
Classical analogue of the ionic Hubbard model

M. Hafez,1 S. A. Jafari,2,3,* Sh. Adibi,2 and F. Shahbazi2
1Department of Physics, Tarbiat Modares University, Tehran, Iran

2Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
3School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran

�Received 4 November 2009; revised manuscript received 5 April 2010; published 29 June 2010�

In our earlier work �M. Hafez et al., Phys. Lett. A 373, 4479 �2009�� we employed the flow equation method
to obtain a classical effective model from a quantum mechanical parent Hamiltonian called, the ionic Hubbard
model. The classical ionic Hubbard model �CIHM� obtained in this way contains solely Fermionic occupation
numbers of two species corresponding to particles with ↑ and ↓ spin, respectively. In this paper, we employ the
transfer matrix method to analytically solve the CIHM at finite temperature in one dimension. In the limit of
zero temperature, we find two insulating phases at large and small Coulomb interaction strength, U, mediated
with a gapless phase, resulting in two continuous metal-insulator transitions. Our results are further supported
with Monte Carlo simulations.
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I. INTRODUCTION

To understand the magnetism and magnetic phenomena,
one of the basic interactions is the exchange mechanism,
which is deeply associated with Coulomb interactions and
quantum mechanical indistinguishability. Therefore a fair un-
derstanding of the magnetic behavior of materials is not pos-
sible without investigating appropriate quantum spin models.
Introducing uniaxial anisotropy to the Heisenberg model
amounts to suppression of transverse quantum fluctuations
�S+S−+S−S+�, leading to the so called Ising model.1 The re-
sulting Ising Hamiltonian turns out to contain the basic mag-
netic phases of the original Heisenberg model, namely ferro-
magnetism, and antiferromagnetism.2 However, many of the
interesting aspects such as spin liquid phases, spin-wave ex-
citations, etc.3 cannot be captured by the Ising model. Clas-
sical Ising model has the merit of being much simpler to
solve, and admits analytical1,4 and graphical solutions2 in
various geometries5 in one and two dimensions which is
lacking in the original quantum Heisenberg model.

In addition to magnetic properties, dielectric properties
are also important aspects characterizing materials. The
question can be asked here, is there any Ising-like model that
can provide “basic informations” about the phases of dielec-
tric materials, and at the same time being simple enough to
allow for analytical solutions? We have taken the example of
the IHM.6,7 This model was introduced to study the neutral-
to-ionic transition in organic compounds and to understand
the role of strong electronic correlations in the dielectric
properties of metal oxides.7,8 This model is given by:

H = − t�
i�

�ci�
† ci+1,� + H.c.� + U�

i

ci↑
† ci↓

† ci↓ci↑

+
�

2 �
i�

�− 1�ici�
† ci�, �1�

where ci��ci�
† � is the usual annihilation �creation� operator at

site i with spin �. U is the on-site Coulomb interaction pa-
rameter, and � denotes a one-body staggered ionic potential.

The kinetic energy scale is given by the real hopping ampli-
tude t which prefers to gain kinetic energy by spreading the
wave function over the whole system, leading to quantum
fluctuation of the charge density. The zero temperature phase
diagram of this model contains Mott and band insulating
states when the energy scales corresponding to U or � domi-
nate, respectively.8 When these two scales become compa-
rable, the nature of intermediate phase still remains contro-
versial. Some authors argue that the intermediate state is a
spontaneously broken symmetry phase,9–11 while some oth-
ers argue that the phase in between is metallic.6,8,12,13 In our
previous investigation8 we employed the method of flow
equations for the quantum Hamiltonian Eq. �1� to obtain an
effective Hamiltonian in which the hopping t term is renor-
malized to zero, producing a nearest-neighbor Coulomb at-
traction.

In continuous unitary transformation �CUT� method, the
Hamiltonian can be transformed by a series of infinitesimal
unitary transformation �parameterized by a flow parameter
��. Hamiltonian at �=0, corresponds to the initial Hamil-
tonian, and in the �→� one expects to recast the Hamil-
tonian into the �block� diagonalized form. This method can
be formulated in terms of flow equations for various param-
eters of the Hamiltonian which is derived from the following
equation:

��H��� = �����,H���� , �2�

where ���� is the so called generator of the flow. There are
various possible choices for the generator. One possible
choice is the generator suggested by Wegner:

���� = �Hd���,Hr���� , �3�

where Hd��� �Hr���� is diagonal �off-diagonal� part of the
Hamiltonian. Choosing the Hubbard plus ionic terms as Hd,
and subject to initial conditions at �=0: t�0�=1, ��0�=�,
U�0�=U, and V�0�=0, where V is a nearest neighbor Cou-
lomb interaction �induced during the flow process� we find
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that ionic Hubbard model �IHM� Hamiltonian flows toward
the following lattice gas form:

H̃ =
�̃

2 �
i�

�− 1�ini� + Ũ�
i

ni↑ni↓ + Ṽ �
i�,��

ni�ni+1��, �4�

where the renormalized parameters �̃, Ũ, Ṽ denote the cor-
responding parameters in �→� limit, and have closed form
expressions in terms of the bare parameters U, �.8 We take
the initial hopping energy scale t�0�= t as the unit of energy.
Flow of the above Hamiltonian is restricted to the two-
particle sector, and we have ignored three-particle, and
higher terms. In our calculations, we have used a generator
which is first order in t. Therefore the resulting effective
Hamiltonian misses the kinetic exchange �second order it t�,
and hence magnetic phases such as antiferromagnetic or spin
density wave states cannot be captured with the effective
lattice gas model Eq. �4�.

By calculating the spin and charge gaps, we showed that
this simple classical model is capable of capturing the phys-
ics of a gapless state sandwiched between two distinct insu-
lating phases at zero temperature as a function of U for a
fixed value of �.8 Here, ni� contains two species �or colors�
corresponding to �= ↑ ,↓, respectively. Since n� for each
“color” � is either 0 or 1, it is an Ising-like variable. There-
fore our effective CIHM Hamiltonian can be thought of, as
two interpenetrating Ising models on a lattice. Being a natu-
ral extension of two species lattice gas model, allows for
analytical solution in one spatial dimensions �1D�. Here we
can employ the transfer matrix method, constructed in terms
of 3�3 matrices to calculate the thermodynamic properties
of this model at finite temperatures. At high temperatures
where the thermal fluctuations wash out the quantum effects,
we expect the results of our calculations to be a good de-
scription of the class of materials modeled in terms of IHM.
In 1D and at low temperatures where quantum fluctuations

play dominant role, the results obtained for effective Hamil-
tonian Eq. �4� will have little to do with the original quantum
model. In these limits, it is interesting to study Eq. �4� as a
lattice gas model on its own. Also a novel graphical solution
in two dimensions �2D� similar to Feynman’s construction
can be worked out.14

The paper is organized as follows: In the next section, we
calculate the grand canonical potential for this model in one
dimension and discuss the particle density and ionicity in
various fillings. It is followed by a section focused on half-
filling situation, and calculate the specific heat, compressibil-
ity and ionicity to assess the nature of the phases in the
parameter space of U, T. Throughout the paper we have fixed
the value of �=20.8 The final section is devoted to summary
and discussion.

II. GRAND POTENTIAL

In this section, we calculate the grand canonical potential
that can be derived from the grand partition function �GPF�
which is defined as follows:

Z�T,�,L� = �
�ni��

e−��E��ni���−�N��ni����, �5�

where T is Temperature, L is lattice size, and � is chemical
potential. �ni�� denotes all possible configurations of the oc-
cupation numbers, which must be summed over. N��ni���
=�i�ni� is the number of particle and E��ni��� is the energy
that is defined by the model Hamiltonian Eq. �4�.

The summation in Eq. �5� can be calculated analytically
as follows: Values of ni� are only zero and one, which is the
Fermionic memory left in the commuting variables ni�.
Hence ni�

2 =ni�, and the second term in Eq. �4� becomes,

�
i

ni↑ni↓ =
1

2�
i

�ni↑ + ni↓���ni↑ + ni↓� − 1� . �6�

Therefore GPF becomes,

Z�T,�,L� = �
�ni��

exp�− �	�
i�


�− 1�i �̃

2
− ��ni� +

Ũ

2 �
i�,�

ni�
ni� −
1

2
� + Ṽ�

i�,�
ni�ni+1�� . �7�

As can be seen at the Hamiltonian level, only the spin-summed occupation numbers appear and therefore this classical
model unlike the quantum IHM does not contain spin- polarized �magnetic� solutions even in the �=0 limit. So we change the
summation variable from ni↑ and ni↓ to ni=ni↑+ni↓ that has three possible values 0,1,2. Therefore we have:

Z = �
�ni�

exp�− ��
i
	
�− 1�i �̃

2
− ��ni +

Ũ

2
ni�ni − 1� + Ṽnini+1��

i=1

L

�1 + 	ni,1
� , �8�

where the coefficient �i=1
L �1+	ni,1

� takes into account the twofold degeneracy for ni=1 in Eq. �7�, which corresponds to
either ni↑=1, ni↓=0, or ni↑=0, ni↓=1. Equation �8� can be written in a more symmetric form,

Z = �
�ni�

�
i=1

L

�1 + 	ni,1
�1/2�1 + 	ni+1,1�1/2exp�− ��+ �− 1�i �̃

4
�ni − ni+1� −

�

2
�ni + ni+1� +

Ũ

4
�ni�ni − 1� + ni+1�ni+1 − 1�� + Ṽnini+1 ,

�9�

where L is assumed to be even and the periodic boundary conditions, nL+1=n1 is implied. Defining the matrix elements of
the transfer matrix Mn1,n2

by,
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Mn1,n2
� �1 + 	n1,1�1/2�1 + 	n2,1�1/2exp�− ��+

�̃

4
�n1 − n2� −

�

2
�n1 + n2� +

Ũ

4
�n1�n1 − 1� + n2�n2 − 1�� + Ṽn1n2 , �10�

Equation �9� can be written as:

Z = �
n1=0

2

¯ �
nL=0

2

Mn2,n1
Mn2,n3

¯ MnL,nL−1
MnL,n1

= �
n1=0

2

¯ �
nL=0

2

Mn1,n2

t Mn2,n3
¯ MnL−1,nL

t MnL,n1
= Tr�MtM�L/2

�11�

where Mt is the transpose of M, Mn2,n1
��Mt�n1,n2

. Then the
partition can be written as,

Z = 
1
L/2 + 
2

L/2 + 
3
L/2, �12�

where 
1, 
2, and 
3 are the eigenvalues of MtM. In the
thermodynamic limit where L is very large, the grand poten-
tial per site is,

� = −
T

2
ln 
max. �13�

Here 
max is the maximum eigenvalue. Hence, to obtain
the grand potential one needs to calculate the eigenvalues of
MtM. Later on, when we discuss the ionicity, in addition we
will need the eigenvectors of MtM too. Eigenvalues of MtM
are solutions to the third-order equation,


3 + a2
2 + a1
 + a0 = 0, �14�

where a2, a1, and a0 given in the appendix. Throughout this
paper, we will report the numerical plots for �=20 in units in
which t��=0�=1. For this value of �, there would be no
level crossing among the eigenvalues 
 of the matrix MtM
when one varies �, T, and U, as expected from Perron’s
theorem.15

From the partition function, one can in principle calculate
various averages of the form �ni�nj��. . .�. The simplest of
these averages are the average particle density n��n2i+1
+n2i� /2 �symmetric combination�, and the ionicity I
��n2i+1−n2i� /2 �antisymmetric combination�, which contain
important information about the nature of the thermody-
namic phases of the model. In the following, we calculate
these averages as a function of �.

A. Particle density

Once the grand potential � is known, one can derive
many other thermodynamic quantities. Particle density, n,
can be calculated as,

n = −� ��

��
�

T

. �15�

In Fig. 1, particle density versus � has been plotted for
different values of T. In this figure the value of U is fixed to

be U=10. This value of U mimics a band insulating regime
at zero temperature.8 As can be seen in the figure, apart from
trivial cases of the empty �n=0� and the completely filled
�n=2� lattice, there are three plateaus. The first one corre-
sponds to the half-filling n=1 �i.e., one particle per lattice
site�, and two others correspond to commensurate fillings,
n=0.5 �quarter filling�, n=1.5 �three-quarter filling� which is
quite similar to the plateaus of the parent ionic Hubbard
model.12 Indeed the n=0.5 and n=1.5 are related by a
particle-hole transformation. Therefore in what follows, we
focus on n=0.5, 1. With increasing the temperature, plateaus
get more and more rounded. The value of chemical potential
corresponding to the half-filling is independent of tempera-
ture, as can be seen in Fig. 1. The inset plot indicates this
point more transparently. This “isosbestic” behavior is ob-
served for all values of values of 10�U�40.

In Fig. 2, we have plotted the particle density as a func-
tion of chemical potential � at a constant �low� temperature
T=0.4, for different values of U. As can be seen in the figure,
increasing U, causes the n=0.5, 1.5 plateaus which are
particle-hole counterpart of each other, to get wider. How-
ever the plateau at n=1.0 gets narrower and finally vanishes
around U=20, resulting in a gapless phase at half-filling.
Upon further increasing U, the half-filling plateau is recov-
ered, and gets wider, indicating the emergence of a growing
new gap in the system, which is reminiscent of the Mott
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FIG. 1. �Color online� Particle density n, versus chemical poten-
tial � for U=10, �=20 and different temperatures. Three plateaus
at n=0.5, 1, and 1.5 correspond to quarter-, half-, and three quarter-
fillings. For lower temperature, the variations of the density as a
function of � is very slow over the plateaus, which is clear signa-
ture of a gap in the spectrum at these commensurate fillings. By
increasing the temperature, plateaus get rounder, which indicate the
thermal energy starts to overcome the gaps. The inset magnifies the
“isosbestic” behavior at n=1 plateau.
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insulating behavior. To identify the nature of gap at n=0.5,
1.5 one needs to calculate the ionicity, which provides infor-
mation about how the unit cell is being filled. This will be
done in the sequel.

For later reference, we report the value of chemical po-
tential corresponding to half-filling, which by examining the
numerical plots turns out to be:

��T,U,n = 1� = 0.495U , �16�

which is very close to the value U /2 expected from symme-
try considerations. The temperature range at which the above
relation is valid, is roughly 0.1T. For temperatures outside
this range, there will be deviations from the above rule of
thumb relation.

B. Ionicity

If A, B denote the sublattice of odd and even sites, respec-
tively, then the populations NA and NB are defined as:

NA = �
i�odd

�ni� , �17�

NB = �
i�even

�ni� . �18�

The ionicity per site becomes I= �NA−NB� /L, where ni=ni↑
+ni↓, and L is the total number of lattice sites. This quantity
can also be calculated analytically with the aid of transfer
matrices. In the grand canonical ensemble �nj� is given by:

�nj� =
1

Z
�
�ni��

nje
−��E��ni���−�N��ni����. �19�

Depending on whether j is odd or even, similar to calcula-
tions for grand partition function, we obtain:

�nj� =
1

Z
Tr�N�MtM�L/2�,for odd j �20�

=
1

Z
Tr�N�MMt�L/2�,for even j �21�

where N is the following 3�3 matrix:

Nn1,n2
= n1	n1,n2

. �22�

In Fig. 3, we have plotted the ionicity per site as a func-
tion of � for various temperatures at a fixed value of U
=10. For this value of U, and in the IHM at zero temperature
one would expect a band insulator at half-filling, where
A-sublattice �with on-site energy −� /2� are doubly occu-
pied. Let us focus around �=−5 which corresponds to quar-
ter filling �c.f. Figure 1�. The value of I=0.5 for ��−5 in
Fig. 3 shows that the only electron of each unit cell belongs
to A-sublattice, which represents a charge density wave in-
sulator.

As we increase � from �−5, the ionicity increases, which
indicates that sublattice A continues to be filled. When �
�5, one approaches the half-filling �Fig. 1�, where at lower
temperatures the A-sublattice is totally occupied, hence I
�1. As can be seen in Fig. 3, this saturation value is de-
creased as the temperature is increased. This reduction in the
ionicity, indicates that the particles are getting thermally ex-
cited across the band gap. Further increasing of the chemical
potential, one reaches the plateau around ��15 of Fig. 3
�c.f. Figure 1�. The decrease in the ionicity indicates that the
added particles essentially start to occupy B sublattice. The
symmetry of Fig. 3 around n=1, is due to the apparent
particle-hole symmetry of the Hamiltonian.

In Fig. 4, we plot the ionicity per site at the constant
temperature T=0.4, for various values of U indicated in the
legend. Again there are three plateaus corresponding to 1/4,
1/2 and 3/4-filling, respectively. This figure indicates that the
center of the half-filling plateau is at �half=U /2. This can be
understood as a Hartree-like energy for the Hubbard model.
Now concentrating around half-filling in this figure, for small
values of U, the ionicity reaches 1, which indicates a com-
plete electric polarization of the unit cell, and hence it mim-
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FIG. 2. �Color online� Particle density n, versus chemical poten-
tial � for constant T=0.4, �=20 and different values of U. As can
be seen in general again there are three plateaus corresponding to
n=0.5, 1, and 1.5. However, for intermediate values of U, the pla-
teau at half-filling has disappeared.
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FIG. 3. �Color online� The ionicity per site as a function of
chemical potential for various temperatures at U=10. Three pla-
teaus around ��−5, 5, 15 correspond to 1/4, 1/2, and 3/4 filling.
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ics a band insulator. For intermediate values of U, the maxi-
mum value of ionicity does not reach 1, which shows some
of the added particles start to occupy the B sublattice. Also
note that for the intermediate values of U the half-filling
plateau starts to disappear, i.e., the emergence of a gap-less
behavior. For large values of U, the half-filling plateau is
restored, but at zero ionicity. Therefore the classical ground
state resembles an insulator with unpolarized unit cell. Such
an insulating state in our lattice gas model can be thought of
as classical counterpart of the Mott insulating state. Note that
Eq. �4� being a classical model, cannot describe a true quan-
tum mechanical Mott insulating state, as it does not contain
superexchange physics which is of second order in t.

III. HALF-FILLING

As we saw in Fig. 2, for n=0.5, 105 the U, � energy
scales cooperate with each other, to give rise to a charge
density wave insulating ground state. Rather at n=1.0, these
two energy scales compete against each other to destroy the
insulating behavior for intermediate U ����, giving rise to a
richer phase diagram. Therefore in this section we focus at
half-filling and calculate the specific heat, compressibility,
and ionicity. Before doing so, we compare some physical
quantities evaluated by a fully numerical Monte Carlo simu-
lation, with our exact transfer matrix results. In Fig. 5, ion-
icity and specific heat per site are plotted at half-filling and
show a good agreement between analytical and numerical
results. This ensures us that both Monte Carlo and transfer
matrix results are reliable.

Now let us proceed with the calculation of various ther-
modynamic quantities. For the fixed value of �=20, we have
two ways to plot thermodynamic quantities. First choice is to
plot them as a function of temperature T, at some selected
values of U. These results indicate that in the present one-
dimensional model, there will be no finite temperature phase
transition. This is obviously due to the analytic behavior of
the partition function as a function of T. The second possi-

bility is to plot them as a function of U, for some selected
temperatures. This second way of presenting the data, reveals
that as one lowers the temperature, there will be sharper
features as a function of U, indicating the zero temperature
phase transition in this model which are reminiscent of the
quantum phase transitions in the original IHM. Our calcula-
tions are based on Eqs. �13� and �16�. For very low tempera-
tures, where the validity of Eq. �16�, might be questioned, we
employ Monte Carlo simulation data.

A. Specific heat

Specific heat per site can be calculated as:

cL = T
�s

�T
, �23�

where s is entropy per site at half-filling that can be derived
from the grand potential. Figure 6 shows the specific heat
versus T for various values of U. As can be seen in Fig. 6 for
values of U�14, there is a single peak in the cL. For 14
�U�38 a peak-dip-hump structure can be observed. For
U�20 the hump is quite clear, while for U�20, it can be
interpreted as a precursor to the hump. For 38�U, the peak
merges into the hump structure. In terms of the parent quan-
tum Hamiltonian, such hump structure corresponds to inco-
herent excitations. For U=20, Eq. �16� is not reliable at very
low temperatures. Therefore, we report Monte Carlo simula-
tion results which indicates a very sharp peak at T�0. As U
moves toward �20 from both sides �lower and upper pan-
els�, the peak gets sharper and moves toward lower tempera-
tures. This indicates that in T→0 limit one expects a transi-
tion between gapped and gapless states. This behavior can be
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FIG. 4. �Color online� Ionicity per site as a function of � and
constant temperature T=0.4, for various values of U. Three plateaus
correspond to 1/4, 1/2, and 3/4 filling, respectively. Note that the
center of the half-filling plateau is at �=U /2.
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filling from transfer matrix and Monte Carlo �MC� methods. To stay
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As stated earlier, we are working at constant �=20.
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simply understood in terms of a two-state model with level
spacing 	, whose specific heat is given by,

cL = kB	x2 ex

�1 + ex�2� , �24�

where x=	 / �kBT�. Behavior of Eq. �24� for x�1 is like
�x2e−x, while for x�1 it vanishes as �x2. For the interme-
diate region a Schottky peak around xpeak�1�	�kBT� arises
in the specific heat. Fitting specific data to Eq. �24�, we es-
timate gap magnitudes which has been plotted versus U in
Fig. 7, and indicates two gapped phases. According to the

above two-state formula, this peak corresponds to 	 /kBT
�1, from which a gap of 	�10−2 can be estimated. If we
extrapolate the estimated gap for 18�U�22, zero gap re-
gion is expected to occur for Uc1

=19.30UUc2
=19.75

which is compatible with our previous work.8

Now let us look at the specific heat data from a different
angle. In Fig. 8, we plot the specific heat versus U for dif-
ferent values of temperatures. As can be seen, there are two
peak structures at all temperatures, which get sharper and by
lowering the temperature, they tend to accumulate around
U�20. Extrapolating the trend of this double-peak structure
to the limit of T→0, suggests two phase transitions at Uc1
and Uc2,8 compatible with the behavior of the vanishing gap
region in Fig. 7. The characteristic quadratic behavior around
U�20 seen in Fig. 8, which according to the two-state
model is expected to be like cL� �	 /T�2, indicates two con-
tinuous metal-insulator transitions, with 	��U−Uci

�, i=1, 2

B. Compressibility

Another useful quantity that can be studied for CIHM is
the compressibility which is given by:

� =
1

n2� �n

��
�

T

, �25�

where n=N /L is the density of particles per site.
In Fig. 9, we plot the compressibility as a function of T

for different values of U. Zero compressibility is a character-
istic of gapped states. As can be seen in this figure for small
value of U the range of temperatures at which the compress-
ibility is close to zero is substantial, which means that the
gap is so large that up to such temperature the insulating
behavior is still manifest. By increasing U, this temperature
range shrinks and becomes smaller and smaller, until around
U=20, it extrapolates to zero. Increasing U beyond 20, again
recovers a finite temperature range in which the compress-
ibility is zero. This behavior confirms that a gap-less state is
sandwiched between two gapped states.

To see the above statement more clearly, in Fig. 10, we
plot compressibility as a function of U for selected tempera-
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tures. As can be seen in this figure, there is a region with
nonzero compressibility which characterizes a gapless phase.
Outside this region, the compressibility decays to zero. By
decreasing T, the width of the compressibility peak becomes
smaller while the height of the peak diverges as T→0; which
is a typical characteristic of a continuous phase transition.
This indicates the existence of a gapless phase at zero tem-
perature for the CIHM.8 The effect of thermal fluctuations is
to smear the edges of gapless region. This is quite intuitive,
as for values of U near the zero temperature boundary of
gapless phase with neighboring insulating phases, the gaps
are small, and hence the thermal energy can overcome the
gap.

C. Ionicity

In Fig. 11, we plot the ionicity per site for �=20 and
various values of U at half-filling. As can be seen in the

figure, by lowering the temperature, for U�18, the ionicity
tends to I=1; for U�20 it reaches a zero temperature value
of I=0; while for U�20, it reaches a value between these
two limits; characterizing a phase with charge fluctuations.

This behavior can be understood as follows: At small U
regime the unit cell is fully polarized at low temperatures,
with both ↑ and ↓ particles occupying the A sublattice. As the
temperature is increased, some of the particles get excited to
B sublattice by absorbing the thermal energy, kBT. On the
other hand, for large values of U, at lower temperatures the
unit cell is not polarized, due to the Coulomb term U. By
increasing the temperature, thermal excitations with doubly
occupied sites will be created, thereby increasing the ionicity.
For intermediate U�20, the weights of polarized and unpo-
larized configurations in the unit cell become comparable;
hence giving the ionicity 0� I�1.

In Fig. 12, we plot the ionicity at half-filling as a function
of U for �=20 and various values of T. As can be seen at all
temperatures, the ionicity smoothly varies between 1 for
small values U, and 0 for large values of U. The width of the
transition region decreases by lowering the temperature, and
is expected to approach the Fig. 2 of Ref. 8.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
om

pr
es

si
bi

lit
y

T

U=17
U=18
U=19

0

0.1

0.2

0.3

C
om

pr
es

si
bi

lit
y

U=21
U=22
U=23
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IV. CONCLUSION

In this work, we studied a classical model consisting of
two Ising-like variables on a one dimensional chain. Despite
the simplicity which essentially results from the lack of Fer-
mionic minus sign problem, our model captures some of the
interesting properties of the ionic Hubbard model. However,
since in our model Eq. �4�, quantum fluctuations are not
present, at low temperatures and low dimensions one has to
be careful about attributing the results obtained for classical
model Eq. �4� to the original quantum IHM.

Various thermodynamic properties of CIHM, such as spe-
cific heat, ionicity, particle density and compressibility when
viewed as a function of U in a given temperature, indicate
the presence of two gapped states at small and large values
of U, with a gap-less state sandwiched between them �around
U /��1�. When the same quantities are viewed as a function
of temperature, there is no sign of phase transition down to
zero temperature. The sharp zero temperature phase transi-
tions at Uc1

��� and Uc2
���, turn into crossover, due to ther-

mal smearing of phase boundaries.
Mapping of D dimensional quantum models to D+1 di-

mensional classical Hamiltonians is a well known paradigm
in statistical physics. Our flow equation approach8 suggests
an alternative approach to construct “D” dimensional classi-
cal models which might be useful in capturing some basic
aspects of the original quantum Hamiltonian at finite tem-
peratures.
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APPENDIX

Coefficients of Eq. (14)

The coefficients a2, a1, and a0 of Eq. �14� are as follows:

a2 � − �e−��2�̃+2�+Ũ� + 2e−3/2���̃+2�� + e−��4�+�̃�

+ 2e−1/2��3�̃+2�+2Ũ+8Ṽ� + 4e−���̃+2�+2Ṽ� + 2e−1/2���̃+6��

+ e−��2Ũ+8Ṽ+�̃� + e−��Ũ+2�� + 2e−1/2��2Ũ+8Ṽ+2�+�̃��e��4�+�̃�,

�A1�

a1 � − �− 4e−��2�̃+2�+Ũ+2Ṽ� + 4e−1/2��4Ũ+12Ṽ+2�+�̃�

− 4e−��2Ũ+10Ṽ+�̃� − 2e−1/2��4Ũ+16Ṽ+3�̃+2��

− e−��2Ũ+8Ṽ+2�+�̃� + 4e−1/2��2Ũ+4Ṽ+�̃+6�� − e−��2Ũ+�̃+2��

+ 4e−1/2��4Ũ+12Ṽ+3�̃+2�� + 4e−1/2��2Ũ+3�̃+6�+4Ṽ�

− 2e−1/2���̃+6�+2Ũ� + 8e−��2�̃+2�+Ũ+3Ṽ� + 8e−��4�+�̃+Ṽ�

− 4e−��4�+�̃� − 4e−��2Ũ+8Ṽ+�̃� − 2e−1/2��4Ũ+3�̃+8Ṽ+2��

+ 8e−��2Ũ+9Ṽ+�̃� − 2e−1/2��4Ũ+8Ṽ+�̃+2�� + 2e−��2Ũ+4Ṽ+�̃+2��

− 4e−��2�̃+2�+Ũ+4Ṽ� − 4e−��Ũ+2Ṽ+2��

− 2e−1/2��2Ũ+3�̃+6�+8Ṽ� − 2e−1/2��4Ũ+16Ṽ+2�+�̃�

− 2e−1/2��2Ũ+6�+8Ṽ+�̃� − 2e−1/2��2Ũ+3�̃+6�� − 4e−��4�+�̃+2Ṽ�

+ 8e−��Ũ+3Ṽ+2�� − 4e−��Ũ+4Ṽ+2���e���̃+6��, �A2�

a0 � 4e−2��Ũ+Ṽ−3���− 4e−2�Ṽ − 4e−5�Ṽ − 4e−3�Ṽ + 10e−4�Ṽ

+ 4e−�Ṽ + 4e−7�Ṽ − 4e−6�Ṽ − e−8�Ṽ − 1� . �A3�
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