas-
ing focus on physics on the nanoscale, it should also be
interesting to investigate small antiferromagnetic clusters,
where edge effects could dominate the physics. To this end,
an initial quantum Monte Carlo �QMC� study of both smooth
and rough edges in the 2D S=1 /2 Heisenberg model was
recently carried out.12 A suppression of the magnetic suscep-
tibility at a smooth edge was found at low temperature �T�,
contrary to the naively expected enhancement due to the
smaller coordination number of the edge spins. The edge
contribution to the susceptibility is logarithmically divergent
for T→0, as was later found also within a continuum field-
theory description.13 Another interesting observation was a
dimerization pattern at the edge, which can be seen as a
precursor to valence-bond solid state that can be realized if
additional interactions are included.14 These effects may not
be easy to observe experimentally, however, because edge
roughness masks this behavior.12 The roughness introduces
subsets of spins which are effectively weakly coupled to the

bulk system, leading to a strongly enhanced susceptibility.
The behavior reflects a complex, and still not well under-
stood, interplay between geometric roughness at the micro-
scopic scale and the collective, macroscopic behavior of in-
teracting spins.

The nature of the clusters in powder samples of quasi-2D
antiferromagnets such as La2CuO4 is currently not known
precisely, and there have not been any efforts to investigate
possible effects of finite-size clusters in, e.g., nuclear-
magnetic-resonance �NMR� experiments. Cluster diameters
�1000 lattice spacings can be expected.15 One would expect
free edges to lead to broadening of the NMR line �a distri-
bution of Knight shifts�, as in 1D.10 The question is, whether
this broadening can be observed, and what information it can
provide on the structure of the edges.

We here present a systematic study of the Knight-shift
distribution in finite S=1 /2 Heisenberg 2D clusters con-
structed with varying amounts of edge roughness. We calcu-
late the width of the distribution of local magnetic suscepti-
bilities as a function of the cluster size. The results indicate
that edge effects should be very prominent even for rela-
tively large clusters, of width 100–1000 lattice spacings, at
temperatures where the cuprates are paramagnetic �i.e.,
above the Néel temperature, TN, where order sets in due to
weak three-dimensional �3D� couplings or anisotropies�.

With only on-site hyperfine couplings taken into account,
the NMR Knight shift of a Cu nuclear spin at lattice site r is
proportional to the local susceptibility �l�r� at that site,
which is given by

�l�r� = ��
i

�Si
zSr

z� , �1�

where �=1 /T �in units where kB=1�. In an infinite uniform
system �l�r�=�; the bulk susceptibility. Disorder or open
edges in a finite system lead to local variations and, thus, a
broadened NMR line. In reality, in cuprates there are signifi-
cant transferred hyperfine couplings also to nearest-neighbor
Cu sites and the Knight shift should be modified
accordingly.16 Here, in this initial proof-of-concept study, we
do not consider these couplings and just report results of the
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completely local susceptibility. The methods we use can,
however, easily be extended to any NMR form factor.

Distributions of susceptibilities due to isolated vacancies
�corresponding to Cu substituted by Zn in cuprates� in the
2D Heisenberg model17,19 and ladder systems19 have previ-
ously been studied using QMC simulations. Here we use
similar techniques to study open-boundary clusters with vari-
ous types of edges. We use the stochastic series expansion
method with efficient loop updates and improved
estimators20,21 to evaluate Eq. �1� for various types of clus-
ters at different temperatures.

We build three different types of clusters: �A� as in Ref.
12, starting from an open L�L lattice, we traverse the 4�L
−1� boundary sites and remove each spin with probability
p=1 /3 or couple a new spin to it with the same p, doing
nothing with probability 1−2p. �B� With spins randomly oc-
cupying the sites of an open L�L lattice with probability p,
we identify the largest cluster. �C� Starting from a single
occupied site on an infinite lattice, we add neighbors to it
with probability p, filling the neighbors of added spins with
this same probability, until a cluster of a desired size N has
formed. We here only consider the case p=0.7 and 0.6 for B
and C clusters, respectively. Since we want to isolate the
effects of edges, in all cases we also fill any internal vacan-
cies, so that all sites within a single boundary are magnetic.
The C clusters are close to the percolation point �p�0.59�
and are therefore very �unrealistically� irregular in shape,
thus serving as an extreme case.

In all cases, we here initially consider only clusters with
the same number of spins on both sublattices. This is done in
order to avoid a trivial enhancement of the susceptibility
originating just from the fact that clusters with sublattice
imbalance have ground states with nonzero total spin. On the
other hand, in real systems, sublattice imbalanced clusters
will of course be present, and internal vacancies or defects
can be expected as well. Our calculations here are intended
to better isolate the effects solely due to the edges. We will
also investigate the effects of the fluctuation of the total
ground-state spin in the latter part of this paper.

Figure 1 shows the local susceptibility landscape of an
intact open lattice as well as a rough-edge cluster of type A.
For the smooth-edge cluster, the corners have the largest re-
sponse. Because of this, in the presence of a weak external
field the neighbors of the corners would experience an effec-
tively negative field, and, thus, the susceptibility of these
spins is negative at low temperatures. This kind of staggered
susceptibility pattern continues away from the corners on a
length-scale which should be related to the exponentially di-
vergent correlation length.2 A similar effect around an iso-
lated impurity has been studied in great detail previously.17,18

Our main interest here is in the response at and close to a
rough edge, where strong staggered susceptibility patterns
can appear around some spins for the same reasons as dis-
cussed above. Because of interference among several ran-
domly located high-response centers, these effects are ampli-
fied in some regions and damped in others, as seen in the
type A cluster in Fig. 1, leading to a complex behavior of
local variations. The interference effects can be quite dra-
matic at low temperatures, with the responses of disordered
clusters spanning a much wider range �as listed for the ex-

amples in Fig. 1 in the figure caption� than for an intact open
lattice.

To characterize the susceptibility distribution as a function
of the cluster size, we define the average radius of a cluster c
with respect to the site closest to the “gravitational center”
r0

c, and further average this radius over different cluster real-
izations;

�R� =	 1

nc
�

c

1

Ne
c�

e

�re
c − r0

c�2. �2�

Here re
c is the position of an edge spin and Ne

c is the number
of edge spins in cluster c.

Figure 2 shows histograms of the local susceptibility �cor-
responding to the NMR profile� at inverse temperatures �
=2 and 4. Note that, in the context of cuprates, these tem-
peratures are rather high, with �=4 corresponding approxi-
mately to room temperature �close to TN for La2CuO4�. NMR
experiments have, however, in the past been carried out even
up to T=900 K,22 and the behavior there is still in good
agreement with the 2D Heisenberg model.23 For all clusters,
the shift distribution is much wider at �=4 than at �=2. At
the higher temperature ��=2�, the bulk susceptibility rapidly
starts to dominate as the cluster size is increased. At �=4
there are, however, still very significant broadening effects
for clusters as large as R�300. Experimentally, for fine-
powdered cuprate samples, one would expect clusters
roughly of this size or somewhat larger.15 For small intact
L�L clusters at �=2, the edges give rise to a separate large
peak at �l�0.1. There is also a much smaller peak due to the

FIG. 1. �Color online� Local magnetic response for two systems;
an intact 32�32 lattice �left� and a rough-edge A cluster �right�.
The upper and lower graphs are for �=2 and �=10, respectively.
The intensity color-codings correspond to lowest-highest response
according to: 0.056��l�0.186 �left, upper�, −0.19��l�0.47
�right, upper�, −0.087��l�0.177 �left, lower�, −1.8��l�2.9
�right, lower�.
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corners at higher �l �not seen in the figure�. At �=4 several
smaller peaks originate from frames of spins at and close to
the edge.12 These effects persist for larger clusters but be-
come difficult to discern because of their low relative weight.
Overall, the random edges lead to much broader peaks.

To quantify the width of the susceptibility distribution, we
calculate the standard deviation with respect to the average
local susceptibility over all clusters,

�� =	 1

�
c

Nc

�
c

�
r=1

Nc

��l
c�r� − ��l��2, �3�

where c labels the individual clusters, Nc is the number of
occupied sites of the clusters, and r is a site label for these
magnetic sites; thus, �l

c�r� is the local magnetic susceptibility
of site r on cluster c. Its average over all spins of all clusters
is denoted ��l�.

Figure 3 shows results as a function of the average cluster
size �R� for inverse temperatures in the range �� �1,10�. In
all cases, the line width first grows with the cluster size and
then decreases. For any finite �, as �R�→� we must have
��→0, as the edge-to-bulk ratio vanishes for an infinite clus-
ter and the edge effects can only extend a finite distance
away from the edge at any T�0. The initial increases in �x
reflect the tails of the distributions, which only develop fully
for large clusters. The tails are very significant at low tem-
peratures, i.e., the rough edges influence the response far
inside the bulk of the clusters �reflecting the exponentially
divergent2 correlation length for T→0�. At the lowest tem-
perature ��=10� the line widths still increase for the largest
clusters we have studied. Comparing the linewidths of the

three types of clusters, we see that type C always produces
the broadest lines �for given temperature and cluster radius�.
These cluster are also the ones that are the geometrically
most rough ones, being constructed close to the geometrical
percolation point. Real cuprate clusters are likely not as
rough. Note, however, that even clusters of type A, for which
the geometrical edge disorder is very shallow, lead to distri-
butions only a factor of �2 narrower.

For all the disordered clusters with �R��300, the line
widths exceed the average Knight shift for �=3
5; relevant
for cuprates in their paramagnetic state. At �=4, A clusters
with �R�=295 give ��=0.103, while the average shift is
��l�=0.0576, type B clusters with �R�=294 give ��=0.105
and ��l�=0.0571, and type C clusters with �R�=301 have
��=0.179, ��l�=0.0622. Line broadening at this level should
be clearly visible experimentally �although the long tails of
the distributions may be partially drowned by experimental
noise�.

We now discuss the case of averages over clusters without
the restriction of equal numbers of spins on both sublattices.
Figure 4 shows the line widths for the two ensembles of type
A clusters. At high temperatures, the line widths are almost
equal �indistinguishable in the figure at �=2� widths. At
lower temperatures, the unrestricted ensemble gives signifi-
cantly broader lines, however �about a factor of 2 at �=6�.
For very large clusters we expect no differences, because the
relative fluctuation of the difference in sublattice occupation
is 
1 /	Nc. The convergence of the two ensembles with in-
creasing �R� is seen clearly for �=4. Based on these results,
we expect the contributions from the sublattice imbalance for
small clusters �R	100� at low temperatures ���5� to be
significant, but in the size and temperature regimes most rel-
evant to cuprates this additional broadening should be small
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FIG. 2. �Color online� Local susceptibility distribution for clus-
ters of types A, B, C, as well as intact open lattices, all at two
different inverse temperatures; �=2 and �=4. Note that different
scales are used for the intact lattices �of sizes L=32,128,512 cor-
responding to the average radii R indicated�. The results for A, B,
and C clusters are averages over 200–1000 different random
realizations.
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FIG. 3. �Color online� Standard deviation of the local suscepti-
bility distribution for the three types of clusters as functions of the
effective radius �R� at several inverse temperatures.
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relative to the dominant boundary-roughness effects.
In summary, we have shown that significant NMR line-

broadening should be expected due to rough edges of nano-
scale antiferromagnetic clusters. In the temperature range of
relevance, e.g., for the cuprates in their paramagnetic state,
the line widths produced by all the cluster types studied are
larger than the average Knight shift, even for clusters several
hundred lattice constants wide. The effects should therefore
be experimentally observable in fine-powdered samples.

In light of these results, it may seem surprising that no
anomalous broadening has been noted in experiments on

powders so far �perhaps suggesting that most clusters are
rather large, R
1000, and-or that the edges are actually
rather smooth�. It should therefore be interesting to system-
atically search for edge effects in NMR and other experi-
ments. In order to make the NMR broadening more promi-
nent and investigate the size dependence, it would then be
desirable to prepare powder samples with very small clus-
ters, down to �100 lattice spacings across. Current tech-
niques �which are normally not intended to produce ex-
tremely small clusters� likely give clusters roughly an order
of magnitude larger,15 but other methods could perhaps reach
smaller sizes. Systematical studies of antiferromagnetic cor-
relations and response functions in nanoscale systems may
give further insights into the microscopic interactions and
collective quantum phenomena in strongly correlated elec-
tron systems.
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