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First-principles dynamical coherent-potential approximation for electron correlations has been developed
further by taking into account higher-order dynamical corrections with use of the asymptotic approximation.
The theory is applied to the investigations of a systematic change in excitation spectra in 3d transition metals
from Sc to Cu at finite temperatures. It is shown that the dynamical effects damp main peaks in the densities
of states �DOSs� obtained by the local-density approximation to the density-functional theory, reduce the band
broadening due to thermal spin fluctuations, create the Mott-Hubbard-type bands in the case of fcc Mn and fcc
Fe, and create a small hump corresponding to the “6 eV” satellite in the case of Co, Ni, and Cu. Calculated
DOS explain the x-ray photoelectron spectroscopy data as well as the bremsstrahlung isochromat spectroscopy
data. Moreover, it is found that screening effects on the exchange energy parameters are significant for
understanding the spectra in magnetic transition metals.
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I. INTRODUCTION

Electron correlations play an important role for under-
standing the electronic structure, magnetism, metal-insulator
transition, and the high-temperature superconductivity in the
solid-state physics, and thus a large number of theories have
been proposed to describe correlated electron systems.1 Es-
pecially, in the case of magnetism, theories of electron cor-
relations have been developed over 50 years to explain the
ferromagnetism of transition metals since the Hartree-Fock
approximation was recognized to overestimate their mag-
netic ordering energy.

Gutzwiller2–4 proposed a variational theory which takes
into account on-site correlations by controlling the probabil-
ity amplitudes of doubly occupied states, and showed that
electron correlations much instabilize the ferromagnetism.
Hubbard5,6 developed a Green’s-function method making use
of the equation of motion method and a decoupling approxi-
mation that leads to an alloy-analogy picture. He succeeded
in describing the metal-insulator transition as well as the
instability of ferromagnetism due to electron correlations.
Kanamori7 took into account the multiple scattering of elec-
trons in the low-density limit, and showed that the effective
Coulomb interaction for the ferromagnetic instability is ex-
tremely renormalized by electron-electron interactions.

Above-mentioned theories are limited to the ground state.
Cyrot8 extended to finite temperatures an idea of alloy-
analogy approximation for electron correlations proposed by
Hubbard, on the basis of the functional-integral method.9–12

He explained the T-P phase diagram for metal-insulator tran-
sitions qualitatively. Hubbard13 and Hasegawa14 indepen-
dently developed the single-site spin-fluctuation theory using
the coherent-potential approximation �CPA�.15,16 They
showed that thermal spin fluctuations much reduce the Curie
temperatures which are obtained by the Stoner theory for
band calculations based on the local-density approximation
�LDA� to the density-functional theory.17

The single-site spin-fluctuation theory reduces to the
Hartree-Fock one at zero temperature because it is based on

a high-temperature approximation, i.e., the static approxi-
mation to the functional-integral method. Therefore, the
theory does not take into account the ground-state electron
correlations as found by Gutzwiller, Hubbard, and Kanamori.
Kakehashi and Fulde18 proposed a variational theory which
adiabatically takes into account such correlations at finite
temperatures, and found further reduction in Curie tempera-
ture. Finally, Kakehashi19 proposed the dynamical CPA
which completely takes into account the dynamical charge
and spin fluctuations within the single-site approximation,
and clarified the dynamical effects on the momentum distri-
bution, magnetic moment as well as excitation spectra using
the Monte Carlo technique. In the next paper20 which we
refer to I in the following, we developed an analytic method
to the dynamical CPA, using the harmonic approximation. In
the recent paper21 which we refer to II, we proposed the
first-principles dynamical CPA which combines the dynami-
cal CPA with the tight-binding linear-muffin-tin-orbital �TB-
LMTO� �Ref. 22� based LDA+U Hamiltonian.23 Within the
second-order dynamical corrections to the static approxima-
tion, we have shown that the dynamical CPA can describe the
finite-temperature properties of excitations and magnetism in
Fe and Ni quantitatively or semiquantitatively.

In this paper, we develop further the first-principles dy-
namical CPA by taking into account higher-order dynamical
corrections within an asymptotic approximation, and investi-
gate a systematic change in excitation spectra in 3d transition
metals from Sc to Cu. We will clarify the dynamical effects
on the excitation spectra in 3d series at finite temperatures,
and will explain systematic change in x-ray photoelectron
spectroscopy �XPS� data24 as well as the bremsstrahlung iso-
chromat �BIS� data.25

Similar calculations have recently been performed at the
ground state by Belashchenko et al.26 on the basis of the
self-consistent local GW approximation. Their results of the
first-principles calculations, however, do not well describe
the main peak positions in the XPS and the BIS data, and
seem to require further development of the theory.
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As we have proven in the separate papers,27,28 the dy-
namical CPA is equivalent to the many-body CPA �Ref. 29�
developed in the disordered system, the dynamical mean-
field theory in the metal-insulator transition in infinite
dimensions,30–33 and the projection operator method CPA
�Ref. 34� for excitation problems. The dynamical CPA was
originally developed to describe the finite-temperature mag-
netism in metallic systems starting from the static approxi-
mation exact in the high-temperature limit. The theory can
treat the transverse spin fluctuations for arbitrary d-electron
number at finite temperatures, though it is not easy in the
traditional quantum Monte Carlo �QMC� approach.35 More-
over, the theory allows us to calculate excitation spectra up
to the temperatures much lower than those calculated by the
QMC because the dynamical CPA is an analytic theory
which does not rely on the statistical techniques.

In the following section, we outline the first-principles
dynamical CPA presented in our paper II. After having estab-
lished the basic formulation, it is desired how to calculate
higher-order terms of individual harmonics in the dynamical
part. In Sec. III, we calculate the higher-order terms using
asymptotic approximation and obtain the expressions for dy-
namical corrections. In Sec. IV, we present the results of
numerical calculations for the densities of states �DOSs� as
the single-particle excitations in 3d transition metals. Calcu-
lations have been performed at high temperatures, where the
present approach works best. We will demonstrate that the
dynamical CPA can explain a systematic change in the DOS
in 3d series from Sc to Cu. We also show that the screening
effects on the exchange energy parameter are significant for
the description of the excitation spectra in Mn, Fe, and Co.
In the last section, we summarize the present work and dis-
cuss future problems to be solved.

II. FIRST-PRINCIPLES TB-LMTO DYNAMICAL CPA

We consider here a transition-metal system with an atom
per unit cell, and adopt the TB-LMTO Hamiltonian com-
bined with LDA+U Coulomb interactions as follows:21

H = H0 + H1, �1�

H0 = �
iL�

��L
0 − ��n̂iL� + �

iLjL��

tiLjL�aiL�
† ajL��, �2�

H1 = �
i
��

m

U0n̂ilm↑n̂ilm↓ + �
m�m�

�U1 −
1

2
J�n̂ilmn̂ilm�

− �
m�m�

Jŝilm · ŝilm�� . �3�

Here �L
0 in the noninteracting Hamiltonian H0 is an atomic

level on site i and orbital L, � is the chemical potential, tiLjL�
is a transfer integral between orbitals iL and jL�. L= �l ,m�
denotes s, p, and d orbitals. aiL�

† �aiL�� is the creation �anni-
hilation� operator for an electron with orbital L and spin � on
site i, and n̂iL�=aiL�

† aiL� is a charge-density operator for elec-
trons with orbital L and spin � on site i.

In the Coulomb interaction term H1, we take into account
on-site interactions between d electrons �l=2�. U0 �U1� and J
in H1 are the intraorbital �interorbital� Coulomb and ex-
change interactions, respectively. n̂ilm �ŝilm� with l=2 is the
charge- �spin-� density operator for d electrons on site i and
orbital m. It should be noted that the atomic level �L

0 in H0 is
not identical with the LDA atomic level �L. The former is
given by the latter as23,36 �L

0 =�L−�ELDA
U /�niL�. Here niL� is

the charge density at the ground state and ELDA
U is a LDA

functional to the intra-atomic Coulomb interactions.
The free energy of the system F is written in the interac-

tion representation as follows:

e−�F = Tr�T exp�− 	
0

�

d� 
H0��� + H1������ . �4�

Here � is the inverse temperature and T denotes the time-
ordered product for operators. H0��� 
H1���� is the interac-
tion representation of Hamiltonian H0 �H1�.

We transform the interaction H1��� in the free energy into
a one-body dynamical potential v making use of the
Hubbard-Stratonovich transformation.12,21 The transforma-
tion is a Gaussian formula for the Bose-type operator �b��,

e �
mm�

bmĀmm�bm� =
det Ā

�M 	 ��
m

dxm�
�e−�mm��xmĀmm�xm�−2bmĀmm�xm��. �5�

Here Āmm� is a M �M matrix and �xm� are auxiliary field
variables. The above formula implies that the two-body in-

teraction �mm�bmĀmm�bm� is transformed into a one-body in-

teraction with a potential −�m�2Āmm�xm� coupled with the
random fields �xm��.

After making use of the transformation at each time �, the
free energy F is written in the Matsubara frequency repre-
sentation as follows:

e−�F =	 ��
j=1

N

�
m=1

2l+1

	� jm	
 jm�exp
− �E
�,
�� , �6�

E
�,
� = − �−1 ln Tr�e−�H0� − �−1Sp ln�1 − vg�

+
1

4�
in

�
mm�

�
im
� �i�n�Amm�
im��i�n�

+ �
�=x,y,z


im�
� �i�n�Bmm�

�

im���i�n�� . �7�

Here N is the number of sites, 
im�i�n� �
im��i�n�� is the
n-frequency component of an auxiliary field 
im��� 

im�����
being conjugate with in̂iL��� 
m̂iL����=2ŝiL����� for l=2. Sp
in the second term at the right-hand side �rhs� of Eq. �7�
denotes a trace over site, orbital, frequency, and spin. g is the
temperature Green’s function for noninteracting system H0.
The matrices Amm� and Bmm�

� are defined by Amm�=U0	mm�
+ �2U1−J��1−	mm��, Bmm�

� =J�1−	mm�� ��=x ,y�, and Bmm�
z

=U0	mm�+J�1−	mm��.
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The functional integrals in Eq. �6� are defined by

	 ��
m=1

2l+1

	
im� =	 �
m=1

N� 
�2l+1 det A

�4��2l+1 �
m=1

2l+1

d
im�0�

���
n=1

�
�2l+1 det A

�4��2l+1 d2
im�i�n�� . �8�

Here d2
im�i�n�=d Re 
im�i�n�d Im 
im�i�n�. The dynamical
one-body potential v at the rhs of Eq. �7� is defined by

�v�iLn�jL�n��� = v jL����i�n − i�n��	ij	LL�, �9�

viL����i��� = −
1

2�
m�

iAmm�
im��i���	l2	���

−
1

2�
�

�
m�

Bmm�
�


im���i���	l2�������, �10�

�� ��=x ,y ,z� being the Pauli-spin matrices.
In the dynamical CPA,20 we introduce a site-diagonal co-

herent potential,

���iLn�jL�n��� = �L��i�n�	ij	LL�	nn�	���, �11�

into the potential part of the energy functional E
� ,
�, and
expand the correction v−� with respect to sites,

E
�,
� = NF̃��� + �
i

Ei
�i,
i� + �E . �12�

Here the zeroth-order term F̃��� is a coherent part of the free
energy per atom which is defined by

F̃��� = − �N��−1ln Tr�e−�H0� − �N��−1Sp ln�1 − �g� .

�13�

The next term in Eq. �12� is a sum of the single-site energies
Ei
�i ,
i�. The dynamical CPA neglects the higher-order terms
�E associated with intersite correlations.

The free energy per atom is finally given by20,21

FCPA = F̃
�� − �−1 ln 	 ��
�


�J̃�

4�
d
��e−�Eeff���.

�14�

Here J̃x= J̃y = J̃�= 
1−1 / �2l+1��J, J̃z=U0 / �2l+1�+ J̃�, and
we expressed the single-site term 
the second term at the rhs
Eq. �14�� with use of an effective potential Eeff��� projected
onto a large static field variables 
�=�m
m��0�. Moreover,
we have omitted the site indices for simplicity.

The effective potential Eeff��� consists of the static contri-
bution Est��� and the dynamical correction term Edyn���,

Eeff��� = Est��� + Edyn��� . �15�

The former is given as

Est��� = −
1

�
�
mn

ln��1 − 	vL↑�0�FL↑�i�n���1 − 	vL↓�0�FL↓�i�n�� −
1

4
J̃�

2 
�
2 FL↑�i�n�FL↓�i�n��

+
1

4�− �U0 − 2U1 + J��
m

ñL���2 − �2U1 − J�ñl���2 + J̃�
2 
�

2 + J̃z
2
z

2� . �16�

Here 	vL��0�=vL��0�−�L��i�n� and 
�
2 =
x

2+
y
2. vL��0� is a

static potential given by vL��0�= 
�U0−2U1+J�ñlm���
+ �2U1−J�ñl���� /2− J̃z
z� /2. The electron number ñL��� for
a given � is expressed by means of an impurity Green’s
function as

ñL��� =
1

�
�
n�

GL���,i�n� �17�

and ñl���=�mñL���. The impurity Green’s function
GL��� , i�n� has to be determined self-consistently. The ex-
plicit expression will be given later 
see Eq. �32��.

The coherent Green’s function FL��i�n� in Eq. �16� is
defined by

FL��i�n� = 
�i�n − H0 − ��i�n��−1�iL�iL�. �18�

Here �H0�iL�jL�� is the one-electron Hamiltonian matrix for
the noninteracting Hamiltonian H0, and ���i�n��iL�jL��

=�L��i�n�	ij	LL�.
The dynamical potential Edyn��� in Eq. �15� has been ob-

tained within the harmonic approximation.20,21,37,38 It is
based on an expansion of Edyn��� with respect to the fre-
quency mode of the dynamical potential vL����i���, where
��=2�� /�. The harmonic approximation is the neglect of
the mode-mode coupling terms in the expansion. We have
then 
see Eq. �55� in our paper II�

Edyn��� = − �−1 ln�1 + �
�=1

�

�D̄� − 1�� . �19�

Here the determinant D� is a contribution from a dynamical
potential vL����i��� with frequency ��, and the upper bar
denotes a Gaussian average with respect to the dynamical
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charge and exchange field variables, 
m�i�n� and 
m��i�n�
��=x ,y ,z�.

The determinant D� is expressed as21

D� = �
k=0

�−1 ��
m=1

2l+1

D��k,m�� , �20�

D��k,m�

= �
�

1 1 0

a−�+k��,m� 1 1

ak��,m� 1 1

a�+k��,m� 1 1

0 a2�+k��,m�
�

�.

�21�

Note that 1 in the above determinant denotes the 2�2 unit
matrix, an�� ,m� is a 2�2 matrix defined by

an��,m���� = �
������

vL����i���g̃L�����i�n − i���

�vL�����− i���g̃L�����i�n� , �22�

g̃L����i�n� = �
FL�i�n�−1 − 	v0�−1����. �23�

Here vL����i��� is defined by Eq. �10�. g̃L����i�n� is the im-
purity Green’s function in the static approximation,

FL�i�n�����=FL��i�n�	���, and 	v0 is defined by �	v0����
=vL����0�−�L��i�n�	���.

The determinant D��k ,m� is expanded with respect to the
dynamical potential as follows:

D��k,m� = 1 + D�
�1��k,m� + D�

�2��k,m� + ¯ , �24�

D�
�n��k,m� = �

�1�1¯�n�n

v�1
��,m�v�1

�− �,m�

�¯ v�n
��,m�v�n

�− �,m�D̂����
�n� ��,k,m� .

�25�

Here the subscripts �i and �i take four values 0, x, y, and z,
and

v0��,m� = −
1

2
i�

m�

Amm�
m��i���	l2, �26�

v���,m� = −
1

2�
m�

Bmm�
�


m���i���	l2, �� = x,y,z� . �27�

Note that the subscript ���� of D̂����
�n� �� ,k ,m� in Eq. �25�

denotes a set of ��1�1 , . . . ,�n�n�. The frequency-dependent

factors D̂����
�n� �� ,k ,m� consist of a linear combination of 2n

products of the static Green’s functions. Their first few terms
are given in Appendix A of our paper II.21 Approximate ex-

pressions for higher-order terms will be given in the next
section.

Substituting Eq. �24� into Eq. �20� and taking the Gauss-
ian average, we reach

Edyn��� = − �−1 ln�1 + �
n=1

�

�
�=1

�

D̄�
�n�� �28�

and

D̄�
�n� =

1

�2��n �
�kml�k,m�=n

�
��j�k,m��

�
P

�
m=1

2l+1

�
k=0

�−1

��� �
j=1

l�k,m�

Cmmp

�j�k,m��D̂���p−1�
�l�k,m����,k,m�� . �29�

Here each element of �l�k ,m���k=0, . . . ,�−1;m=1, . . . ,2l
+1� has a value of zero or positive integer. � j�k ,m� takes one
of four cases 0, x, y, and z. j denotes the jth member of the
�k ,m� block with l�k ,m� elements. P denotes a permutation
of a set ��j ,k ,m��; P��j ,k ,m��= ��jp ,kp ,mp��. �p−1 means a
rearrangement of �� j�k ,m�� according to the inverse permu-
tation P−1. The coefficient Cmm�

� in Eq. �29� is a Coulomb
interaction defined by

Cmm�
� =�− Amm� �� = 0�

Bmm�
� �� = x,y,z�� . �30�

The coherent potential can be determined by the station-
ary condition 	FCPA /	�=0. This yields the CPA equation
as21

�GL���,i�n�� = FL��i�n� . �31�

Here � � at the left-hand side is a classical average taken with
respect to the effective potential Eeff���. The impurity
Green’s function is given by

GL���,i�l� = g̃L���i�l� +

�
n

�
�

	D̄�
�n�

�L��i�l�	�L��i�l�

1 + �
n

�
�

D̄�
�n�

.

�32�

Note that the first term at the rhs is the impurity Green’s
function in the static approximation, which is given by Eq.
�23�. The second term is the dynamical corrections and
�L��i�l�=1−FL��i�l�−2	FL��i�l� /	�L��i�l�.

Solving the CPA Eq. �31� self-consistently, we obtain the
effective medium. The electron number on each orbital L is
then calculated from

�n̂L� =
1

�
�
n�

FL��i�n� . �33�

The chemical potential � is determined from the condition
ne=�L�n̂L�. Here ne denotes the conduction-electron number
per atom. The magnetic moment is given by
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�m̂L
z � =

1

�
�
n�

�FL��i�n� . �34�

In particular, the l=2 components of magnetic moment are
expressed as

�m̂l� = ��� . �35�

The above relation implies that the effective potential Eeff���
is a potential energy for a local magnetic moment �.

III. HIGHER-ORDER DYNAMICAL CORRECTIONS
IN ASYMPTOTIC APPROXIMATION

In our previous paper II,21 we took into account the dy-
namical corrections up to the second order in Eqs. �28� and
�32�. We will obtain higher-order terms in this section using
an asymptotic approximation.

We note that the coupling constants Bmm�
x =Bmm�

y

=J�1−	mm�� are much smaller than Amm� and Bmm�
z because

U0 and U1�J. The latter condition is not necessarily satis-
fied for Sc and Ti. But J in these elements are small as
compared with the d-band width. Thus we neglect the trans-
verse potentials, vx�� ,m� and vy�� ,m� in the higher-order
dynamical corrections. This approximation implies that

an�� ,m��-�=0. The determinant D��k ,m� in Eq. �20� is then
written by the products of the single-spin components as

D��k,m� = D�↑�k,m�D�↓�k,m� . �36�

Here D���k ,m� is defined by Eq. �21� in which the 2�2 unit
matrices have been replaced by 1 �i.e., 1�1 unit matrices�,
and the 2�2 matrices an�� ,m� have been replaced by the
1�1 matrices an�� ,m���. The latter is now given by

an��,m��� = �
�,�

0,z

v���,m�v��− �,m�ĥ���en���,m� , �37�

en���,m� = g̃L��n − ��g̃L��n� . �38�

Here ĥ���=	��+��1−	��� and we used a notation g̃L��n�
= g̃L���i�n� for simplicity.

With use of the Laplace expansion, the determinant
D���k ,m� can be written as

D���k,m� = D̃1���,k,m�D1���,k,m�

− ak��,m���D̃2���,k,m�D2���,k,m� . �39�

Here Dn��� ,k ,m� and D̃n��� ,k ,m� are defined by

Dn���,k,m� = �
1 1 0

an�+k��,m��� 1 1

a�n+1��+k��,m��� 1 1

a�n+2��+k��,m��� 1 1

�

0

� , �40�

D̃n���,k,m� = �
1 1 0

a−n�+k��,m��� 1 1

a−�n+1��+k��,m��� 1 1

a−�n+2��+k��,m��� 1 1

�

0

� . �41�

As we have shown in Appendix A in our paper I, Dn��� ,k ,m� and D̃n��� ,k ,m� are expanded as follows:

Dn���,k,m� = 1 + �
i=1

�

�− 1�i�
l1=n

�

�
l2=l1+2

�

¯ �
li=li−1+2

�

al1�+k��,m���al2�+k��,m��� . . . ali�+k��,m���, �42�

D̃n���,k,m� = 1 + �
i=1

�

�− 1�i�
l1=n

�

�
l2=l1+2

�

¯ �
li=li−1+2

�

a−l1�+k��,m���a−l2�+k��,m��� . . . a−li�+k��,m���. �43�

Substituting Eq. �37� into Eq. �42�, we obtain

Dn���,k,m� = �
i=1

�

�
�1�1¯�i�i

0,z

v�1
��,m�v�1

�− �,m� ¯ v�i
��,m�v�i

�− �,m�D̂n�
�i� �����,�,k,m� , �44�
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D̂n�
�i� �����,�,k,m� = �− 1�iĥ�1�1� . . . ĥ�i�i�

An�
�i� ��,k,m� ,

�45�

An�
�i� ��,k,m� = �

l1=n

�

�
l2=l1+2

�

¯ �
li=li−1+2

�

�el1�+k���,m�el2�+k���,m� . . . eli�+k���,m� .

�46�

In the same way, D̃n��� ,k ,m� is expressed by Eq. �44� in
which An�

�i� �� ,k ,m� has been replaced by

Ãn�
�i� ��,k,m� = �

l1=n

�

�
l2=l1+2

�

¯ �
li=li−1+2

�

�e−l1�+k���,m�e−l2�+k���,m� . . . e−li�+k���,m� .

�47�

The quantities An�
�i� �� ,k ,m� and Ãn�

�i� �� ,k ,m� contain the
i-fold summations. In order to reduce these summations, we
make use of an asymptotic approximation. The approxima-
tion is based on a high-frequency behavior of g̃L��n� as

g̃L��n� =
1

i�n − �L
0 + � − vL��0�

+ O� 1

�i�n�3� . �48�

Then the product of g̃L��n−�� and g̃L��n� in en��� ,m� is
written by their difference as

en���,m� � q̄��g̃L��n − �� − g̃L��n�� , �49�

where q̄�=� /2��i.
Substituting Eq. �49� into Eq. �46� successively, we find

An�
�i� ��,k,m� �

1

i!
q̄�

i g̃L�
�n − 1�� + k�g̃L��n� + k�

�. . . g̃L�
�n + i − 2�� + k� . �50�

In the same way, we have

Ãn�
�i� ��,k,m� �

1

i!
q̄�

i g̃L��− n� + k�g̃L�
− �n + 1�� + k�

�. . . g̃L�
− �n + i − 1�� + k� . �51�

Substituting Dn��� ,k ,m� with Eq. �50� and D̃n��� ,k ,m� with
Eq. �51� into Eq. �39�, we obtain

D���k,m� = �
l=1

�

�
�1�1¯�l�l

0,z

v�1
��,m�v�1

�− �,m�

¯ v�l
��,m�v�l

�− �,m�D̂�����
�l� ��,k,m� , �52�

D̂�����
�l� ��,k,m� = ��

�l�������
q̄�

i

l!
B�

�l���,k,m� . �53�

Here

��
�l������� = �1 �� = ↑�

�− 1�l−nl������ �� = ↓�� , �54�

B�
�l���,k,m� = ��

j=0

l−1

g̃L��j� + k��
+ �

i=0

l−1
�− �l−il!

i!�l − i�!� �
j=−�l−i�

i−1

g̃L��j� + k��
��1 +

l − i

q̄�
i g̃L��i� + k�� , �55�

and D̂�����
�0� �� ,k ,m�=1. nl������ in Eq. �54� is the number of

��i�i� pairs such that �i=�i among the l pairs.
Substituting Eq. �52� into Eq. �36�, we obtain

D̂����
�n� �� ,k ,m� in the asymptotic approximation,

D̂����
�n� ��,k,m� = �

l=0

n

D̂��1�1¯�l�l�↑
�l� ��,k,m�

�D̂��l+1�l+1. . .�n�n�↓
�n−l� ��,k,m� . �56�

Here we wrote the subscript at the rhs explicitly to avoid
confusion. Note that the values of �i and �i are limited to 0
or z in the present approximation. When there is no orbital
degeneracy, Eq. �55� reduces to the result of the zeroth
asymptotic approximation in our paper I.20

In the actual applications, we make use of the exact form

up to a certain order of expansion in D̄�
�m�, and for higher-

order terms we adopt an approximate form 
Eq. �56��. In this
way, we can take into account dynamical corrections system-
atically starting from both sides, the weak-interaction limit
and the high-temperature one.

IV. NUMERICAL RESULTS OF EXCITATION SPECTRA

In the numerical calculations, we took into account the
dynamical corrections up to the second order �n�2� exactly,
and the higher-order terms up to the fourth order within the
asymptotic approximation. Summation with respect to � in
Eqs. �28� and �32� was taken up to �=100 for n=1 and 2,
and up to �=2 for n=3 and 4.

When we solved the CPA Eq. �31�, we adopted a decou-
pling approximation to the thermal average of impurity
Green’s function,39 i.e.,

�GL��
z,
�
2 ,i�n��

= �
q=�

1

2
�1 + q

�
z�


�
z
2�
�GL��q
�
z

2�,�
�
2 �,i�n� . �57�

Here we wrote the static exchange field � as �
z ,
�
2 � so that

the decoupling approximation we made becomes clearer. The
approximation is correct up to the second moment �i.e., �
�

2��
and allows us to describe the thermal spin fluctuations in a
simple way.

On the other hand, we adopted a diagonal approxima-
tion40,41 to the coherent Green’s function at the rhs of Eq.
�31�,
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FL��n� =	 �L
LDA���d�

i�n − � − �L��i�n� − ��L
. �58�

Here �L
LDA��� is the local density of states for the LDA band

calculation and ��L= ��L−�L
0�	l2. The approximation partly

takes into account the effects of hybridization between dif-
ferent l blocks in the nonmagnetic state but neglects the
effects via spin polarization.

The CPA equation with use of the decoupling approxima-
tion �57� yields an approximate solution to the full CPA
Eq. �31�. For the calculations of excitation spectra, one
needs more accurate solution for the CPA self-consistent
equation. We thus adopted the following average t-matrix
approximation16,41 �ATA� after we solved Eq. �31� with the
decoupling approximation,

�L�
ATA�i�n� = �L��i�n� +

�GL��
z,
�
2 ,i�n�� − FL��i�n�

�GL��
z,
�
2 ,i�n��FL��i�n�

.

�59�

Here the coherent potential in the decoupling approximation
is used at the rhs but the full average � � of the impurity
Green’s function is taken. The ATA is a one-shot correction
to the full CPA 
Eq. �31��.

The coherent potential �L��z� on the real axis z=�+ i	 is
then calculated by using the Padé numerical analytic con-
tinuation method.42 Here 	 is an infinitesimal positive num-
ber. The DOSs as the single-particle excitations, �L��� are
calculated from the relation,

�L��� = −
1

�
Im FL��z� . �60�

We adopted the same lattice constants and structures as
used by Andersen et al.22 in order to investigate a systematic
change in excitations. For fcc Fe, we used the lattice constant
6.928 a.u. being observed at 1440 K. The LDA calculations
have been performed with use of the Barth-Hedin exchange-
correlation potential to make the TB-LMTO Hamiltonian �2�.
In the present work, all the dynamical CPA calculations have
been performed at 2000 K in the paramagnetic state.

We adopted average Coulomb interaction parameters

Ū obtained by Bandyopadhyay et al.,43 and the average ex-

change interactions J̄ obtained from the Hartree-Fock atomic
calculations.44 The intraorbital Coulomb interaction U0,
interorbital Coulomb interaction U1, and the exchange inter-

action energy parameter J were calculated from Ū and J̄

as U0= Ū+8J̄ /5, U1= Ū−2J̄ /5, and J= J̄, using the relation
U0=U1+2J.

Calculated Coulomb interactions from Sc to Cu are plot-
ted in Fig. 1 as a function of the valence-electron number ne.
For Fe and Ni, we adopted the values used by Anisimov et
al.,36 which are also shown in the figure. Recent calculations
suggest that the exchange interactions in the 3d metals are
reduced by about 30% as compared with their atomic
values.45 These values are also shown in Fig. 1 by dotted
line. We will discuss the screening effects of J on the spectra
using the values.

Before we present the results of excitation spectra in 3d
series, we briefly discuss the fourth-order dynamical effects.
Figure 2 shows the d partial DOS for the paramagnetic bcc
Fe on various levels of approximations. The static approxi-
mation with the decoupling scheme 
Eq. �57�� causes too
strong thermal spin fluctuations with large exchange split-
ting, and yields the two-peak structure as shown by thin
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curves in Fig. 2. The second-order dynamical corrections
suppress the thermal spin fluctuations and reduce the d-band
width as well as the dip at �=−0.12 Ry. The fourth-order
corrections enhance the two peaks. Finally the ATA correc-
tion �the best result in the present work� reduces the peaks
and shifts them toward the Fermi level �i.e., the low-energy
side�.

We have reported in our recent paper46 that the fourth-
order dynamical corrections improve the magnetic properties
of Fe and Ni. We obtained the Curie temperature TC
=2070 K �1420 K� for Fe �Ni� in the static approxima-
tion. The second-order dynamical corrections lead to TC
=2020 K �1260 K� for Fe �Ni�. The fourth-order dynamical
corrections further reduce TC to 1930 K for Fe and 620 K for
Ni, respectively. The latter is in good agreement with the
experimental value 630 K while the former is still overesti-
mated by a factor of 1.8. A large reduction in TC in Ni due to
the fourth-order dynamical corrections has been attributed to
a reduction in the DOS at the Fermi level. Calculated effec-
tive Bohr magneton numbers in the second-order dynamical
CPA are 3.0�B and 1.2�B for Fe and Ni, respectively. The
fourth-order dynamical corrections yield 3.0�B for Fe and
1.6�B for Ni, both of which are in good agreement with the
experimental values 3.2�B �Fe� and 1.6�B �Ni�.

Among the 3d transition metals, scandium has the weak-
est Coulomb interaction as shown in Fig. 1. Calculated DOS
for fcc Sc are presented in Fig. 3. The DOS below the Fermi
level is close to the LDA DOS except some detailed struc-
tures. This is due to a small number of d electrons per orbital
��0.3 per d orbital� and rather weak Coulomb interactions. It
should be noted that there is no correlation correction to the
sp bands in the present approximation �58� so that spiky
structure of the sp bands in the LDA calculations remains in
the total DOS. The d DOS are smoothed by the scattering
corrections of the self-energy. The corrections become larger
near the top of d bands so that the peak of t2g band at �
=0.275 Ry is much damped down, the d band becomes nar-

rower, and the spectral weight shifts to the higher-energy
region. The difference between the dynamical and static
DOS is rather small except high-energy region ��
�0.2 Ry�. We performed the numerical calculations with
use of the screened value J̄=0.029 Ry but we hardly found
the change of DOS in shape.

Calculated DOS qualitatively agree with the XPS and BIS
data for hcp Sc �Refs. 24 and 25� as shown in Fig. 3. �Note
that the crystal structure of Sc is not the fcc but the hcp
experimentally.� Here and in the followings, the intensities of
the experimental data are arbitrarily scaled to fit theoretical
DOS. Rapid decrease in the XPS and BIS data indicates the
cutoff due to Fermi distribution function. Moreover the de-
viations from the DOS in high-energy region are due to sec-
ondary electrons, and outside the scope of the present theory.
The high-energy peak in the calculated DOS around �
=0.25 Ry deviates from the BIS peak at �=0.30 Ry. This is
partly explained by the difference in crystal structure. In fact,
the LDA calculations47 indicate that the peak position in the
hcp Sc is higher than that of the fcc one by 0.025 Ry. A small
hump at about �=−0.2 Ry in the XPS data does not appear
in the present calculations. The discrepancy is not due to the
hcp crystal structure since there is no corresponding peak in
the LDA DOS for the hcp Sc.47

In the case of fcc Ti, we obtained the DOS being similar
to the fcc Sc as shown in Fig. 4. Thermal excitations smooth
the LDA DOS, damp the highest peak at �=0.25 Ry, and
transfer the spectral weight to the higher-energy region
���0.30 Ry�. The dynamical corrections are not so impor-
tant in the case of Ti as understood by comparing the DOS
with that in the static approximation. We find rather good
agreement of the DOS with both the XPS and BIS experi-
mental data for hcp Ti.

We have calculated the excitation spectra of vanadium for
the bcc structure as shown in Fig. 5. In this case, the crystal
structure is identical with the experimental one. The main
peaks and valleys in the LDA DOS are much weakened by
local electron correlations, and the spectral weights move to
the higher-energy region. The d bands in the quasiparticle
energy region �����0.2 Ry� shrink by about 10% as com-
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pared with the LDA one. The calculated DOS shows a good
agreement with the XPS and BIS data24,25 in line shape. Note
that any artificial parameter is not introduced for comparison
between the theory and experiment. The DOS in the static
approximation yields an excess d-band broadening due to
thermal spin fluctuations.

Calculated excitation spectra of the bcc Cr is similar to
that in the bcc V as shown in Fig. 6. Because the valence-
electron number of Cr is larger than that of V by one, the
Fermi level shifts to the higher-energy region. The t2g peak
around �=−0.15 Ry in the LDA DOS is weakened, and
shifts toward the Fermi level. The position of the eg peak at
�=0.1 Ry is not changed but its weight is much decreased
by electron correlations. The static approximation broadens
the eg peaks excessively, thus does not explain the BIS data.
Calculated peak around �=−0.1 Ry seems to be too small
as compared with the XPS experiment. There is a possibility
that the antiferromagnetic correlations enhance the peak in
the present calculations because the experimental data are
taken below the Néel temperature.

The Coulomb interactions of Mn are roughly twice as
large as those in Sc while their LDA DOS in the fcc structure
are similar to each other. In addition, electron number per
atom increases from 3 to 7. Thus one expects more electron
correlations in the case of Mn. Calculated DOS as well
as experimental XPS-BIS data24,49 are shown in Fig. 7. We
find that the central peak consisting of the t2g bands around
�=−0.1 Ry in the LDA DOS changes to a valley due to
electron correlations so that the DOS shows a two-peak
structure. The result indicates a formation of the Mott-
Hubbard-type bands due to strong on-site correlations as we
suggested in our recent paper.48 The same result was ob-
tained by Biermann et al.49 by using the Hamiltonian without
transverse spin fluctuations. Static approximation overesti-
mates the splitting of the Mott-Hubbard bands. The dynami-
cal effects suppress such a band broadening due to thermal

spin fluctuations. When we adopt the screened value J̄
=0.043 Ry, the DOS around �=−0.1 Ry increases and the
two-peak structure becomes less clear.

Experimentally, the bulk fcc Mn is realized only in
the narrow temperature range between 1352 and 1407 K at
high temperatures. There is no photoemission experiment in
this temperature regime. However the XPS data for the 20
monolayer fcc Mn on Cu3Au�100� �Ref. 49� are available at
room temperature. The data seem to be explained by the

dynamical CPA with partially screened J̄ between 0.043 and
0.061 Ry. Theoretical results agree with the BIS data25 in
peak position.

The line shape of the calculated DOS for bcc Fe is similar
to the bcc Cr as shown in Fig. 8. The main peak of the LDA
DOS near the Fermi level and the peak of t2g bands around
�=−0.15 Ry are much weakened due to electron correla-
tions. The spectral weight moves to higher-energy region.
The static approximation overestimates the bandwidth by
20%. The main peak at �=0.04 Ry above the Fermi level
is consistent with the BIS data50 at 0.86TC, TC being the
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Curie temperature. �Note that a hump at �=0.1 Ry in
the BIS data is the remnant of the e2g peak for the minority
band and should disappear above TC.� On the other hand, the
DOS below the Fermi level does not well correspond to the
XPS data51 at 1.03TC. One needs more weight around
�=−0.1 Ry in order to explain the experimental data.

The DOS calculated with use of the screened value J̄
=0.046 Ry considerably enhance the weight around

�=−0.1 Ry, thus the screening on J̄ partly explains the
broad peak at �=−0.1 Ry in the XPS data. This feature does

not change even if we adopt Ū value obtained by Bandyo-
padhyay et al. The magnetic short-range order52 may also
explain the discrepancy between the XPS data and the
present result based on the single-site approximation because
the experimental data of the XPS are taken near TC.

We have also investigated the DOS for the fcc Fe. The fcc
Fe is well known to be a typical itinerant magnet showing
the spin-density waves with magnetic moment of about 1�B
per atom at low temperatures.53–55 But the fcc Fe shows
anomalous thermal expansion56 so that the d-band width at
high temperatures is expected to become narrower than those
at low temperatures by several percent. We may then expect
stronger correlation effects. As shown in Fig. 9, we find that

the DOS calculated with use of the unscreened value J̄
=0.066 Ry is similar to that of the fcc Mn. The t2g central
peak in the LDA DOS splits into the lower and upper Mott-
Hubbard bands due to on-site correlations. The band split-
tings are smaller than those in the fcc Mn, and the dip at �
=−0.15 Ry is weakened �see Fig. 7�. The static approxima-
tion overestimates the bandwidth by 20%.

We present in Fig. 10 the d partial DOS for eg and t2g
bands in order to examine the details of the band splitting.
As seen from the figure, both the eg and the t2g DOS show
the two-peak structure. The energy difference between the
upper and lower peaks is about 0.25 Ry, which is approxi-
mately equal to the intraorbital Coulomb interaction for fcc

Fe, U0=0.27 Ry. Moreover, we find a large scattering peak
of −Im �L���+ i	� at �=−0.12 Ry. These behaviors verify
that the two-peak DOS forms the Mott-Hubbard bands due to
electron correlations.

It is remarkable that the dynamical results are sensitive to

the choice of Ū and J̄ in the case of fcc Fe. The two-peak

structure almost disappears when we adopt Ū=0.169 Ry and

the screened value J̄=0.046 Ry, as shown in Fig. 9 while it

again appears when we adopt Ū=0.219 Ry obtained by

Bandhyopadhyay et al. and the screened value J̄=0.046 Ry.
The behaviors are understood from the following arguments.
The Coulomb interactions suppress the doubly occupied
states of electrons on an orbital in general. The Hund-rule

coupling J̄ also suppresses the doubly occupied states to re-
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duce the energy; J̄ tends to enhance Ū effectively. Thus the
increment of Ū or J̄ is favorable for the formation of the
Mott-Hubbard bands.

The peak near the Fermi level explains well the BIS
data57 for the fcc Fe on Cu�100�. The XPS data58 for the fcc
Fe on Cu�100� are somewhat controversial. The peak around
�=−0.2 Ry is usually interpreted as a peak due to Cu sub-
strate. If this peak originates in the Cu substrate by 100%,

the data support the result for �Ū , J̄�= �0.169,0.046� Ry. But
if the peak is interpreted as a superposition of both the fcc Fe
and the Cu substrate spectra, we expect a two-peak structure
of fcc Fe, and the XPS data are consistent with the results for

�Ū , J̄�= �0.169,0.066� and �Ū , J̄�= �0.219,0.046� Ry. Re-
solving the problem is left for future investigations.

The DOS of fcc Co in the paramagnetic state does not
show the Mott-Hubbard-type structure any more as shown
in Fig. 11. The peak of the t2g bands at �=−0.15 Ry
becomes almost flat and the peak of the t2g bands on the
Fermi level is much weakened. We find a weak hump around
�=−0.5 Ry suggesting the “6 eV” satellite. When we adopt

the screened value J̄=0.048 Ry, the peak at �=−0.15 Ry
partially remains as found in Fig. 11, and the hump around
�=−0.5 Ry almost disappear.

We present in Fig. 12 the eg and t2g partial DOS to clarify
the disappearance of the two-peak structure in the total DOS.
Calculated t2g partial DOS does not show the band splitting
any more. The eg DOS still show the two-peak structure. But
the dip between the peaks is shallower than that of the fcc Fe
�see Fig. 10� and the energy difference between the peaks
�0.18 Ry� is smaller than the intraorbital Coulomb interaction
energy U0=0.36 Ry. In the case of Co, the number of hole
states is reduced as compared with that of fcc Fe. This re-
duces the charge fluctuations and thus the magnitude of the
self-energy by a factor of 2. The reduction yields the disap-
pearance of the two-peak structure in the total DOS.

There is no experimental data on the fcc Co above the
Curie temperature. Calculated DOS does not show a good

agreement with the XPS �Ref. 24� and BIS data25 of hcp Co
at room temperature. The ultraviolet photoemission spectros-
copy data for hcp Co by Heimann et al.59 show the existence
of the 6 eV satellite in agreement with the present result for

the unscreened J̄ while the other data24,60 do not.
Single-particle excitations of Ni have been investigated

extensively in both theory21,61–65 and experiment.66–70

Present result of fcc Ni shows a single-peak structure as
shown in Fig. 13. Moreover the correlations increase the
spectral weight around �=−0.45 Ry, and creates a small
hump corresponding to the 6 eV satellite due to two-hole
excitations. The dynamical effects suppress the band broad-
ening of the static approximation by 20%. These behaviors

do not change even if we adopt the screened value J̄

=0.046 Ry. The screened J̄ enhances the main peak around
�=−0.05 Ry and creates a hump at �=−0.15 Ry in the
DOS. Though the calculated DOS is consistent with the XPS
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Co at room temperature are drawn by the dotted curves.
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�Ref. 24� and BIS data,25 the bandwidth seems to be some-
what larger than that of the XPS data.

We present finally in Fig. 14 the DOS for Cu. Electron
correlations via a small number of d holes ��0.36 per atom�
move the spectral weight of the LDA DOS to the lower-
energy region. The peak of the d bands shifts toward lower
energy by 0.05 Ry. It is also remarkable that a broad hump
appears at �=−0.7 Ry due to two-hole excitations. We find
a good agreement between the dynamical CPA theory and the
experiment24,25 for this system.

V. SUMMARY

In the present paper, we have obtained approximate ex-
pression of the higher-order dynamical corrections to the ef-
fective potential in the first-principles dynamical CPA, mak-
ing use of an asymptotic approximation. The approximation
becomes exact in the high-frequency limit, and much reduces
the multiple summations with respect to the Matsubara fre-
quency at each order of expansion in the dynamical correc-
tions.

Within the fourth-order dynamical corrections, we have
investigated systematic change in the DOS at high tempera-
tures in 3d series from Sc to Cu. Thermal spin fluctuations in
the static approximation smooth the LDA DOS at high tem-
peratures, especially reduce their main peaks and broaden the
d-band width. Dynamical effects reduce the band broaden-
ing, and move the spectral weight to higher-energy region.
These effects explain in many cases the line shape of the
XPS and BIS experimental data from Sc to Cu quantitatively
or semiquantitatively. We found the formation of the Mott-
Hubbard-type bands due to electron correlations in the case
of fcc Mn and fcc Fe, and also found that the dynamical
effects can create a small hump corresponding to 6 eV satel-
lite in Co, Ni, and Cu.

We investigated the effects of the screened exchange en-

ergy parameters using the reduced values of J̄ by 30%. The

screening of J̄ is significant for the DOS in Mn, Fe, and Co.

The reduction in J̄ tends to weaken the Mott-Hubbard-type
bands in fcc Mn, and even could destroy the two-peak struc-

ture in the case of fcc Fe. It also develops the central peak
around �=−0.1 Ry in bcc Fe and fcc Co. Some of these
results explain better the XPS data. But we have to calculate
the other physical quantities with use of the same scheme,
and have to examine in more details the consistency among
them in order to conclude the validity of the screened values

of J̄. The magnetic short-range order should also be impor-
tant for understanding the experimental data of magnetic
transition metals for more detailed discussions.

Present theory explains a systematic change in the spectra
in 3d series at high temperatures. At lower temperatures, the
higher-order dynamical corrections should be more impor-
tant. Improvements of the theory in the low-temperature re-
gion are left for future investigations.
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