PHYSICAL REVIEW B 81, 235439 (2010)

Atomistic simulations of structural and thermodynamic properties of bilayer graphene
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We study the structural and thermodynamic properties of bilayer graphene, a prototype two-layer membrane,
by means of Monte Carlo simulations based on the empirical bond order potential LCBOPII (long-range
carbon bond order potential IT). We present the temperature dependence of lattice parameter, bending rigidity,
and high-temperature heat capacity as well as the correlation function of out-of-plane atomic displacements.
The thermal-expansion coefficient changes sign from negative to positive above =400 K, which is lower than
previously found for single-layer graphene and close to the experimental value of bulk graphite. The bending
rigidity is twice larger than for single layer graphene, making the out-of-plane fluctuations smaller. The
crossover from correlated to uncorrelated out-of-plane fluctuations of the two carbon planes occurs for wave

vectors shorter than =3 nm™'.
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I. INTRODUCTION

Bilayer (BL) graphene has unique electronic properties
and its chiral quasiparticles with parabolic dispersion make it
different from both single-layer (SL) graphene and bulk
graphite.! The energy gap of BL graphene can be opened and
tuned by applying a voltage with promises for
applications.>® Also the possibility of some exotic many
body phenomena, such as pseudospin magnetism* have been
discussed. For these reasons, BL graphene is currently sub-
ject of great interest. However the knowledge of its structural
properties is still very poor. It was shown experimentally
that, BL graphene is also corrugated® like SL graphene, but
no systematic study has been carried out. This corrugation
(ripples) may constitute an important scattering mechanism
for electrons® and ripples can give rise to charge inhomoge-
neities (electron and hole puddles).” Although important for
their relation to electronic properties, the structural proper-
ties of BL graphene are also important from the point of view
of statistical mechanics since the BL graphene is a unique
realization of crystalline membranes formed by two atomic
layers.

Assessing the structure of a BL graphene is experimen-
tally challenging and theoretical calculations can be particu-
larly helpful. Since the observed corrugations are on a scale
much larger than interatomic distances, ab initio simulations
are not feasible. This interesting range of lengths (e.g., for
electron interactions with ripples) is, however, not necessar-
ily well described by continuum medium theories.? Atomistic
simulations based on accurate empirical interaction poten-
tials are particularly suitable for this purpose. We have re-
cently studied the structural and thermodynamic properties
of SL graphene®!! by Monte Carlo (MC) simulations based
on the LCBOPII (long-range carbon bond order potential
II).'> Here we present the results of similar calculations for
BL graphene, where a new aspect related to the correlation of
atomic displacements in different layers arises.

II. METHOD OF CALCULATION

We perform MC simulations in the NPT ensemble (con-
stant number of particles N, constant pressure P, and con-
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stant temperature 7T) at pressure P=0 and temperature T with
periodic boundary conditions for samples of N=16128 and
N=8640 atoms per layer. We construct the sample with AB
stacking which in graphite has the lowest energy, about 15
mev/atom lower than AA stacking.'®> Experimentally there is
no doubt that bilayer graphene obtained by exfoliation of
graphite has AB stacking.! For the key results of our paper,
namely, the correlation function G and bending rigidity, the
computational results for the smaller sample (8640 atoms)
coincide within the computational accuracy to those for the
larger sample (16 128 atoms). When not specified, the pre-
sented results are for the largest sample. The equilibrium size
at 7=0 K of the N=16128 sample is L,=20.66 nm in x and
L,=20.448 nm in y direction and that of the N=8640 sample
is L,=14.757 nm and L,=15.336 nm. The finite size of our
sample defines the lowest accessible wave vectors is x and y
directions as g,=2m/L, and g,=2m/L,. Motivated by the
results of recent quantum MC calculations,'* we have
slightly modified the long-range part of LCBOPII as to have
an interlayer binding energy of 50 meV/atom against the 25
meV/atom of the parametrization of Ref. 12 while keeping
the interlayer compressibility constant.

We equilibrate the sample for at least 5 X 103 steps (1 MC
step corresponds to N attempts to a coordinate change), using
the recently introduced MC sampling based on collective
atomic moves (wave moves)!! in addition to conventional
MC moves. This technique was successfully introduced for
SL graphene. For BL graphene it was extended as follows.
Wave moves are applied to both layers simultaneously, or
only to the upper or lower layer, with equal probabilities for
the three cases. The amplitude A of the wave moves applied
to both layers simultaneously is different from the amplitude
A, of the wave moves applied to either upper or lower layer
separately. The amplitudes A; and A, are chosen in such a
way that the acceptance rate for wave moves is between 0.4
and 0.5 for any of these three cases. Further 5X 10° MC
steps are used to evaluate the temperature dependence of the
ensemble averages.

III. RESULTS

In Fig. 1 we show a snapshot of our system after equili-
bration at 7=1500 K. The first thing to notice is that al-
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FIG. 1. (Color online) Snapshot of BL graphene at 7=1500 K.
Top: top view of a part of the sample that shows the AB stacking of
the layers. Bottom: side view.

though the two layers are in principle free to slide with re-
spect to each other they keep the initial AB stacking.

The temperature dependence of the in-plane lattice pa-
rameter a and of the interlayer distance ¢ of BL graphene is
shown in Fig. 2. The in-plane lattice parameter a of BL
graphene decreases with increasing temperature up to about
400 K, yielding a negative thermal-expansion coefficient
a,=dIna/dT=(-3.0+0.7) X 10 K~! in the range 0-300
K. The behavior of a(T) differs from that of SL graphene,
which has a minimum of a at 7=900K and «,
=(-4.8+1.0)x 10 K~! (see Ref. 10) in the range 0-300
K, and is similar to bulk graphite, which has a minimum of a
between 300 and 500 K.'>!7 We note that our approach is
classical and therefore not appropriate in the Ilow-
temperature limit. However, since the thermal expansion is
mostly determined by the low-frequency bending modes,'> a
classical description is already justified below room tempera-
ture. Indeed for single layer graphene, our results for a(7)
between 100 and 400 K agree very well with those of Ref. 15
where the quantum statistics of phonons was taken into ac-
count.

In Ref. 15, the temperature dependence of a for SL
graphene and bulk graphite has been determined in the quasi-
harmonic approximation with phonon frequencies and Grun-
eisen parameters calculated from first principles. While for
the case of bulk graphite these calculations reproduce the
nonmonotonic behavior of a(T) observed experimentally, for
SL graphene a(T) keeps decreasing up to high temperatures.
In our simulations of SL graphene!® we found instead a non-
monotonic behavior of a(T). The experimental value of a(T)
for SL graphene that was measured up to 400 K (Ref. 18)
seems to support our results.

The discrepancy with quasiharmonic results should be
due to the fact that this method" neglects self-anharmonic
effects,'® namely, multiphonon contributions to the free en-
ergy. Of course, in our simulations, the thermal expansion is
calculated directly and all anharmonic effects are taken into
account. Unfortunately, we do not have results for bulk
graphite with the same in-plane area, due to the long range
part of our potential that, with a cutoff of 0.6 nm, requires to
simulate samples with at least four layers with periodic
boundary conditions. Nevertheless, we believe that the fact
that the thermal expansion of BL graphene is similar to the
one resulting from quasiharmonic theory for bulk graphite
suggests that multiphonon processes are much less important
in BL graphene, compared to SL graphene.

In Fig. 2 we also show the interlayer distance ¢ that grows
with temperature, similarly to bulk graphite,'> with an out-
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FIG. 2. (Color online) Temperature dependence of the in-plane
lattice parameter a of SL (circles, solid, blue, from Ref. 10) and BL
(circles, dashed, red) graphene, and of the interlayer distance ¢ of
BL graphene (diamonds, dash-dotted, green). At T=0, agy
=0.24595 nm, ag; =0.24583 nm, and ¢=0.33371 nm.

of-plane  thermal-expansion coefficient a.=d Inc/dT
=(3.5+0.5) X107 K~! somewhat larger than the experi-
mental value for bulk graphite, ,=2.7X 107> K~! (see Ref.
17). This is not surprising because each layer has only one
neighbor layer.

We now proceed to a study of thermal-bending fluctua-
tions. In the continuum limit graphene can be described as a
flexible crystalline membrane®®!! which is characterized by
a two component in-plane phonon field u,(X), a=1,2 and a
one component out-of-plane displacement field /(x). The ef-
fective free energy is given by the sum of bending energy
and in-plane elastic energy®

1 A
H= 2 dzx[K(Vzh)2 + ,uuiﬁ+ ~u? (1)

2 aa |

where the strain tensor u,z is
1
ua,B: 5(o7auﬁ+ &Bua+ O’)ah(?[gh) (2)

k is the bending rigidity and w and \ are Lamé coefficients.

In first approximation, BL graphene can be considered as
two SL graphene layers interacting with each other. The
natural way to describe BL graphene, is to use the out-of-
plane deviations from the center of mass of each layer, &,
and h, for upper and lower layers, respectively, as sketched
in Fig. 3. Thus, BL graphene can be parametrized by the
average height fluctuation field 2= (h;+h,)/2 and thickness
fluctuation field dh=h,—h,.

The part of the Hamiltonian (1) related to out-of-plane
displacements can thus be written as

Hoa= | ELRVR TR+ 25(7) )

where the first two terms are responsible for the bending
energy of the upper and lower layers and « is the bending
rigidity per layer. We have introduced the last term charac-
terized by the parameter y to account for interlayer interac-
tions. Substituting /; and h, with h = 6h/2, we obtain
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FIG. 3. Schematic view of BL graphene (solid lines). /; and h,
are out-of-plane deviations with respect to the middle planes
(dashed lines). The unit vectors 77; and 77, are the normals to each
point in the upper and lower layers, respectively. 77, is the normal to
the reference plane. c is the interlayer distance. The figure is sche-
matic and does not show the real scale of the fluctuations.

1
Houe = > f dzx{ZK(Vzh)2+ g(Vzéh)2+2y(6h)2 . @)

In the harmonic approximation, which means neglecting
the last term of the strain tensor in Eq. (2), the out-of-plane
h(x) and in-plane u,(x) modes are decoupled. In this ap-
proximation, the mean-square Fourier components of the
field h(g) with wave vectors ¢ are

N
h@P) == 5
(n(@)* So2nq" (5)
and of the field oh(g) are
N T
Sh(§)|P)=———, 6
(|on(@)*) So g + 2y (6)

where N is the number of atoms per layer, S is the area per
atom in the layer, and 7 is the temperature in units of energy.
If the bending rigidity of a SL graphene is the same as the
bending rigidity per layer of BL graphene, then it follows
from Eq. (5), that (|i(§)|*) for BL graphene is twice smaller
than for SL graphene. This is actually a very good approxi-
mation as we will show below.

We further introduce the notation H(q)=(|h(§)|*) and
AH(q)=(|5h(§)|*). An alternative way to describe out-of-
plane fluctuations is via the unit vector normal to the average
surface between two layers

ah

V1 +|Vh|?

ni(¥) =-
with i=1,2.8
The correlation function of the normals, G(q)=(|7i(§)|*) is
equal to ¢g°H(q) if |Vh|?>< 1. Thus, in the harmonic approxi-
mation

N T

G(g) = 5_0;42 (8)

which is a factor 2 smaller than G(g) in SL graphene.”!!

The correlation functions H(g) and G(gq) are calculated
independently as described below. In principle, to calculate
H(g), we have to calculate the Fourier transforms of the
atomic displacements i(x). However, the atomic positions in
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FIG. 4. (Color online) Normal-normal correlation function
G(q)/N at T=300 K for SL (solid blue line) and BL (dashed red
line) graphene compared to g>H(g) for single (dotted magenta line)
and BL (dash-dotted red line) graphene. The solid black straight
line shows the fit (~¢g~2) in the harmonic part.

a generic configuration in MC simulations are discontinuous
and should be smoothed. This problem is related to the nu-
merical calculations of derivatives and different operators on
the hexagonal lattice.!” Our procedure is the following. Let
hy be the z coordinate of an atom and h,, h;,, and h, the z
coordinates of its three nearest neighbors. The& the averaged

out-of-plane displacement of the central atom A is defined as

~ 1 1
h(): 5|:h0+§(ha+hb+hc):|' (9)

This value is used to calculate the Fourier components
h(g) using the wave vectors defined by periodic boundary
conditions of the undistorted lattice. The normals needed to
calculate G(g), instead, are automatically smooth because
they are calculated as averages of the normals to the three
planes defined by three vectors, connecting the central atom
to its three nearest neighbors.>!'! For BL graphene, we cal-
culate the correlation function G(g) for the normals of all
atoms in the two layers.

Figure 4 shows the correlation functions G(g)/N and
g*H(gq)/N for SL and BL graphene at 7=300 K. We plot
these functions as a function of ¢g=|g| by giving their average
value at all allowed wave vectors with the same modulus.
The difference between G(q)/N and ¢’H(q)/N is negligible
for g<<10 nm™' where the condition |VA|[><1 is satisfied.
The functions H(g) and G(g) behave according to the har-
monic approximation Egs. (5) and (8) for g from 3 to
9 nm™! as it is also shown in Fig. 4. In this interval the
correlation functions for BL graphene are about twice
smaller than for SL graphene, which means that the effective
bending rigidity for BL graphene is twice larger than the one
of SL graphene, as we had guessed above. The deviation
from the harmonic approximation for ¢<3 nm™! is due to
the coupling between bending and stretching modes in Eq.
()8

Figure 5 shows the correlation functions H(g)/N and
AH(q)/N of BL graphene for 7=300 K and 7=1500 K to-
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FIG. 5. (Color online) Average height (|i(§)|?) (blue lines) and
thickness (|6h(§)[?) (red lines) fluctuations of BL graphene at T
=300 K (dashed lines) and T=1500 K (solid lines). Black solid
lines show the fit according to the Egs. (5) and (6).

gether with the harmonic fit according to Egs. (5) and (6).
The function AH(q) is specific of a bilayer and has no analog
for single layer membranes. First of all, we note that AH(g)
follows the harmonic approximation Eq. (6) in the whole
studied range of ¢, even where the deviations of H(g) from
the harmonic approximation Eq. (5) are pronounced. This
means that thickness fluctuations are much less coupled to
in-plane fluctuations, than average out-of-plane fluctuations.
The second noticeable point, is the g-independent behav-
ior of AH(q) for g<g*~3 nm~'. In turn, this means that, in
this range of ¢, the out-of-plane fluctuations of the two car-
bon layers are strongly coupled and only one soft mode h(g)
survives. Therefore, at scales larger than 277/¢*~2 nm, BL
graphene can be considered as a single membrane, whereas
at smaller scales, h;(g) and h,(q) fluctuate rather indepen-
dently. The correlation between the fluctuations of the two
layers is clearly seen in the side view snapshot of the sample
shown in Fig. 1. Indeed it follows from Egs. (5) and (6) that
if one neglects the interlayer coupling vy in Eq. (6) one has

(n(@)hs(@) =0, <|h1<q>|2>=<|h2<q>|2>=%Kif
(10)

In general, the perfect coincidence of AH(g) calculated
from the MC simulations, with the theoretical prediction in
Eq. (6) of the Hamiltonian (4) confirms the correct choice of
Hamiltonian to describe BL graphene.

The crossover at ¢g* from independent to coherent fluctua-
tions in the two layers is important for the scattering of elec-
trons from height fluctuations in BL graphene, which is de-
termined mainly by long range fluctuations with strongly
g-dependent correlation functions (compare with Ref. 6 for
SL graphene). Therefore, fluctuations of the interlayer dis-
tance become irrelevant for electrons with wave vector k
<q". Moreover, for sample sizes L>2m/q*~2 nm the
height fluctuations in BL graphene are expected to be weaker
than in SL graphene because in the regime of coherent fluc-
tuations the bilayer is twice stiffer than a single layer. This is
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FIG. 6. (Color online) Height fluctuations of SL graphene (solid
blue line) compared to one of BL graphene (dashed red line) as a
function of MC step at 7=300 K.

qualitatively confirmed by the results presented in Fig. 6
where we compare the values of (h?) for SL and BL
graphene.

The temperature dependence of the parameters « and 7y of
BL graphene is presented in Fig. 7 together with the param-
eter k of SL graphene. The parameter y of BL graphene
decreases with temperature, which is not surprising. This pa-
rameter is responsible for the interlayer coupling and it de-
creases with temperature since the interlayer distance ¢ in-
creases with temperature (Fig. 2). The effective bending
rigidity « grows with temperature in agreement with the gen-
eral theory of crystalline membranes®® as well as with our
previous numerical results for SL graphene.®!! The behavior
of liquid membranes is known to be opposite, with « de-
creasing with temperature.”! The statement that « decreases
with T also for graphene®” is therefore in disagreement with
general arguments®?? and our results. The point is that the
origin of the main anharmonic effects in liquid and crystal-
line membranes are completely different. For liquid mem-
branes they originate from high-order terms of the mean cur-
vature in VA, which results in perturbative corrections to «
that are of the form 7 ln ga<O with a the interatomic
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FIG. 7. (Color online) Temperature dependence of the bending
rigidity « of SL graphene (circles, solid, blue), bending rigidity per
layer k of BL graphene (circles, dashed, red) and parameter y of BL
graphene (diamonds, dash-dotted, green).
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distance.?%?! For crystalline membranes, instead, perturba-
tive corrections to «(7) due to the coupling of bending and
out-of-plane fluctuations are much stronger, positive, and
proportional to T/¢* (Ref. 20).

Actually the fact that dx/dT>0 for crystalline mem-
branes has a very simple meaning: as the temperature in-
creases, the amplitude of corrugation also increases, resulting
in a strengthening of the membrane.?? As already mentioned,
the bending rigidity per layer of BL graphene turns out to be
very close to that of SL graphene, which is not surprising
since the interlayer coupling is much weaker than the in-
plane chemical bonding. However, since the renormalization
of k is strongly ¢ dependent for crystalline membranes, the
definition of «(7) should be further specified. What is shown
as k(7T) in Fig. 7, and what was previously calculated for SL
graphene in Refs. 9 and 11 are the results of a best fit of the
correlation functions G(¢g) and H(g) in the ¢ range where the
slope can be well approximated by the harmonic behavior of
Egs. (4) and (8). Since, in this interval of ¢, the out-of-plane
fluctuations of either layer of BL graphene are of the same
order as those of SL graphene [see Eq. (10)], it is not sur-
prising that the temperature dependence of « for BL
graphene is only marginally smaller than for the one of SL
graphene.

It is important to notice, however, that the macroscopic
behavior of the bending rigidity of free membranes for g
— 0 at finite temperature is divergent as ¢~ 7 with 7=0.85
(see Refs. 8 and 11). The size of the BL graphene samples
used here makes an estimate of # for this case not precise
enough as to be compared quantitatively to that found for SL
graphene!! but the qualitative behavior shown in Fig. 4 is
very similar for SL and BL graphene.

The mean-square height fluctuations <h2)=EqH(q) are
equally size-dependent. Since the sum over ¢ is divergent at
the lower limit g,;,=27/L, (h*) is mostly determined by the
effective «(g) for the smallest wave vectors and therefore,
for large enough samples, it should scale as L?>~7 (see Refs. 8
and 11). According to Fig. 5, deviations of H(g) from har-
monic behavior occur for ¢<1 nm~' and thus, the crossover
from harmonic behavior 42 L? to the anharmonic one h*
o L27 takes place for sample size L~6 nm.

To characterize qualitatively the anharmonicity at the
atomic scale, we calculate the temperature dependence of the
molar heat capacity at constant volume

c 3R dU (11)

=—+—,

T2 Tdr

where U is the potential energy and R the gas constant. In

Fig. 8 we compare the results with those of SL graphene.!?
Three and four phonon processes result in the linear

growth of Cy, at high temperatures.'¢ One can see that SL and
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FIG. 8. (Color online) Temperature dependence of the molar
heat capacity at constant volume Cy, of SL (solid blue line) and BL
(dashed red line) graphene. Data obtained for N=8640 atoms
sample.

BL graphene are almost the same as expected since phonons
of the whole Brillouin zone contribute to this quantity and
the phonon spectra of SL and BL graphene differ only
slightly close to the I' point (see, e.g., the calculated phonon
spectra of graphene and graphite in Ref. 15).

IV. SUMMARY

In conclusions, we have studied several temperature-
dependent properties of BL graphene by means of classical
MC simulations. The high-temperature heat capacity is simi-
lar to that of SL graphene whereas the thermal expansion is
essentially different and close to the one experimentally ob-
served in graphite.

We also introduced a new Hamiltonian which accounts
for interlayer interactions in BL graphene and showed that it
correctly describes the behavior of BL graphene. We have
found that, depending on the wave vector, the height fluctua-
tions in the two layers are either coherent (for ¢<<g*) or
incoherent (for ¢>¢*) with ¢*~3 nm™! at room tempera-
ture and we have discussed the consequences of this fact for
observable properties, such as height fluctuations and elec-
tron scattering.
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