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We consider antiferromagnets breaking both time-reversal ��� and a primitive-lattice translational symmetry
�T1/2� of a crystal but preserving the combination S=�T1/2. The S symmetry leads to a Z2 topological classi-
fication of insulators, separating the ordinary insulator phase from the “antiferromagnetic topological insulator”
phase. This state is similar to the “strong” topological insulator with time-reversal symmetry and shares with
it such properties as a quantized magnetoelectric effect. However, for certain surfaces the surface states are
intrinsically gapped with a half-quantum Hall effect ��xy =e2 / �2h��, which may aid experimental confirmation
of �=� quantized magnetoelectric coupling. Step edges on such a surface support gapless, chiral quantum
wires. In closing we discuss GdBiPt as a possible example of this topological class.
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I. INTRODUCTION

Several insulating materials are now known experimen-
tally to have metallic surface states as a result of topological
properties of the bulk electron wave functions.1–3 These “to-
pological insulators”4,5 resulting from strong spin-orbit cou-
pling were originally understood theoretically by classifying
single-electron states of materials with time-reversal
invariance,6–8 building on previous work in the two-
dimensional �2D� case.9 The novel metallic surface states of
the three-dimensional �3D� topological insulators can be ob-
served directly via angle-resolved photoemission spectros-
copy and, in the simplest case, can be viewed as a reduced
version of graphene with a single-surface Dirac point, rather
than two in the case of graphene, and a single spin state at
each momentum rather than two.

Our goal in this paper is to explain how three-dimensional
antiferromagnetic insulators with broken time-reversal sym-
metry can nevertheless have nontrivial features similar to
that of the topological insulators. Along some planar surfaces
they have gapless surface modes while along others the sur-
face is gapped and there is a nonzero magnetoelectric cou-
pling from the intrinsic material; an experimental signature
in the latter case is the existence of one-dimensional �1D�
metallic states along step edges on the surface. We concen-
trate here on the conditions for an antiferromagnetic insula-
tor to be in the topologically nontrivial class and on the
measurable consequences at its surfaces.

The time-reversal invariant topological insulators are de-
scribed by Z2 topological invariants �i.e., there are only two
possible values, “odd” and “even”� that differ from the
integer-valued topological invariants that underlie the integer
quantum Hall effect �IQHE� in two-dimensional time-
reversal-breaking systems. A simple picture of the state we
discuss is obtained by starting from a nonmagnetic topologi-
cal insulator on a bipartite Bravais lattice, then adding anti-
ferromagnetic order that doubles the unit cell. One of the
three-dimensional topological invariants survives in this pro-
cess. Note that this differs in several ways from the two-
dimensional model introduced by Haldane on the honey-
comb lattice,10 which is classified by the standard IQHE

integer-valued topological invariant �TKNN integer11 or
“Chern number”� and where the time-reversal breaking does
not change the structural unit cell, which is on the hexagonal
Bravais lattice. Another case previously considered is a sys-
tem that breaks time reversal � and spatial inversion � but
preserves the combination �� �note that the Haldane model
does not preserve this combination�; here there are Z2 invari-
ants in d=1,2 for spinless systems and no topological invari-
ants for spin-1/2 systems.12

The basic idea in this paper is to classify crystals with
broken time reversal � but with an unbroken symmetry of
the form S=�T1/2, where T1/2 is a lattice translation symme-
try of the “primitive” �structural� lattice that is broken by the
antiferromagnetic order. Because the topological invariant
involves explicitly the lattice operation T1/2, it is sensitive to
how this lattice operation is modified by a surface, as men-
tioned above, and even the gapless surface state is not ex-
pected to be stable to disorder �in contrast to the conven-
tional topological insulator�. A macroscopic description is
useful in order to understand the conditions for the topologi-
cal antiferromagnet to be stable. The three-dimensional topo-
logical insulator can be characterized by the existence of a
quantized magnetoelectric coupling in the electromagnetic
Lagrangian13–15 �c=1�

�LEM =
�e2

2�h
E · B, � = � . �1�

The coupling � is only defined modulo 2� and ordinary in-
sulators with time-reversal invariance have �=0. The pres-
ence of either time-reversal symmetry or inversion symmetry
is sufficient to guarantee that the other orbital magnetoelec-
tric terms are absent.16,17 The product S is also enough to
guarantee that the space-averaged � is quantized to zero or �
since � is odd under S.

The bulk value �=� allows either metallic surfaces or
gapped surfaces but in the gapped case there must be a half-
integer quantum Hall effect. In the conventional topological
insulators, the surfaces are intrinsically metallic and observa-
tion of the magnetoelectric coupling seems to require adding
a time-reversal-breaking perturbation. In the topological an-
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tiferromagnets, some surfaces have a gapped state just from
the material’s own time-reversal breaking, which suggests
that experimental confirmation that �=�, which has not yet
occurred, may be easier in these materials, using the same
techniques previously used to extract � in Cr2O3.18 Surface
disorder would complicate that approach but would enable
observation of special features at step edges as discussed
below.

In the following Section, we define the topological anti-
ferromagnet in terms of band structure and verify the con-
nection to the macroscopic description in terms of magneto-
electric response. Then the surface properties are discussed,
which will likely be important for experimental detection. In
closing we discuss the requirements for experiment and com-
ment on the possibility that the antiferromagnetic Heusler
alloy GdBiPt may realize this phase;19 the possibility that
such Heusler alloys may include several topological insula-
tors has recently been a topic of interest.20,21

II. Z2 TOPOLOGICAL INVARIANT

In this section, we construct the Z2 invariant which distin-
guishes between the trivial insulator and “antiferromagnetic
topological insulator” �AFTI� phases. We consider a antifer-
romagnet breaking both the primitive lattice symmetry T1/2
and time-reversal symmetry � but preserving the combina-
tion S=�T1/2. The unit cell is effectively doubled as a result
and T1/2

2 is the new lattice translation �which accounts for the
notation�. In the following, lattice vectors are elements of
this doubled lattice except where otherwise specified.

A free particle Hamiltonian takes the form H
=�k�BZ�k

†H�k1 ,k2 ,k3��k in reciprocal space, where �† and
� are fermion creation and annihilation operators; k1 ,k2 ,k3
� �0,2�� are momentum coordinates defined by ki=k ·ai;
and ai are the lattice translation vectors. The eigenvectors uk
of the Hamiltonian H�k� are related to the wave functions by
Bloch’s theorem 	k=eik·ruk. Consequently, the Hamiltonian
is not periodic in k but rather satisfies H�k+G�
=e−iG·rH�k�eiG·r, where G is a reciprocal-lattice vector and r
is the position operator in this context. Finally, we single out
a3 such that T1/2

2 gives a translation by −a3.
For spin-1/2 fermions, the time-reversal operator may be

written as �=−i�yK in a suitable basis, where K is the com-
plex conjugation operator. In addition, � �and S� also flips
the sign of the momentum: k→−k. The translation operator
T1/2�k� will move the lattice by half a unit cell so that its
representation in reciprocal space satisfies T1/2

2 �k�=eik3.
Explicitly

T1/2�k� = e�i/2�k3�0 1

1 0
� , �2�

where 1 is the identity operator on half the unit cell. Note
that the operators � and T1/2 commute so that �T1/2�k�
=T1/2�−k��.

The combination Sk=�T1/2�k� is antiunitary like � itself
but with an important difference: while �2=−1 for spin-1/2
particles, S2=S−kSk=−eik3. The Hamiltonian is invariant un-
der the combination of time-reversal and translation

SkH�k�Sk
−1 = H�− k� . �3�

At the Brillouin-zone �BZ� plane k3=0 the Hamiltonian sat-
isfies SH�k1 ,k2 ,0�S−1=H�−k1 ,−k2 ,0� with �S �k3=0�2=−1.
These properties lead to a Z2 topological classification of this
two-dimensional system, by analogy to the Z2 invariant in
the quantum-spin-Hall �QSH� effect9 �the same invariant can
be rederived in the Hamiltonian picture used here�.7 At the
plane k3=�, by contrast, S2=+1 and there are no topological
invariants associated with this plane.22

The Z2 invariant may be computed from the Berry con-
nection and curvature7,23 on the k3=0 plane, or in the pres-
ence of spatial inversion by looking at the four time-reversal
momenta at k1 ,k2� 	0,�
.24 Even though the topological in-
variant is calculated from a two-dimensional slice in the Bril-
louin zone for a particular choice of unit cell, it reflects the
topology of the three-dimensional band structure. For ex-
ample, S symmetry gives no invariants in 1D or 2D. In the
Appendix, we show that the 3D Z2 invariant is independent
of unit-cell choice. In the remainder of this section, we will
give a more detailed picture of this topological phase.

A. Relation to the time-reversal invariant topological insulator

If we imagine the system described by a time-reversal
breaking order parameter M �e.g., a staggered magnetiza-
tion�, what happens when we restore time-reversal symmetry
by letting M go to zero while maintaining the insulating
phase �band gap�? To understand what happens, it is useful to
recall briefly the classification of three-dimensional time-
reversal band insulators. In the Brillouin zone, there are six
planes which satisfy time reversal �H�k��−1=H�−k�, and
each has a corresponding Z2 invariant: 
0 ,
� ,�0 ,�� ,�0 ,��

classify the planes k1=0 ,�, k2=0 ,�, and k3=0 ,�, respec-
tively. Here, we use the convention 0 �even� and 1 �odd� to
denote the elements of Z2. The six values must satisfy the
constraint s�
0+
�=�0+��=�0+��, all modulo two, so
only four combinations of these quantities are independent:
s ,
0 ,�0 ,�0. The value s is the “strong” topological invariant
and the other three Z2 are known as the “weak” invariants;
together they classify the 3D system. A strong topological
insulator �STI� is one in which s is nontrivial, that is, s=1.

Upon doubling the unit cell in the a3 direction, the Bril-
louin zone halves by folding in the k3 direction. �In this
section only, a3 is the lattice vector of the structural lattice
and a3

d=2a3 is the lattice vector of the “doubled” system
which supports an antiferromagnetic coupling.� We can write
the Hamiltonian of the doubled system Hk

d in terms of the
undoubled Hamiltonian Hk

Hd�k3
d� = U�H�k3

d/2� 0

0 H�k3
d/2 + ��

�U†,

U =
1
�2
�1 eiG3

d·r

1 − eiG3
d·r� . �4�

Here G3
d is the reciprocal-lattice vector dual to a3

d, r is the
position operator, and the dependence on k1 and k2 are omit-
ted for brevity. The unitary transformation U ensures that the
eigenvectors of Hd satisfy Bloch’s theorem.
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Under the doubling process, the k3=0 and k3=� planes
collapse onto the k3

d=0 plane. The new invariant �0
d is given

as a sum �0+��=s since the unitary transformation U does
not affect any these topological invariants. On the other
hand, the planes k3= 
� /2 map to the plane k3

d=�. Since

� /2 are time-reversal conjugate and those planes �like all
BZ planes, by assumption� have vanishing Chern numbers, it
can be seen that ��

d is always zero.
Adding an antiferromagnetic �� breaking� parameter M

to a STI produces an AFTI. Alternatively, as we turn down
the time-reversal breaking parameter M, the antiferromagnet
reverts to the doubled system. The Z2 invariant describing
our system is �0

d=s and we have a STI at M =0 �provided the
bulk gap does not close�. This gives a natural way to con-
struct a nontrivial topological antiferromagnet—by taking a
STI and introducing a staggered magnetization which breaks
time reversal but preserves S.

B. Magnetoelectric effect and the Chern-Simons integral

The strong topological insulator exhibits a quantized mag-
netoelectric effect, which can be taken as its definition.13–15

To review briefly, the magnetoelectric response tensor


 j
i =
 �Pi

�Bj

B=0

�5�

is odd under the action of time reversal. In a �-invariant
medium, this immediately restricts the off-diagonal elements
of the tensor to vanish. However, the ambiguity in defining
the bulk polarization25,26 allows the diagonal elements to
take a nonzero value. In fundamental units, the strong topo-
logical insulator has


 j
i =

1

2

e2

h
� j

i =
�

2�

e2

h
� j

i �6�

with �=�.
The antiferromagnetic topological insulator suggested

here does not have time-reversal symmetry microscopically;
the relevant symmetry operation is S. This distinction should
not affect the macroscopic response of the system to uniform
fields �i.e., ��, although there could be short-wavelength
components of 
 j

i.
From the general theory of orbital magnetoelectric re-

sponses in band insulators, the nonzero contribution to 
 j
i in

cases of discrete symmetries such as time reversal comes
from the Chern-Simons integral

� =
1

4�
�

BZ
cs3,

cs3 = Tr�A ∧ F +
i

3
A ∧ A ∧ A� , �7�

where A��= �uk
��id�uk

�� is the Berry connection �a matrix-
valued one-form� and � ,� label filled bands.27 The curvature
two-form is F=dA− iA∧A. Under a gauge transformation �a
unitary transformation between the bands�, the Chern-
Simons integral will change by an integer multiple of 2�
hence only � mod 2� is physical.

Under time reversal �uk�→��uk�, the quantities k→−k
and cs3→−cs3, and � changes sign. The translation operator
T1/2=e�i/2�k3� 0 1

1 0 � changes cs3 by an exact form �total deriva-
tive� and does not affect �. Together, S symmetry implies
that �=−�+2�n for some integer n, which quantizes � to 0
�topologically trivial phase� or � �topological insulator
phase�.

The topological phase remains well defined even when
the single-particle invariant is not, in the case with electron-
electron interactions. The macroscopic � angle remains
quantized �at 0 or �� as long as the bulk gap does not close
so the AFTI is stable to sufficiently weak interactions.

The presence of S symmetry forces the Chern numbers on
all BZ planes to be zero. In a three-dimensional system, the
three Chern numbers are the only obstruction to finding a set
of continuous wave functions in the Brillouin zone �respect-
ing Bloch boundary conditions�. This guarantees the exis-
tence of a single-valued connection A for Eq. �7�. Such A
might not respect S symmetry but this is no impediment to
computing the Chern-Simons integral.

III. CONSTRUCTION OF EFFECTIVE
HAMILTONIAN MODELS

In this section, we present two explicit examples of
Hamiltonians in the antiferromagnetic topological insulator
class. Henceforth, we refer these as “model A” and “model
B.”

A. Construction from strong topological insulators

As noted in Sec. II A, we can create an antiferromagnetic
topological insulator by adding a staggered time-reversal
breaking term to a strong topological insulator. Here we
present an explicit Hamiltonian constructed in such way.

We start with a four-band model on a cubic lattice by
Hosur et al.28 with four orbitals/spins per cubic site

H�kx,ky,kz� = v�x
� �sin kx�

x + sin ky�
y + sin kz�

z�

+ �m + t�cos kx + cos ky + cos kz���z, �8�

where � and � are two sets of Pauli matrices. This Hamil-
tonian is in the strong topological phase when �t�� �m�
�3�t� and ��0 with the time-reversal operator represented
by −i�yK.

To double the Hamiltonian in the z direction, first decom-
pose H�kx ,ky ,kz� into a hopping Hamiltonian as follows:

H�kx,ky,kz� = B0 + �
�

�B�e−ik� + B�
† eik�� , �9�

where �=x ,y ,z. The matrices B� describe hopping from ad-
jacent cells from the −� direction, B�

† are hopping from +�
direction, and B0 describes the “self-interaction” of a cell.
The new lattice vectors are
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�a1

a2

a3
� = �1 0 1

0 1 1

0 0 2
��ax

ay

az
� , �10�

which defines a face-centered-cubic �FCC� lattice with the
primitive unit cell whose volume is double that of the origi-
nal cubic cell.

Doubling the unit cell gives the following eight-band
Hamiltonian:

Hd�k1,k2,k3� = � B0 + M Bz
†ei�k3/2�

Bze
−i�k3/2� B0 − M

� + �0 Bz

0 0
�e−i�k3/2�

+ � 0 0

Bz
† 0

�ei�k3/2� + � 0 Bx

Bx 0
�ei�k3/2−k1�

+ � 0 Bx
†

Bx
† 0

�ei�k1−k3/2� + � 0 By

By 0
�ei�k3/2−k2�

+ � 0 By
†

By
† 0

�ei�k2−k3/2�, �11�

where M is a term odd under time reversal �such as �z or �y�
and represents the added antiferromagnetic coupling in this
example. The time-reversal operator takes the form

� = − i�1� � �y 0

0 1� � �y �K . �12�

In the absence of M this system also has two parity �spa-
tial inversion� centers, given by the operators

�1 = ei�k3/2�� 0 �z

�z 0
� �2 = ��z 0

0 �z� . �13�

The inversion center for �1 is between the two cubic sublat-
tices X and Y such that it swaps X and Y. The inversion
center for �2 is at X such that it takes Y to the next unit cell.
Their product results in a translation by half a unit cell:
�1�2=T1/2.

B. Construction from magnetically induced spin-orbit coupling

1. Motivation

Consider four atoms placed in a rhombus geometry on the
xy plane as shown in Fig. 1 with X and Y on opposite corners
of the rhombus. In the simplest model, the spin-orbit cou-
pling term from X to Y is given by i�SO�d1�d2 ·�, where
the sum is over the two paths X→M1→Y, X→M2→Y, and
d1 ,d2 are the vectors along the bonds X→M� and M�→Y
that the electron travels through.10,29 In this geometry this
coupling vanishes as the cross products d1�d2 from the two
paths cancel.

Now let M1 and M2 be magnetized in the +z direction.
This creates a net magnetic field inside the rhombus breaking
the symmetry between the two paths X→M�→Y. We can
estimate its orbital effect by attaching an Aharonov-Bohm
phase e
i� to each of the two paths to produce a flux 2�. The
coupling from X to Y now takes the form

HSO = i�SO�ei�r1 � r2 + e−i�r2 � r1� · �cY
†�cX�

� 2��SO�r2 � r1��cY
†�zcX� , �14�

where we expect � to be proportional to the z magnetization
of M�. Hence the magnetization of intermediate sites M1 and
M2 induces a spin-orbit interaction between the sites X and
Y.

If spins on M1 and M2 are aligned oppositely in the 
z
direction, by contrast, there is no net magnetization in the
rhombus and the symmetry between the two paths X→M�

→Y is restored. Rotating the system by � along the axis
through points X and Y, taking M1 to M2 and vice versa, we
see that there are no �z couplings between the two sites. Both
cases are important in motivating the model to follow.

2. Effective Hamiltonian

We start with a rocksalt �FCC� structure with the conven-
tional cubic unit cell of side length 1. In this setup there are
four “A” sites located at �0,0,0� and permutations of � 1

2 , 1
2 ,0�

while the “B” sites are located at � 1
2 , 1

2 , 1
2 � and permutations

of �0,0 , 1
2 �. The B sites develop antiferromagnetic order

along the �111� planes and magnetization in 
�1,1 ,1� direc-
tion. In the antiferromagnetic state, the unit cell consists of
four layers: A1, B↑, A2, and B↓.

In this model there are spin-up and spin-down degrees of
freedom at A1 and A2 but the electronic degrees of freedom
at B are eliminated, giving four “orbitals” per primitive cell.
The electrons hop between A atoms by traveling through the
magnetized B sites and we can see that there are always two
such paths A→B→A between adjacent A’s. From Fig. 2, it
is apparent that spin-orbit coupling between two A1’s on the
same layer vanishes by our argument earlier, as the interme-
diate sites have opposite magnetization. In contrast, the spin-
orbit coupling between A1 and A2 does not vanish.

Now we describe our model with the following hopping
terms: �1� spin-independent hoppings between A1 and A2
atoms with coefficient t, �2� spin-independent hoppings be-
tween A atoms on the same plane with coefficient t�, and �3�
spin-orbit term between A1 and A2 with effective coupling

�. As mentioned earlier, we take the energy to reside on B
sites as far above the energy scales � , t , t�, effectively elimi-
nating those degrees of freedom in our model.

We choose the primitive lattice vectors

•
r2

�����
��

��
��

M1

•
r1

�����������

r2
�����

��
��

��X • Y

•
r1

�����������

M2

FIG. 1. Four atoms placed in a rhombus configuration on the xy
plane The coupling between X and Y depends on the magnetization
of M1 and M2.
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�a1

a2

a3
� = �− 1

2 0 1
2

0 − 1
2

1
2

1 1 0
��ax

ay

az
� �15�

in terms of the simple cubic basis ax ,ay ,az. The atoms A1
and A2 are placed at −

a3

4 and
a3

4 , respectively, within the unit
cell. Written in the basis �A1

↑� , �A1
↓� , �A2

↑� , �A2
↓�, the Hamil-

tonian takes the form

H = �T� U†

U T�
� ,

where

T� = 2t��cos�k1� + cos�k2� + cos�k1 − k2��1 ,

U = 2t�cos� k3

2
� + cos�k1 +

k3

2
� + cos�k2 +

k3

2
��

− 2i��sin� k3

2
��z + sin�k1 +

k3

2
��x + sin�k2 +

k3

2
��y� ,

�16�

which is gapped �in the bulk� when �t��� �t� , 1
�3

���. The time-
reversal operator has the representation

� = − i��y 0

0 �y �K . �17�

We are interested in the regime where t� is much smaller
than t and �, as this leads to a gap in the surface spectrum
also. Unfortunately, we cannot provide a good argument why
t� �in-plane hopping� should be much less than t �interplane
hopping� in a real material.

This model has spatial inversion symmetry, given by the
operator �= � 0 1

1 0 �, which in effect swaps the layers A1 and
A2. The filled bands at the momenta �k1 ,k2 ,k3�
= �0,0 ,0� , �0,� ,0� , �� ,0 ,0� , �� ,� ,0� have parity −1,−1,
−1,+1, respectively, so the model is in the nontrivial topo-
logical phase.

In this model, � is related to the parameter breaking time-
reversal symmetry, at the same time protecting the bulk gap.
If we turn the parameter � down to zero, we will not get a

STI at �=0, rather the model becomes conducting.

IV. SURFACE BAND STRUCTURE

The bulk electronic band structure of an AFTI must be
gapped to allow the topological distinction between the
trivial phase and the nontrivial phase. At the boundary be-
tween domains of two topologically distinct phases we typi-
cally expect a gapless surface spectrum, as is the case at the
edges of quantum Hall and quantum-spin-Hall systems as
well as at the surfaces of the STI �vacuum is in the trivial
phase�. However, it should be noted that this is not strictly
necessary. For example, while time-reversal symmetry re-
quires doubly degenerate states, leading to gapless boundary
modes between topological phases, it is known that breaking
time reversal but preserving inversion can give a topological
phase whose surface states are gapped.30

We distinguish between two classes of surfaces, depend-
ing on the plane of the cut relative to the crystal structure.
We call a surface type F �ferromagnetic� if it breaks the S
symmetry in the bulk, and type A �antiferromagnetic� if it
preserves the symmetry. Heuristically, the distinction can be
visualized by imagining a ferromagnetic/antiferromagnetic
moment with a Zeeman coupling to the electron’s spin, as in
model A above. Then a type F surface will have all its spins
aligned and a net magnetization on the surface. A type A
surface will have antiferromagnetic order such that we can
always choose the primitive lattice vector a3 parallel to the
surface. As an example: In model A with staggered magne-
tization on a cubic lattice, 	111
 planes are type F while
planes 	110
 and 	100
 are type A.

There are an odd number of Dirac cones on a clean type A
surface, analogous to the STI. We can see why the surface
�parallel to a3� is gapless by looking at the k3=0 line on the
surface spectrum, which is the boundary of the k3=0 plane in
the bulk BZ. Since the plane carries a nontrivial topological
�QSH� phase, its boundary must be gapless.

The Dirac cone’s stability may also be explained by look-
ing at a constant energy curve � in the surface spectrum. This
curve must be its own time-reversal image because of the
symmetry between k and −k. The Berry phase of this curve
�=��Tr�A� is ambiguous by integer multiples of 2� so S
symmetry forces this to be 0 or �, for the same reason it
forced �=� in Sec. II B As in the STI, a � phase implies that
the Fermi surface encloses an odd number of Dirac cones.
However, any defect or impurity will break the translational
and S symmetry on the surface, thereby opening a gap. This
is analogous to the effect of a magnetic defect on the surface
of a STI.

For a type F surface, S symmetry is broken on the surface
and the usual protection for Dirac cones or conducting sur-
faces no longer exists. If the bulk and surface spectrum are
fully gapped �i.e., not a semimetal�, then the surface will
exhibit the half-integer quantum Hall effect, to be discussed
in the tion.

In Fig. 3, we present the band structure of model A for
slabs with type A and type F surfaces. Since this model is
built from a STI, the band structures are similar.6

For model B, the surface parallel to a1 and a2 is type F
and its excitations are exactly solvable with dispersion

•A1 •A1 •A1

↑ ↑B

•A2 •A2 •A2

↓ ↓B

• • •A1

FIG. 2. Cross section of the model at �100� plane. The layers in
a unit cell are A1, B↑, A2, and B↓. Note that the magnetizations are
not in plane but are only illustrated as such in this figure.
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Es�k1,k2� = 2t��cos k1 + cos k2 + cos�k1 − k2�� . �18�

As the dispersion shows, a surface spectrum exists for all
values of t� and nonzero values of t and �. This model has
the peculiar feature that the surface spectrum is completely
disconnected from the bulk, that is, it forms a complete two-
dimensional band structure. Figure 4 shows the bulk and
surface band structure for two different cuts. In the �111� cut,
a small t� is desired if we want to avoid band overlaps be-
tween the valence, conductance, and surface spectrum, giv-
ing us an insulator.

In the presence of a sufficient number of random defects,
we expect that the surface electronic states are described by
the unitary symmetry class because of the broken time-
reversal symmetry. That symmetry class only has extended
states at isolated values of the chemical potential; in general,
the surface state will have zero diagonal conductivity, with
half-integer quantum Hall plateaus. The transitions between
these plateaus appear when the chemical potential passes
through an extended state. These transitions can be regarded

as a realization of the two-dimensional quantum Hall effect
in zero net field discussed by Haldane.10 Note that since both
top and bottom surfaces of a slab will have half-integer pla-
teaus, the total quantum Hall effect when diagonal conduc-
tivity is zero is always integral, as required for a single-
electron two-dimensional system.

V. FERROMAGNETIC SURFACES AND HALF-INTEGER
QUANTUM HALL EFFECT

In this section we present two perspectives on the half-
quantum Hall effect on type F surfaces, along with numerical
calculations to justify our claim. If one views the antiferro-
magnet as a STI with time-reversal breaking term opening a
surface gap, then the half-QHE can be viewed as the root of
the bulk magnetoelectric coupling �=�. This effect follows
from the gapped Dirac dispersion of the surface states. The
sign of the Hall conductance depends on the sign of the
effective Dirac mass,10,31,32 which here is set by the direction
of the Zeeman field at the surface.

�0, 0� �Π, 0� �Π, Π� �0, Π� ��Π, Π� �0, 0� �Π, �Π�
k

�1.0

�0.5

0.5

1.0
E

�0, 0� �Π, 0� �Π, Π� �0, Π� ��Π, Π� �0, 0� �Π, �Π�
k

�1.0

�0.5

0.5

1.0
E

(a)

(b)

FIG. 3. �Color online� The bulk and surface band structure for model A, along the �100� �type A, parallel to a2 ,a3� and �1̄1̄1� plane �type
F, parallel to a1 ,a2�, respectively. The red dots indicate surface modes. The parameters used are: v=0.5, m=2, t=1, M =�z with 13 layers.
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An alternate perspective of the AFTI surface comes from
a comparison to the quantum-spin-Hall effect. As described
in Sec. II, the Z2 invariant is computed from the two-
dimensional plane k3=0 and the symmetry operator S �k3=0 in
precisely the way that the QSH invariant is computed from
the two-dimensional BZ and �. The QSH insulator may be
constructed by combining two copies of a QH layer with
opposite spin and Chern number 
n. Time reversal takes one
layer to the other, making the combination of the two �
invariant. In reality spin is rarely conserved, allowing the
two layers to mix, making the Chern number of each spin
ill-defined. However, a residual Z2 topological invariant
remains9,29 and we can consider the QSH as being adiabati-
cally connected to the two-QH-layer model but with the to-
pological invariant n only preserved mod2.

By analogy, we can construct an AFTI by stacking QH
layers with alternating Chern number of 
1 �Hall conduc-
tivity 
e2 /h�, as shown in Fig. 5. The “up” �+1� layers are
related to the “down” �−1� layers by S symmetry hence they
are spatially offset from one another. Just like the QSH case,

we can expect the layers to couple to one another, in a way
that makes the Chern number ill-defined on a per-layer basis.
Once again, it is appropriate to consider the AFTI to be adia-
batically connected the staggered QH-layer model. In the
stacked QH model, the Hall conductance in the bulk aver-

�0, 0� �Π, 0� �Π, Π� �0, Π� ��Π, Π� �0, 0� �Π, �Π�
k

�2

�1

1

2
E

(a)

�0, 0� �Π, 0� �Π, Π� �0, Π� ��Π, Π� �0, 0� �Π, �Π�
k

�2

�1

1

2
E

(b)

FIG. 4. �Color online� The bulk and surface band structure for model B, along the �11̄1̄� plane �type A, parallel to a2 ,a3� and �111� plane
�type F, parallel to a1 ,a2�, respectively. The red dots indicate surface modes. The parameters used are: �=0.5, t=1, t�=0.1 with 13 layers.

FIG. 5. Construction of antiferromagnetic topological insulator
by staggering quantum Hall layers. The shaded and unshaded boxes
represents Chern number of 
1. The left and right surfaces are type
A and gapless while the top and bottom surfaces are type F with
half-quantum Hall effect.

ANTIFERROMAGNETIC TOPOLOGICAL INSULATORS PHYSICAL REVIEW B 81, 245209 �2010�

245209-7



ages to zero, as the conductance of any individual layer is
cancelled by neighboring layers of opposite type. In other
words, any long-wavelength probe of the system will be un-
able to discern the individual QH layers. However, the QH
layers at either end of the stack are not completely cancelled,
there is a half-QHE at both surface.

To confirm this picture, we can consider a slab with type
F surfaces and compute the 2D-Hall conductivity as a func-
tion of position �layer�. In units of e2 /h, the �two-
dimensional� conductivity in layer n can be computed from15

C�n� =
i

2�
� tr�P�dP� ∧ P̃n�dP�� . �19�

Here P=�occ�uk��uk� is the projector onto occupied wave

functions at k and P̃n is the projector onto basis states local-
ized in layer n.

Figure 6 shows the results of such a computation on a slab
cut from the rock-salt model B introduced in Eq. �16� with
type F surfaces. In this model, when the Zeeman field on
opposite surfaces points in opposite directions �blue, upper
curve� the total conductance of the slab is C=1 with each
surface having a net C=1 /2; adding a layer such that the two
surfaces have the same Zeeman field switches the conduc-
tance on that surface from +1 /2 to −1 /2 so that the total slab
conductance vanishes. Note that the total conductance of a
slab is always an integer, as required.10,11,33

Now, at the interface between two integer-quantum Hall
domains whose conductance C differs by 1, there will be a
chiral boundary mode with conductance e2 /h, which can be
thought of as “half a quantum wire.” In the situation outlined
above, putting the two slabs with different conductance to-
gether is equivalent to making a slab with a step edge on one
surface and the chiral mode will reside at this step edge.
Such a mode should give an observable signature in a tun-
neling experiment �Fig. 7�.

It is natural to ask, what if one rotates the antiferromag-
netic moment by �, flipping all the spins and effectively
“peeling” off a layer of type F surface? Since the sign of the
surface conductance C changes during this process, the sur-
face �or bulk� gap must close at some magnetization orien-
tation. This is analogous to applying a magnetic field to a
STI surface. For B parallel to the surface, the Dirac cone
shifts in momentum space but no gap opens. Any infinitesi-

mal component of B out of the plane will open a gap hence
going from B out of the surface to B into the surface must
necessarily close the surface gap. �In model B, the bulk gap
would close while rotating the magnetization.�

VI. CONCLUSIONS AND POSSIBLE RELEVANCE
TO GdBiPt

In this paper, we have looked at the topological classifi-
cation of materials breaking both time-reversal � and trans-
lational symmetries T1/2 but preserving the combination S
=�T1/2, and found a Z2 classification within the S-symmetry
class that leads to the existence of an AFTI. In the most basic
picture, an AFTI can be obtained from adding a staggered
magnetization to a STI. Macroscopically, S symmetry im-
plies a quantized magnetoelectric response� �P

�B �B=0= �
2�

e2

h with
�=� for an AFTI. We have also demonstrated that the sur-
face spectrum depends on the surface cut, classified as type
A/F. Type A surfaces possess an antiferromagnetic order that
preserves S symmetry with associated gapless excitations
that can be gapped by disorder. Type F surfaces break S
symmetry and are typically gapped, analogously to the situ-
ation of a Zeeman field on the surface of a STI. The new
AFTI state is topological in a weaker sense than the strong
3D topological insulator because its surface state is depen-
dent on the surface plane and not generally stable to disor-
der; in that respect it is similar to the weak topological insu-
lator in 3D or the “Hopf insulator.”34 �The number of Dirac
cones in a STI also depends on the surface plane but there is
always an odd number of such cones.�

The magnetoelectric coupling �=� requires the half-
quantum Hall effect at the surface, provided the surface spec-
trum is gapped. Our numerical calculations based on explicit
band models agree with these results. Finally, we predict the
existence of chiral 1D quantum wires at type F surface step
boundaries, an experimental signature verifiable via scanning
tunneling measurements.

The recent proposals that many Heusler compounds may
be topological insulators,20,21 together with the antiferromag-
netic order in GdBiPt below 9 K,19 suggest a possible can-
didate for the state proposed here. Transport experiments in-
dicate that GdBiPt is a semiconductor with a narrow gap.19,35

5 10 15 20 25 30
n

�0.2
�0.1

0.1
0.2

C �n �

FIG. 6. �Color online� Hall conductance spatially resolved for
32 �blue� and 33 �red� layers of model B. The Fermi level is set
below zero to include only the bulk valence modes and no surface
modes. The parameters used for this plot are: �=0.5, t=1, t�
=0.1.

FIG. 7. �Color online� 1D quantum wire on type F surface step
edge. The red and blue regions represent ferromagnetic layers mag-
netized in opposite directions. There is a gapless chiral quantum
wire at each step edge with chirality indicated by the arrow at the
edge.
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The Gd sites form an FCC lattice and hence their antiferro-
magnetic interaction is frustrated, and further experiments
�e.g. neutron scattering� are required to determine if the an-
tiferromagnetic order falls under the S symmetry class de-
scribed in this paper. At least one related Heusler antiferro-
magnet �MnSbCu� is known to have antiferromagnetic
ordering �alternating spin directions on �111� planes� which
belongs in the S-symmetry class.36 Should the material be
truly insulating �i.e., have a bulk gap� through its antiferro-
magnetic transition, it suffices, in principle, to check if it is a
strong topological insulator above the Néel temperature.

We have provided a topological classification and experi-
mental consequences for a particular combination of time-
reversal symmetry and a lattice symmetry ��T1/2�. Other
such combinations of time-reversal and crystal symmetries
could lead to new topological materials beyond those in the
exhaustive classification of topological insulators stable to
disorder.22,37
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APPENDIX: INVARIANCE TO CHOICE OF UNIT CELL

The construction of the Z2 invariant in Sec. II required a
certain choice of unit cell. In this section, we will demon-
strate that different choices of the unit cell will yield the
same result. In particular, we show that different ways to
choose the doubled unit cell are equivalent given a choice of
structural cell.

Begin with a Hamiltonian H defined for a set of primitive
translation vectors ai, along with the operators T1/2 such that
T1/2

2 translate by −a3. We can always divide the Hilbert space
in to two subspaces: X and Y such that the translation opera-
tor T1/2 takes Y to X and X to the Y in another unit cell.
Physically X and Y represent the structural unit cell whose
symmetry is broken by antiferromagnetism.

Construct a new unit cell by leaving X fixed but taking Y
from a cell R relative to the original. In the new system the

lattice vector ã3=a3+2R such that T̃1/2
2 translates the system

by −ã3. We want to show that the Z2 invariant calculated for

the new Hamiltonian �H̃ on the k̃3=0 plane� is identical to

that of the original one �H on the k̃3=0 plane�.
Here we remind the reader of the method used in this

section to compute the Z2 topological invariant.7,23 First we
pick an “effective Brillouin zone” �EBZ� which is half of the
Brillouin zone such that time reversal will map it to the other
half. The boundary of EBZ must be time-reversal image of
itself. The element of Z2 is computed by the integrating the
connection and curvature

D =
1

2����EBZ
A − �

EBZ
F�mod2, �A1�

where the �U�1�� connection A=�occ�u�id�u� is summed over
occupied bands and curvature F=dA is its exterior deriva-

tive in momentum space. The curvature F is “gauge invari-
ant” �does not depend on the choice of basis functions for
occupied states� but A depends on a particular choice of
gauge for the wave functions. The boundary integral in the
formula above requires that the wave functions at k and −k
be S-conjugate pairs. Any choice of the EBZ will give the
same Z2 invariant.

The effect of the coordinate transformation k1 ,k2 ,k3

→ k̃1 , k̃2 , k̃3 changes the EBZ on which we compute the to-
pological invariant. Since the momentum variables are re-

lated by k̃3=k3+2R ·k, we can always choose the EBZ for
the new and old systems such that they share a common
boundary, namely, the two lines satisfying R ·k� 	0,�
. This
guarantees that the boundary integral terms ��A� in �Eq.
�A1�� are identical in the two cases.

As for the term integrating curvature over the EBZ, we
can try to deform the new EBZ to match the old EBZ. This
deformation is allowed by the fact that F=dA is a closed
two-form; any local deformation to the surface �i.e., one that
preserves A on the boundary� will preserve the integral �F.
As Fig. 8�c� shows, we cannot always deform one EBZ to
the other; however, we can always decompose the new EBZ
into the old EBZ plus planes with no boundaries. These
closed planes which are either contractible or they span a
torus in the Brillouin zone. S symmetry requires that the
Chern number vanishes on all closed two-dimensional sur-
faces, and it follows that the integral �Eq. �A1�� evaluates to
the same value for new and old unit cell. In other words, the
Z2 invariant does not depend on how we choose the unit cell.

We can also view the Z2 invariant as an obstruction to
finding a continuous basis �along with the appropriate Bloch
periodic boundary conditions� for the wave functions re-

(b)(a)

(c)

FIG. 8. �Color online� Example of changing the unit cell. �a�
The original cell �rectangle with dashed border� is transformed to
the new cell �shaded rectangle with solid border� by keeping the X
portion fixed and changing Y, where R=−a2−a3 is the displace-
ment vector. In this example, the original vectors a2=−x̂− ŷ, a3

=2ŷ, and a1 points out of the plane. The new vectors ã3=a3+2R
=−2a2−a3=2x̂ and we choose ã1 and ã2 to remain fixed. �b� The
Brillouin zone. The blue plane is the EBZ for k3=0 and the red

plane is the EBZ for k̃3=0. The Z2 invariant computed for these two
planes are the same. �c� Deformation of the new EBZ �red�, which
decomposes into the old EBZ �blue� and a boundaryless plane
�green�.
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specting S symmetry in the entire Brillouin zone.23 The ma-
terial is in a trivial phase if such a basis exists. This intepre-
tation is much harder to “compute” then the original
definition but is powerful in what it implies. For example,

any �single valued� unitary transformation or a change of
coordinates will not affect the obstruction of finding such
basis, and it is rather straightforward from the definition that
the Z2 invariant is independent of unit-cell choice.
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