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We study the excitation spectrum of a topological insulator in contact with an s-wave superconductor,
starting from a microscopic model, and develop an effective low-energy model for the proximity effect. In the
vicinity of the Dirac cone vertex, the effective model describing the states localized at the interface is well
approximated by a model of Dirac electrons experiencing superconducting s-wave pairing. Away from the cone
vertex, the induced pairing potential develops a p-wave component with a magnitude sensitive to the structure
of the interface. Observing the induced s-wave superconductivity may require tuning the chemical potential
close to the Dirac point. Furthermore, we find that the proximity of the superconductor leads to a significant
renormalization of the original parameters of the effective model describing the surface states of a topological
insulator.
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Topological insulators have emerged as an important class
of materials characterized by robust quantum properties that
can provide a significant potential for new device architec-
tures. The recent observations of a two-dimensional �2D�
topological insulator �TI� state in HgTe quantum wells1 and
of three-dimensional TI behavior in a family of bismuth-
based materials, including Bi2Se3 and Bi2Te3,2–6 represent a
significant impetus to the experimental efforts in this area
and a stimulus for the theoretical study of model systems
with topologically ordered ground states.7–13 The nontrivial
topological properties of an insulator are intrinsically linked
to the existence near the boundaries of gapless surface �or
edge� states that are robust against disorder and interaction
and have a characteristic Dirac-type spectrum.

Of special interest are the states that develop at the inter-
face between a TI and an s-wave superconductor �SC�, where
the proximity effect generates a quasi-two-dimensional quan-
tum state similar to a spinless px+ ipy superconductor, but
without breaking time-reversal symmetry. This state supports
Majorana bound states at vortices and was recently proposed
by Fu and Kane14 as a platform for fault-tolerant topological
quantum computation. The proposal has generated a lot of
interest due to the rather simple, weakly correlated nature of
the underlying system. However, the existing calculations of
the properties of this system are based on a phenomenologi-
cal treatment of the proximity effect, where an s-wave pair-
ing term is added to an effective Hamiltonian describing the
TI surface. In addition, the general nature of the proximity
effect between Dirac-type materials, such as graphene, and
s-wave SCs has been a subject of great interest recently.15–17

In this Rapid Communication we study the proximity ef-
fect at the interface between a TI and an s-wave SC starting
from a microscopic model. In particular, we address and
clarify the following questions: �1� how is the low-energy
spectrum of the TI modified by the proximity effect induced
at the interface? What is the dependence of this spectrum on
the microscopic parameters of the system and what is the
role of dynamical effects? �2� What is the most general ef-
fective model for the interface and what is the dependence of
its parameters on the relevant microscopic quantities? The

answers to these questions have direct consequences for the
stability of the Majorana bound states that can be obtained at
the interface.

To study the proximity effect between an s-wave SC and
the surface states of a strong TI, we consider a minimal
microscopic model defined by the following Hamiltonian:

Htot = HTI + HSC + Ht . �1�

Here HTI is the TI term given by the tight-binding model on
a diamond lattice with spin-orbit interactions13

HTI = t �
�ij�,�

ci�
† cj� + i�SO �

��ij��
S�,�� · �dij

1 � dij
2 �ci�

† cj��. �2�

The first term is the nearest-neighbor hopping connecting the
two fcc sublattices of the diamond lattice. The second term
connects second-order neighbors with a spin- and direction-
dependent amplitudes. The direction dependence is given by
the bond vectors dij

1,2 traversed between sites i and j. The
superconducting term in Eq. �1� is given by mean-field
Hamiltonian

HSC = �
�ij�,�

tij�ai�
† aj� + �

i

��0ai↑
† ai↓

† + H.c.� �3�

The model is defined on a simple hexagonal lattice with a
lattice constant for the triangular basis that ensures simple
interface matching conditions between the SC and the �1, 1,
1� surface of the TI. In general, the nearest-neighbor hopping
tij� has different values along directions parallel and perpen-
dicular to the interface. The tunneling term in Eq. �1� is

Ht = �
�ij�

t̃�ai�
† cj� + cj�

† ai�� , �4�

were t̃ is the tunneling matrix element that characterizes the
transparency of the interface between TI and SC. The fer-
mion operators cj� and ai� operate in the Hilbert space of the
TI and superconductor, respectively.

In the absence of tunneling, the spectrum of the model TI
described by Eq. �2� develops a bulk gap, provided an aniso-
tropy is introduced in the hopping along the four nearest
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neighbor bonds, t→ t+�t�, �=1,4.13 In the presence of a
boundary, gapless surface sates develop inside the bulk gap.
The results for a slab with a �1, 1, 1� surface and parameters
t=1, �SO=0.3, and �t=0.25 for bonds with a surface projec-
tion oriented along M �which we choose as the x direction�
are shown in Fig. 1. The surface states spectrum is charac-
terized by presence of one �anisotropic� Dirac cone in the
vicinity of the M point, which represents the signature of a
strong topological insulator.13

Next, we discuss the effective model that describes the TI
surface states, as a preliminary step for identifying an effec-
tive model for the TI-SC interface. Notice that, for each
wave vector k in the vicinity of M there are exactly two
surface states with energies �1�k��	N�k� and �2�k�
�	N+1�k�, where 	n�k� with n=1, . . . ,2N are the energy ei-
genvalues for a slab consisting of N layers. The correspond-
ing wave functions are u1,k�r ,�� and u2,k�r ,��, respectively.
An effective Hamiltonian describing the surface states can be
obtained by projecting the full TI Hamiltonian �2� onto the
subspace spanned by u1,k and u2,k. If we choose a basis for
this subspace defined by certain wave functions u
,k, an ar-
bitrary surface state can be expressed as

�k�r,�� = �
�=


��,ku�,k�r,�� , �5�

where �
,k depend on the two-dimensional momentum k.
After projection, the Schrodinger equation for the surface
states becomes an equation for the spinor �k�
= ��+,k ,�−,k�T or, in real space, for its Fourier transform �r�,
where r is now a 2D vector. Thus, the full three-dimensional
quantum problem for the TI surface states is reduced to an
effective 2D problem defined by Heff�k ;� ,���
= �u�,k�HTI�u��,k�.

However, choosing an appropriate basis for this subspace
has to take into account two requirements that stem from
considerations of symmetry and analyticity. First, it is con-
venient to have an effective Hamiltonian with manifest time-
reversal �TR� properties. To this end, one can choose a pseu-
dospin basis u
,k�r ,�� with the property �u
,k= 
u�,k,
where �= i�yK is TR transformation operator and K denotes
the complex conjugation. Under such a choice, the spinor
�k�= ��+,k ,�−,k�T satisfies the relation ��k�= ı�y

��−k�,

which is identical to the time-reversal transformation of
physical spinors. Given that spin is not a good quantum num-
ber in the presence of spin-orbit interactions, it is natural to
construct the effective Hamiltonian using the pseudospin ba-
sis u�,M. Note that the eigenfunctions u1,k and u2,k have com-
plicated TR properties hence they do not represent a conve-
nient basis. Second, we may be interested in a real space
formulation of the effective theory that would apply to spa-
tially inhomogeneous situations, for example, when impuri-
ties or vortices are present. Thus, it is desirable to construct
an effective model using real space spinors �r�
= ��+�r� ,�−�r�	T. A surface state can be expressed in terms of
Wannier functions as

��r,�� = �
�=
;R

���R�w��r − R,�� , �6�

where w��r−R ,��=�keık·�r−R�u�,k�r ,�� and u
,k are appro-
priate combinations of the energy eigenstates u1,2;k so that
they transform as pseudospins under time reversal. To con-
struct exponentially localized Wannier functions,18 the basis
states u
k�r ,�� have to be analytic in the vicinity of the M
point where energy levels cross. Note that the limit k→M is
ill-defined for the energy eigenstates un,k, as it depends on
the direction along which the M point is approached.

A simple way of constructing the pseudospin basis actu-
ally used in our numerical analysis is to form linear combi-
nations of u1,2;k�r ,�� that are spin-polarized in the top TI
layer


ū+,k�rN,↑�
ū+,k�rN,↓�

� = f�k�
1

0
�, 
ū−,k�rN,↑�

ū−,k�rN,↓�
� = f�− k�
0

1
� ,

�7�

where f�k� is a positive smooth function. Generally, the func-
tions ū
,k�r�� are not orthogonal but one can easily construct
almost spin-polarized orthogonal wave functions as

u+,k = N+�k��ū+,k + ��k�ū−,k� , �8�

u−,k = N−�k��ū−,k + ���k�ū+,k� �9�

where ��k�=−�1−�1− ��ū+,k � ū−,k��2� / �ū+,k � ū−,k� vanishes at
the Dirac point and N
�k� are normalization factors chosen
so that u+,k�rN ,↑� and u−,k�rN ,↓� be positive. The functions
u
,k obtained using this prescription have the transformation
properties of spinors under time reversal and are smooth in k
around the M point. The construction is valid for all values
of k corresponding to surface modes.

If we are only interested in the properties of the surface
states in the vicinity of the M point, the effective 2D model
can be constructed using the pseudospin basis at the M point,
u
,kM

, and k ·p perturbation theory. One obtains

HTI
eff  EM + B�k� · � , �10�

where EM is the energy at the M point, B�k� is a linear
function of k and �= ��x ,�y ,�z� are Pauli matrices repre-
senting the pseudospin. The most general form for the effec-
tive Hamiltonian can be determined using the time-reversal
properties of the pseudospin basis u
,k

FIG. 1. �Color online� Band structure for a slab with a �1, 1, 1�
surface of a model TI described by Eq. �2�. The blue �dark gray�
areas represent bulk states and the in-gap lines are surface states.
The right panel shows a zoom-in of the anisotropic Dirac cone at
the M point of the surface Brillouin zone.
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HTI
eff = L0�k� + �

i=1,2,3
Li�k��i, �11�

where L0�k� and Li�k� are even and odd smooth functions of
k, respectively. Unlike, the Hamiltonian �10� derived from
k · p perturbation theory, the above Hamiltonian is valid for
all momenta over which the surface states are defined. For a
generic anisotropic TI model an important feature is the pres-
ence Lz�k�, which leads to unequal spin population. Note that
in the limit of k→M we recover the Hamiltonian �10�.

Next, we turn on the coupling between the TI and the SC.
As a result of the proximity effect, a finite gap opens in the
surface states spectrum. The result of the numerical calcula-
tion for the full tight-binding Hamiltonian �1� is shown in
Fig. 2 for the same TI model parameters as in Fig. 1, a
superconductor with t��=0.5t and t�� =0.45 for hoppings par-
allel and perpendicular to the interface, respectively, and
�0=0.1t and an interface characterized by a transparency t̃
=0.3t. To better understand the dependence of the proximity
effect on various model parameters, it is useful to identify
the SC contribution to the interface effective model and add
it to TI contribution given by Eq. �11�. Within the mean-field
model given by Eq. �3�, the superconducting degrees of free-
dom can be integrated out and replaced by the interface self-

energy ����r ,r� ,��=−T̃�r ,r1�Ĝ����r1 ,r2 ;��T̃†�r2 ,r��,
where Ĝ����r1 ,r2 ;�� is the superconducting Green’s func-

tion in the Nambu space and T̃ is the matrix describing the
tunneling between top layer of the TI �layer N of the TI-SC
heterostructure� and bottom layer of the superconductor
�layer N+1�. For an s-wave superconductor, we have

��k,�� = − t̃2�
m

��0 + 	m�k��z + �0�x

	m�k�2 + �0
2 − �2 ��mk�zN+1��2 �12�

with �mk�zN+1� being the value on the bottom layer of the
energy eigenstates in the metallic phase. This self-energy in

terms of the partial density of states at the interface, ��� ,k�
=�m���−	m�k����mk�zN+1��2, which in our model takes the

simple form ��� ,k�= 2
��

�1− ��−	̄�k�	2

�2 , where �=2t� is the
bandwidth in the metallic phase of a slab described by the
Hamiltonian �3� and 	̄�k� is the energy value at the middle of
the band for a given momentum parallel to the interface. For
surface states in the vicinity of kkM and assuming �0
��, we have

��k,��  − �
���0 + �0�x�
��0

2 − �2
, �13�

where �=2t̃2 /��1− �	̄�kM�−��2 /�2 with � being the
chemical potential of the metal. Note that this approximation
ignores the momentum dependence of the self-energy in-
duced by the s-wave superconductor.

To construct the effective model for the proximity effect,
we project the above equation onto pseudospin basis
u
,k�r ,��. The effective self-energy at the interface becomes

F���
�N� �k,�� = �

���

u�k
� �rN,����,��

�N� �k,��u��,k�rN,���


��

��0
2 − �2�

�

u�k
� �rN,��u��,k�rN,�� , �14�

F���
�A� �k,�� = �

���

u�k�rN,����,��
�A� �k,��u��,−k�rN,���


��0

��0
2 − �2�

�

u�k�rN,��u��,−k�rN,− �� .

�15�

Here �N/A are the normal �diagonal� and anomalous �off-
diagonal� parts of the self-energy and k= �kx ,ky�. In general,
both F���

�N� and F���
�A� have even and odd components in k. The

anomalous part of F�,��
�A� �k ,�� is an even function of fre-

quency and has singlet �s�k ,��=�s�−k ,�� and triplet
�t�k ,��=−�t�−k ,�� components. Note that the relevant
k-dependent corrections arise from the pseudospin eigen-
states u�,k�rN ,��. Even though the construction of the pseu-
dospin basis is defined up to a k-dependent unitary transfor-
mation that preserve the time-reversal properties of the
pseudospin basis, such transformation preserves ��s�k ,���2
and ��t�k ,���2. We emphasize that the emergence of the trip-
let component can also be viewed as a property of the k ·p
perturbation theory for the Bogoliubov-de Gennes �BdG�
Hamiltonian. This property is generic and independent of the
position of the Dirac point. Finally, the spectrum of excita-
tions at the interface can be determined by solving the BdG
equation

Det�HTI
eff�k� + F�k,�� − �	 = 0. �16�

A comparison between the spectrum of the TI-SC hetero-
structure described by Eq. �1� and the spectrum of the effec-
tive model in Eq. �16� is shown in Fig. 2 for a system with a
chemical potential that crosses the Dirac point, �=0. Similar
calculations were performed for systems with ��0 and for
systems with a different interface orientation, i.e., �100� in-

k ykx M

E
(k

)

FIG. 2. �Color online� Spectrum of the full Hamiltonian �1� for
a TI slab with �1, 1, 1� surfaces having an interface with an s-wave
superconductor. Bulk TI states are green �light gray� and SC states
are blue �dark gray areas�. The proximity effect induces a gap in the
surface states spectrum at the interface �red/dark gray in-gap lines�
while the states on the opposite surface have an unperturbed Dirac
cone dispersion �orange/light gray lines�. The light blue �light gray�
in-gap points are calculated using an effective theory for the inter-
face described by Eqs. �11� and �14�–�16�.
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stead of �111�. Adding a potential barrier at the interface was
also considered but the results remain qualitatively the same.

We now discuss the main implications of the microscopic
calculations described above. In the limit kkM and �0
the triplet component �t vanishes due to the time-reversal
symmetry and pairing becomes purely s wave, as conjectured
in Ref. 14. The low-energy spectrum can be obtained by
expanding the self-energy to lowest order in k and �

Det� 1

1 + �/�
�v�k��z + �

�

� + �
�x − �� = 0. �17�

We find that in this limit, consistent with previous phenom-
enological results,19 the form of the above effective BdG
equation resembles the equation for the proximity effect at
the interface of a TI and an s-wave superconductor14 with the
critical difference that the effective parameters of the TI sur-
face states such as the velocity v and chemical potential �
are strongly renormalized by 1+� /�. This renormalization,
which can be thought of as a consequence of the penetration
of the TI wave function into the SC �see Fig. 3�, determines
the energy scale for all subgap excitations at the interface,
e.g., the Majorana modes. In particular, it determines the size
of the minigap that protects the Majorana bound state hence
it has direct consequences for the robustness of topological
quantum computation.19

As the chemical potential is tuned away from the Dirac
point �0 the triplet component of the pairing potential
develops. This follows from the fact that the wave functions
on the TI are not spin-polarized due to the spin-orbit cou-
pling as shown in Fig. 3. The nature of the pairing away from
the Dirac point can be analyzed by considering the BdG Eq.
�16�, for � ,���0 �to ignore retardation effects for simplic-
ity�, and keeping the lowest-order k dependence as
Det��vi ·k�i−�	�z+��1+ui ·k�i	�x�=0. Thus in addition to
the proximity-induced singlet pairing of magnitude �, there
is a proximity induced spin-triplet pairing of magnitude
��u�kF where kF�� /v is the Fermi wave vector on the Dirac
cone. This triplet pairing can become significant when �

�v� /u and can lead to a closing of the superconducting gap
on the surface state of the TI, which has important conse-
quences for topological quantum computation. In particular,
the resulting proximity induced superconducting state can be
qualitatively different from the one where the chemical po-
tential is near the Dirac point and is not expected to support
Majorana fermions.

We calculated the excitation spectrum of a topological
insulator in contact with an s-wave superconductor, starting
from a microscopic model, and we developed an effective
low-energy model for the proximity effect. We found that a
p-wave pairing component generally leads to the reduction in
the induced quasiparticle gap. We also showed that virtual
propagation of the electrons into the superconductor leads to
a significant renormalization of the effective surface TI
Hamiltonian. These findings have important implications for
topological quantum computation.
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FIG. 3. �Color online� Surface state localized at the interface
between a TI and an s-wave SC. For zero tunneling �not shown�, the
state resides entirely inside the TI and decays exponentially away
from the boundary �up to an even-odd oscillatory factor�. At finite
transparency, the surface state penetrates inside the SC. The spin-
down �lower amplitude� component vanishes on the top TI layer,
thus it does not propagate inside the SC if only nearest-neighbor
tunneling is considered.
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