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A Kane-like envelope function Hamiltonian is derived for the �15 valence and �1 conduction states of
lattice-matched, semiconductor superlattice structures, with metallurgically abrupt interfaces. The local micro-
scopic potential is treated as a weak perturbation on that of a reference crystal and is expressed in terms of a
one-dimensional profile function, G�z�, which modulates the difference between the potentials of the well and

barrier materials. In contrast to many previous treatments, all terms up to order �=2 in �V̄ · �k̄a�� are included,

where �V̄ is the typical band offset, �k̄ is the average momentum modulus of the envelope function, and a is
the bulk lattice parameter. Far from the interfaces, the Hamiltonian is identical to the familiar bulk Kane
Hamiltonian, with the standard bulk parameters. However, the operator ordering in the valence band is revised
from the commonly used Burt scheme. An operator ordering scheme has also been derived for the linear-k P
terms that couple conduction and valence states. Expressions have been derived for the � functionlike, and
derivative of a � functionlike, interface terms. These are off-diagonal and diagonal, respectively, in common
atom superlattices like GaAs /AlxGa1−xAs, where the antisymmetric contribution to G��z� is expected to be
small. For superlattices with no common atom, additional interface terms are introduced. If the difference in
the spin-orbit splitting energy for the two superlattice materials is comparable with the valence-band offset,
then relativistic corrections can introduce many more, weak interface contributions. Part of the relativistic
interface matrix has been derived, which includes the most significant terms. Finally, a scheme is proposed for
reducing the number of independent Luttinger parameters required, when using the Hamiltonian to fit experi-
mental spectral data.
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I. INTRODUCTION

More than 50 years after the development of the Kane
model for band structure in bulk semiconductors,1–3 its ex-
tension to semiconductor superlattices and microstructures is
still not firmly established. Although k ·p methods have been
applied widely to semiconductor heterostructures for many
years4 and even though the results obtained often compare
favorably with experiment, no consistent set of rules has yet
been agreed for the correct operator ordering or for which
significant interface potentials should be included. Even the
widely implemented, and intuitively obvious, piecewise use
of the bulk material parameters is still not rigorously justi-
fied. Generally, a Kane-like or Luttinger-like Hamiltonian is
used in a piecewise fashion and a variety of approaches have
been followed for the interface boundary conditions. In one
widely used approach, operators are “symmetrized” before
integration of the Hamiltonian across an interface. The sym-
metrization procedure is often justified on the basis of prob-
ability flux conservation or similar arguments, which unfor-
tunately can yield ambiguous results. For example, the
perfectly symmetric second derivative operators in Baraff
and Gershoni5 and their asymmetric counterparts in Dallen
and Stavrinou6 are both consistent with flux conservation. In
this work it will be shown that neither procedure is correct.

In the early 1990s, Burt7 provided important insights into
how to treat the interface region properly. His approach has
been extended more recently by several authors including
Takhtamirov and Volkov8–10 and Foreman.11,12 Burt’s basic
idea was to introduce a bulk reference crystal whose Bloch
functions are used as the basis states. This leads to spatially

independent momentum matrix elements and envelope func-
tion continuity at any interface is a natural consequence. The
difference between the real and reference Hamiltonians,
�V�r�, is a spatially dependent perturbation and this intro-
duces extra terms into the k ·p Hamiltonian, many of which
are suppressed on symmetry grounds, except near an inter-
face. The most important contribution of Burt’s approach
was to introduce an explicit �-functionlike interface term
which can mix different bands at a zone-center or zone-edge
symmetry point, such as � or X.11 This term depends on the
microscopic structure of the interface and was shown to take
the simple form: �n��V�n�� �zi

=�nn���z−zi�, where the matrix
element is evaluated over the volume of a bulk unit cell
centered on the interface at zi, and �n� and �n�� are states of
different symmetry, such as the zone-center �15x and �15y
valence states or the �15z valence and �1 conduction states.
Foreman calculated theoretical estimates for the mixing
strength in these cases as well as in a few others at an abrupt
GaAs/AlAs �001� interface and came up with typical magni-
tudes in the range �nn�=0.1–0.7 eV Å.11

Burt also proposed a scheme for the ordering of the dif-
ferential operators in the envelope function approximation7,13

which has become quite widely adopted.14–20 Unfortunately
his treatment results in material parameters such as effective-
mass components which are energy dependent and which
also depend on the choice of the reference crystal. If piece-
wise bulk parameters are used instead, the difference be-
tween these parameters and the energy-dependent ones leads
to errors comparable with those obtained using the same
virtual-crystal average parameter values throughout, in
which case the operator ordering becomes irrelevant. The use
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of the local bulk parameters with the proposed operator or-
dering is therefore not really justified.

In the 1997 paper by Volkov and Takhtamirov8 the basic
difficulties were presented of constructing a 6�6 envelope
function Hamiltonian for the �15 valence states, or an 8�8
Hamiltonian which also includes the �1 conduction states, in
which bulk piecewise parameters can be used. They pointed
out in several works,9,10 which were reviewed by Foreman,12

that in order to achieve this, it is necessary to keep all terms
up to order �=2 in �V̄ · �k̄a��, where �V̄ is a typical band
offset, �k̄ is the average momentum modulus of the solution,
and a is the bulk lattice parameter. In subsequent discussions
of the �15 valence band, Takhtamirov and Volkov acknowl-
edged the complexity of deriving a fully consistent 6�6 or
8�8 Hamiltonian, and so considered only the simplest delta-
functionlike interface-band mixing discussed above, which is
of order �=1. They did not consider other forms of interface-
band mixing, including that due to the correct operator or-
dering associated with the bulk parameters, which has con-
tributions of order �=1 and �=2.10 This paper tries to
address exactly these issues in a lattice-matched superlattice
grown along �001� with metallurgically abrupt interfaces.
The aim is to end up with a relatively simple Hamiltonian
which essentially preserves the familiar Kane form and in
which many of the material parameters are the same Kane
parameters. The main differences with the bulk form are the
operator ordering and the inclusion of extra interface terms.
While Foreman has also addressed these issues in great
depth,12,21 his approach leads to a more complex Hamil-
tonian for the valence band with a large number of param-
eters that must be determined from atomic pseudopotential
calculations. Although more precise, especially in superlat-
tice materials with a large band offset, it does not provide a
simple prescription for the operator ordering in the standard
Kane-like form.

In this work, the method of Takhtamirov and Volkov8 is
used to derive 6�6 and 8�8 Kane-like Hamiltonians,
which include all important �=1 and �=2 contributions.
While it is fairly straight forward to write down the Hamil-
tonian based on a suitable transformation method that sepa-
rates local and remote states,10,12 it is more difficult to relate
the results so obtained to the familiar bulk parameters. By so
doing, the correct operator ordering scheme can be derived
for the off-diagonal bulk terms. The ordering scheme ob-
tained in this way for the valence band is shown to differ
from the widely adopted Burt scheme. For the linear-k P
terms that couple conduction and valence bands, no reliable
operator ordering scheme has yet been derived. Burt used
symmetry arguments to justify the omission of several terms

proportional to �V̄ /�E, where �E is a typical energy sepa-
ration between local and remote bands. One of these terms is
in fact finite at the interfaces and, when included, the opera-
tor ordering of the linear-k P terms can be deduced. By as-
suming that the derivative of the profile function, G�z�, is
essentially symmetric about the plane of atoms that consti-
tutes an interface, where �V�r�=�U�r�G�z� and �U�r� is the
difference in the microscopic potentials of the two bulk ma-
terials, the present derivation also produces a �-functionlike
interface matrix with only off-diagonal elements and a de-

rivative of a delta-functionlike interface matrix with only
diagonal elements. All but two of the elements in these ma-
trices are of order �=2, the exceptions being the zone center
�=1 interface-band mixing terms previously considered by
Foreman,11 similar to �nn���z−zi� described above. The
�-functionlike interface matrix also contains linear k terms
that mix �15x and �15y with �15z and �1. When the derivative
of the profile function is not symmetric, more terms must be
included in the interface matrices. It is argued that the two
cases of symmetric and nonsymmetric profile functions at a
metallurgically abrupt interface correspond to common atom
superlattices �e.g., GaAs /AlxGa1−xAs� and no common atom
superlattices �e.g., InAs/GaSb�, respectively. Relativistic cor-
rections introduce a plethora of additional interface related
parameters that also depend on the microscopic interface
structure. However these terms are only likely to be impor-
tant in superlattice material combinations in which the dif-
ference in the spin-orbit splitting energies is comparable with
the valence-band offset. For this case, the most important
interface terms are identified.

The next section contains a brief review of the derivation
of the k ·p Hamiltonian in Fourier representation and its sub-
sequent transformation back to real space, following closely
the treatment of Takhtamirov and Volkov.10 This yields both
�-functionlike and derivative of a �-functionlike interface
terms, which depend on the microscopic interface structure.
In Sec. III the sensitivity of these terms to interface abrupt-
ness and symmetry is discussed. In Sec. IV, the transforma-
tion scheme of Pikus and Bir is used to lowest order to de-

rive an 8�8 Hamiltonian in which all terms up to �V̄ · �k̄a�
are included. This Hamiltonian demonstrates the correct op-
erator ordering procedure for the linear-k P term coupling
conduction and valence bands and includes only the simple
�nn���z−zi� interface-band mixing term. The Hamiltonian is
not sensitive to mass differences between the different super-
lattice materials and does not include any derivative of a
�-functionlike interface terms. These, and additional
�-functionlike terms are added in Sec. V, where all contribu-

tions greater than or equal to �V̄ · �k̄a�2 are included. Several
differences between the 6�6 and 8�8 cases are pointed
out, including different operator ordering schemes. In Sec.
VI, the results of the preceding sections are used to derive
the full 6�6 and 8�8 Hamiltonian matrices for �15 valence
and �1 conduction states. In Sec. VII, the operator ordering
in the present treatment is compared with Burt’s result for a
number of common superlattice materials. The values of the
interface potentials which depend on the bulk material pa-
rameters are also estimated. The relativistic corrections are
discussed in Sec. VIII and in Sec. IX, conclusions are pre-
sented.

II. k ·p HAMILTONIAN IN THE REPRESENTATION OF A
REFERENCE CRYSTAL

The potential of a semiconductor microstructure or super-
lattice, VSL, can be expressed as the sum of the potential of a
reference crystal, V, and a perturbing potential �V so that
VSL=V+�V. In the case of a superlattice made from two-
dimensional layers of materials A and B, the reference po-
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tential, V, could be the average of the crystal potentials, UA
and UB, for the two materials, which then minimizes the size
of �V. However, for simplicity of notation the reference crys-
tal will be taken to be material A, as in the case of Ref. 10.
The results will be valid for any choice of reference crystal.

The superlattice Schrödinger equation for a state of inter-
est, �1, is

−
�2

2m0

d2�1

dz2 + VSL�1 = E�1, �1�

where �1=�nF̃nun in which un are the complete set of Bloch
functions from a specific symmetry point of the reference

crystal. The envelope functions, F̃n, vary on a length scale, L,
typical of the superlattice layer widths. This is usually much
larger than the length scale, a, characteristic of the Bloch
functions, which is also the dimension of a unit cell in the
reference crystal. The envelope functions may be expanded
in terms of their Fourier components, where the range of
wave vectors is limited to the first Brillouin zone,

F̃n = 	1st

BZ

d3k�Fn�k��eik�·r. �2�

Following the treatment described in Ref. 8, the envelope
function Hamiltonian in reciprocal space is

EFn�k� = 
�2k2

2m0
+ En�Fn�k� + �

n�

�

m0
k · pnn�Fn��k�

+ �
n�

�
zi

	 �G�kz − kz���Unn� +
	ie

−i�kz−kz��zi

2	

�
D0,nn� + �kz − kz��D1,nn� + ¯��
���k� − k���Fn��k��d3k� �3�

in which

Dl,nn� = �n�Dl�n�� = �
j�0

Bj
nn� 1

iKzj
	

−d

d

G��z�e−iKzjz

�
−
1

Kzj
− iz�l

dz , �4�

where 	i=+1 for an inverted interface �B on A� and 	i=−1
for a normal interface �A on B�. �Unn�= �un��U�un�� and

Bj
n,n�= �un�eiKzjz�U�un�� in which �V�r�=�U�r�G�z� for a

multilayer heterostructure grown in the z direction and K j is
a reciprocal-lattice vector. En is the band edge in the refer-
ence crystal of the state with Bloch symmetry �n� and the
interfaces are located at �x ,y ,zi�. For an interface located at
zi=0, 
d is the region over which the step like function G�z�
is changing. G�z� defines the abruptness of the interface.
Since the reference crystal is material A, then �U=UB−UA
and G�z�=0 in material A and G�z�=1 in material B. The
advantage of Eq. �3� is that the expansion in the square
bracket contains terms related to the confining potential

whose order of magnitude reduces by a factor k̄a for each
successive term.

In Appendix A, Eq. �3� is transformed back to real space
to yield the envelope function equation,

EF̃n�r� = 
−
�2

2m0
�2 + En

�1��F̃n�r� − �
n�

i�

m0
pnn� · �F̃n��r�

+ �
n��n

�Unn�G̃�z�F̃n��r� + �
zi

�
n�

	i
D0,nn��̃�z − zi�

− iD1,nn���̃�z − zi��F̃n��r� , �5�

where En
�1��z�=En+�UnnG̃�z� is the local band edge in the

heterostructure of the state �n�, correct to first order in �U.
The tilde symbol ��� above any function indicates that this
function is made up of Fourier components limited to the

first Brillouin zone. Thus �̃�z� is a delta function of width
�a. Note that En

�1��z� changes over a distance of �a when
passing through an abrupt interface due to the behavior of

G̃�z�.

III. INTERFACE STRUCTURE AND THE BEHAVIOR OF
THE D0 AND D1 INTERFACE POTENTIALS

In the remainder of this paper the interface structure will
be restricted to situations where the microscopic potential
changes from UA to UB and vice versa in a fairly abrupt
fashion, typically over a distance �a. This will usually be
the case when the interface is grown metallurgically abrupt,
with a low level of atomic interdiffusion. To begin with, let
us also assume that G��z� in Eq. �4� is a symmetric function
about z=0, denoted G��z� �s. The consequences of this
assumption are discussed at the end of the section.

If we define IG
s �Kzj�=�−d

d G��z� �scos�Kzjz�dz and ĪG
s �Kzj�

=�−d
d zG��z� �ssin�Kzjz�dz, it is easy to see that IG

s is an even

function of Kzj, and ĪG
s is an odd function. Three real func-

tions are also defined: �0
s =� j�0�eiKzjz / iKzj�IG

s �Kzj�, �1
s

=� j�0�eiKzjz /Kzj
2 �IG

s �Kzj�, and �̄1
s =� j�0�eiKzjz /Kzj�ĪG

s �Kzj�. �0
s

is an odd function of z, and �1
s and �̄1

s are even functions.

From Eq. �4� it follows that Dl=Dl
s= il�U��l

s+�̄l
s�, where

�̄0
s =0. In Figs. 1 and 2, �0

s and �1
s +�̄1

s are plotted as solid
lines for a mathematically abrupt interface in which G��z� �s
is a � function and as dashed lines for a more realistic inter-
face in which G��z� �s is a Gaussian with a full width at half
maximum of 0.8 Å. The unit cell of the reference crystal is
taken to be 3 Å. It can be seen that the broadening of the
interface region has a slight weakening effect, more so on the
first-order potential, D0

s , than on the second-order potential,
D1

s . From the symmetry properties of D0
s and D1

s , it follows
that if �n� and �n�� are limited to the �15 valence and �1
conduction states in a common atom superlattice �where a
plane of the common atoms defines an interface at z=0�,
D0,nn�

s has only off-diagonal contributions �D0,�Z
s ,D0,XY

s �
while the contributions to D1,nn�

s are all diagonal �D1,��
s ,

D1,XX
s =D1,YY

s and D1,ZZ
s �.

The present treatment shows that a reasonable expression
for the first-order interface-band mixing potential is D0,nn�

s
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= �n��U ·�0
s�z��n��, where for a mathematically abrupt inter-

face at z=0, �0
s�z�=GF�z�a /2−z and GF�z� is a step function

that takes the value −1 on the left side of the interface and +1
on the right. The integral in the matrix element is evaluated
over a unit cell: −a /2
z
a /2. This expression is slightly
different from the expression: �n��U ·GF�z��n��a /2, used by
Foreman for a planar mathematically abrupt interface.11,22 It
puts greater weight on contributions to the integral closer to
the interface. Both Foreman11 and Takhtamirov and Volkov10

also considered the effect of taking into account a more re-
alistic three-dimensional form for the interface potential in-
stead of simply averaging over the x-y plane. Takhtamirov
and Volkov10 showed that this simply renormalizes the val-
ues of some vanishingly small parameters and introduces
nothing qualitatively new into the treatment of the interface.
They concluded that the simple one-dimensional model used
here should be sufficient. According to Foreman’s most re-
cent treatment,12 this model should give reasonable results,
provided the interfaces are not graded significantly.

Since a typical value for D0,nn�
s is 0.3–3 eV Å,11,23 typi-

cal values for D1,nn
s are expected to be comparable, i.e.,

0.3–3 eV Å2. This follows from the fact that the peak am-

plitude in angstrom units for �1
s +�̄1

s in Fig. 2 is comparable

with that for �0
s in Fig. 1. The D1

s contribution to the ground-
state energy can be estimated as follows. For a ground �X�
hole state with envelope function FX�1�, in a quantum well of
width L, the D1

s energy contribution is of magnitude

D1,XX
s �zi

	i��̃�z−zi�� /�z�FX�1�FX�1�
� �dz�D1,XX

s 	 /L2. For L
=100 Å and D1,XX

s =1 eV Å2 this takes a value of about
0.25 meV, which is very small. In contrast, D0,XY

s =1 eV Å
would contribute an energy matrix element between the first
confined �X� state and the second confined �Y� state of
roughly D0,XY

s /L which takes a value of �10 meV. From
these values it seems likely that in many cases the D1,nn

s

contributions can be ignored without a significant loss of
accuracy. This proposal is also supported by the fact that a
one monolayer increase in the thickness of material B in a
superlattice with a fixed period corresponds to the addition of

diagonal terms to Eq. �5� of the form �zi
�n�T0,n�n��̃�z

−zi�F̃n��r�, where T0,n�n�= �n���U�n��a /2. This T0 contribu-
tion should be comparable in size to the D0

s contribution and
couples to exactly the same states as the much smaller D1

s

contribution. Thus the effect of the D1
s contribution is on the

level of changes in layer thickness of much less than a mono-
layer, which is much below the typical experimental uncer-
tainty in specifying the layer thickness.

If the restriction of the interface to one in which G��z� is
a symmetrical function is relaxed, then a more general inter-
face can be represented by the sum of symmetrical and an-
tisymmetrical functions: G��z�=G��z� �s+G��z� �a. A nonzero
G��z� �a may allow new mixing channels. In a common atom
superlattice such as GaAs /AlxGa1−xAs in which the metal-
lurgically abrupt interfaces are located on planes of the com-
mon atom �As planes�, G��z� �a should be much smaller than
G��z� �s because G�z� should approximate to an odd function
when the reference crystal is taken to be the virtual-crystal
average of the well and barrier materials. If a different ref-
erence crystal is used, there will be a constant offset to G�z�
which will not contribute to its derivative. Thus the treatment
presented above should apply reasonably well. On the other
hand, for superlattices made from materials with no common
atom, such as InAs/GaSb, the contribution from G��z� �a can
be significant. This situation is discussed in more detail in
Appendix B, where it is shown that diagonal D0 terms
�D0,��

a , D0,XX
a =D0,YY

a and D0,ZZ
a � and off-diagonal D1 terms

�D1,�Z
a and D1,XY

a � are then included in the �-functionlike and
derivative of a �-functionlike interface matrices, respec-
tively.

IV. SEPARATION INTO LOCAL AND REMOTE STATES

The next step in the development of a Kane-like Hamil-
tonian for semiconductor superlattice structures is to chose
the set of local states, m ,m� ,m� , . . ., which are of interest and
to perform a suitable transformation of Eq. �5� that removes
any interaction between the local states and all the other
remote states, s ,s� ,s� , . . . The transformation used by Burt
leads to energy-dependent material parameters which also
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depend on the choice of the reference crystal. As pointed out
by Takhtamirov and Volkov,10 the resulting Hamiltonian is
not precise enough to take into account any differences in the
bulk material parameters. They point out that a preferable
scheme is that described by Pikus and Bir in Eq. �15.46� of

Ref. 24. This yields energy-independent parameters and al-
lows them to be determined to any desired order in the small

parameter, �V̄ /�E. The first four terms in the transformed

Hamiltonian, H̄, are given as follows:

H̄mm� = Hmm� −
1

2�
s

Hms� Hsm�
� 
 1

Es − Em
+

1

Es − Em�
� −

1

2�
m�s

� Hms� Hsm�
� Hm�m�

�

�Es − Em���Es − Em��
+

Hmm�
� Hm�s

� Hsm�
�

�Es − Em���Es − Em��
+

1

2�
ss�

Hms� Hss�
� Hs�m�

� � 1

�Es − Em��Es� − Em�
+

1

�Es − Em���Es� − Em��
� . �6�

In this equation, H=H0+H�, H�=H1+H2, H1=�2k2 /2m0, and H2=��+ �� /m0�k ·p, where ��nn�=�Unn�G̃�z�+	iD0,nn��zi��̃�z
−zi�− i	iD1,nn��zi���̃�z−zi�.

It will be assumed to start with that there are two dominant states with indices 1 and 2 and that the rest of the states are
remote �the extension to a greater number of dominant states is obvious�. This will avoid the excessive use of summations and
subscripts. Using only the first two terms of Eq. �6� a Kane-like Hamiltonian �ignoring spin� can be written down, as follows,

for the dominant envelope function F̃1. The result for F̃2 looks the same but with indices 1 and 2 interchanged,

EF̃1 =
�2

2 �
�,�=

x,y,z

k�

1

m1,��

k�F̃1 + E1
�lc�F̃1 + i�

�

P�
12k�F̃2 + �

�,�
k�C��

12 k�F̃2 +
�

m0
�
�
�k��

s

�1,sG̃�z�p1s
� �Us1 + �

s

�1,sG̃�z��U1sps1
� k��F̃1

+
�

m0
�
�,zi

	i�k��
s

�1,sp1s
� D0,s1�̃�z − zi� + �

s

�1,sD0,1sps1
� �̃�z − zi�k��F̃1 − i�

zi

	iD1,11��̃�z − zi�F̃1�r�

+
�

m0
�
�
�k��

s

�12,sG̃�z�p1s
� �Us2 + �

s

�12,sG̃�z��U1sps2
� k��F̃2 +

�

m0
�
�,zi

	i�k��
s

�12,sp1s
� D0,s2�̃�z − zi�

+ �
s

�12,sD0,1sps2
� �̃�z − zi�k��F̃2 + �

zi

D0,12	i�̃�z − zi�F̃2�r� , �7�

where �1,s=1 / �E1−Es� and �12,s=1 / ��E1+E2� /2−Es� in
which E1, E2, and Es are the energy values for the reference
crystal. It is assumed that �U1m=0 for m�1, which is true if
�m� is restricted to the �15 valence and �1 conduction states.
The momentum matrix element of the reference crystal is
pnn�

� = �un�p��un�� in which � represents x, y, or z. The mass
tensor in Eq. �7� is given by m0 /m1,��=���

+ �2 /m0��s�1,sp1s
� ps1

� in which ��� is the Kronecker delta
function. The energy E1

�lc� is the local band-edge energy of
the m=1 state correct to second order, such that E1

�lc�=E1
+�U11��z�, where ��z� is a step like function equal to G�z�
at distances greater than �a from a metallurgically abrupt

interface: �U11��z�= G̃�z��U11+�sG̃
2�z��1,s�U1s�Us1. The

parameters P�
12=�p12

� / im0 and C��
12 = ��2 /m0

2��s�12,sp1s
� ps2

� are
the k-linear and k-quadratic off-diagonal k .p terms, respec-
tively.

In Eq. �7� all terms of magnitude �V̄ · �k̄a�2 or larger have
been kept. The way to estimate the size of each term has
been discussed extensively in Refs. 9 and 12, so will not be
repeated in any detail here. In Ref. 12, it is shown that

��V̄ /�E���k̄��2��k̄a�2, based on the fact that �
���2m��E�−1/2. The parameter, m�, refers to the effective
mass at the edge of the nearest remote band due to its inter-
action with the local bands. � has a value of �6 Å in GaAs
if �E is set equal to the band gap, so ��a. A typical value
for �k̄a�−1�L /2	� in different materials is thus in the range
of 3 or larger. Equation �7� is generally true but the
�-functionlike and derivative of a �-functionlike interface
terms have been restricted to the simplest case, discussed in
the previous section, of off-diagonal and diagonal terms, re-
spectively, appropriate to common atom superlattices with a
negligible G��z� �a. The more general case is treated at the
end of Sec. V. Terms with numerators containing �U1sD0,s1,
D0,1s�Us1, �U1sD0,s2, D0,1s�Us2, D0,1sD0,s1, or D0,1sD0,s2 are

omitted since they are of order �V̄ · �k̄a�3. Terms containing
�U1s�Us2 are zero on symmetry grounds if �1� and �2� are
restricted to the �15 valence and �1 conduction states.

Equation �7� can be simplified as follows. The first square
bracket is zero since the operators p� and �U have opposite
parity. Assuming the Bloch functions are real, the

OPERATOR ORDERING AND INTERFACE-BAND MIXING… PHYSICAL REVIEW B 81, 235314 �2010�

235314-5



second square bracket reduces to �� /m0�F̃1�zi
	ikz�̃�z

−zi��s�1,sp1s
z D0,s1 which is proportional to −iF̃1�z��̃��z−zi�,

so it makes an interface contribution. The fourth bracket can

also contribute interface terms proportional to −iF̃2�z��̃��z
−zi� or �̃�z−zi�k�F̃2�z�. The sum of all interface terms

can be written �zi
	i�̃�z−zi��12F̃2�r�+	i�̃��z−zi�
�11F̃1�r�

+�12F̃2�r�� in which

�12 = D0,12 + �
�=x,y,z


QL,12
� + QR,12

� �k�,

�11 = − i
D1,11 + QL,11
z � ,

�12 = − i
D1,12 + QL,12
z � . �8�

In Eq. �8� QL,12
� = �� /m0��s�12,sp1s

� D0,s2, QR,12
�

= �� /m0��s�12,sD0,1sps2
� , and kz=−i� /�z. If we define the

magnitude of the interface terms in Eq. �8� as �V̄�k̄a��, the
two terms in �12 are formally of type �=1 and 2, respec-
tively, while �11 and �12 all correspond to �=2. There is no
�11 term since D0,11=QL,11

� +QR,11
� =0.

The third square bracket in Eq. �7� may be simplified by
noting that we may expand the Bloch functions of the refer-
ence crystal in terms of the Bloch functions of the local
crystal to obtain the relationship between the local and ref-
erence momentum matrix elements,

�u1
�lc��p��u2

�lc�� − �u1�p��u2� =
im0�P�

12�lc� − P�
12�

�

= �
n��2

�u1�p��un���un���U�u2�

E2 − En�

+ �
n��1

�u1��U�un���un��p��u2�

E1 − En�

�9�

in which �U=U�lc�−U, where the parameters with a super-
script, �lc�, are those of the local crystal while the parameters
without a superscript belong to the reference crystal, and

where higher order terms in �V̄ /�E have been neglected. At
this level of accuracy both denominators may be replaced by
�E1+E2� /2−En�. If the local states are restricted to the �15
valence and �1 conduction bands, the summations can be
made just over all of the remote states, s, since any contri-
bution when n� is a local state is symmetry forbidden.

Substituting Eqs. �8� and �9� into Eq. �7� we have

EF̃1 =
�2

2 �
�,�=

x,y,z

k�

1

m1,��

k�F̃1 + E1
�lc�F̃1 + i�

�

P�
12�lc�k�F̃2

+ �
�,�

k�C��
12 k�F̃2 + �

zi

	i�̃��z − zi��11F̃1�r�

+ �
zi

	i
�̃�z − zi��12 + �̃��z − zi��12�F̃2�r�

+ F̃2
�

m0
�
�
�k��

s

�12,sG̃�z�p1s
� �Us2� . �10�

Note that in Eq. �10� the first-order k ·p terms containing P�
12

have been replaced by their local counterparts containing
P�

12�lc�. The last term in Eq. �10� establishes the correct op-
erator ordering of these terms, as may be seen by integrating
Eq. �10� across an interface. Comparing the result with Eq.
�9� shows that the last term in Eq. �10� can be omitted if
P�

12�lc�k� is replaced with �1− f12
� �k�P�

12�lc�+ f12
� P�

12�lc�k�,
where

f12
� =

− i�/m0

�P�
12+ − P�

12−��s

�u1�U+ − U−�us��us�p��u2�
�E1 + E2�/2 − Es

�11�

and f21
� =1− f12

� . This operator ordering only matters for �
=z, but it has also been retained for �=x ,y, in order to keep
the notation consistent. In Eq. �11� symbols with a plus refer
to the material on the right-hand side of the interface and
those with a minus, to the material on the left-hand side.
Note that on going from a normal to an inverted interface,
both �U+−U−� and �P�

12+− P�
12−� change sign, so the defini-

tion of f12
� is not sensitive to the interface type.

It is not straightforward to estimate the value of f12
� . For

�1�= �Z� �bonding p state� and �2�= ��� �antibonding s state�,
the states, s, that can contribute to the sum in Eq. �11� are
antibonding p states ��15

− �, and bonding and antibonding f
states ��25


 �. These, and bonding and antibonding d states
��12


 �, contribute to the denominator �P�
12+− P�

12−�. Thus fZ�
z

can be expressed as

fZ�
z = �s=�15

− ,�25

 �Z,s�UZsps�

z /
�s=�12

 ��,spZs

z �Us�

+ �s=�15
− ,�25


 �Z,s�UZsps�
z � .

The antibonding p-state contribution would be zero in the
presence of inversion symmetry and thus has a relatively
small matrix element, pZ��

z . It is typically about three times
smaller than the matrix element, pZ�

z , with a bonding p

state,25,26 so we can write pZ��
z ��k̄a�pZ�

z �which is a useful
expression for later on�. The combination of the weak anti-
bonding p-state contribution, and the small f-state contribu-
tion, could yield a term comparable with the d-state term, so
fZ�

z will be nonzero. It is not easy to make a simple theoret-
ical estimate of fZ�

z but it can be treated as a fitting parameter
in the same way as the Luttinger parameters. However, the
Luttinger parameters are fitted to bulk energy dispersion data
for each individual material while fZ�

z must be fitted to dis-
persion data for the superlattice.

If we only include terms of magnitude �V̄ · �k̄a� or larger,
a first version of the Hamiltonian for superlattice structures
finally takes the form

P. C. KLIPSTEIN PHYSICAL REVIEW B 81, 235314 �2010�

235314-6



EF1 =
�2

2 �
�,�=

x,y,z

k�

1

m1,��

k�F1 + E1
�lc�F1

+ i�
�

��1 − f12
� �k�P�

12�lc� + f12
� P�

12�lc�k��F2

+ �
�,�

k�C��
12 k�F2 + D0,12F2�

zi

	i��z − zi� . �12�

In Eq. �12� the band-edge energy E1
�lc��z� and the P�

12�lc� pa-
rameter are the local bulk values. Reference crystal values
appear for the m1,�� and C��

12 parameters. Since the accuracy

of Eq. �12� is limited to �V̄ · �k̄a�, only the D0,12 interface
term has been kept. In Eq. �12� the tilde symbols have also
been dropped in order to allow all Fourier components, and
the band-edge potential, E1

�lc��z�, is taken to have a square
piecewise variation instead of varying as ��z�. The justifica-
tion for these simplifications is discussed by Takhtamirov
and Volkov10 who argue that the error introduced by allow-

ing all Fourier components should be ��V̄ · �k̄a�3, which is
small enough to be ignored. Burt also provided a justification
by comparing the exact solution with the square-well enve-
lope function solution, for a one-dimensional Mathieu
lattice.7,27 Equation �12� appears similar to a standard Kane
Hamiltonian, the main differences being the ordering of the
k-linear operator containing the material parameter P�

12�lc�,
the absence of a piecewise variation in the k-quadratic mate-
rial parameters, and the appearance of a delta functionlike
interface term.

V. ELIMINATION OF THE DEPENDENCE ON THE
REFERENCE CRYSTAL

A second more precise version of the Hamiltonian for
superlattice structures will now be discussed which has an

accuracy of �V̄ · �k̄a�2 so that smaller interface terms omitted
from Eq. �12� can be included, and so that differences in the
m1,�� and C��

12 parameters on each side of an interface can
properly be taken into account. Note that in Eq. �12� these
parameters take the reference crystal values, m1,��

A and C��
12,A,

corresponding to material A. The transformation in Eq. �6�
must now include the third and fourth terms that have not
been considered so far. Evaluating these terms but neglecting

contributions of magnitude �V̄ · �k̄a�� with ��3, results in

the addition of two more components of order �V̄ · �k̄a�2 to
the right-hand side of Eq. �12�. The first of these modifies the

diagonal kinetic-energy terms such as, H̄11, as follows:

H̄11 =
�2

2 � �
�=

x,y,z

k�

1

m1,��
A k� −


��,��
11 + �̄�,��

11 �
2

�G̃�z�k�
2 + k�

2G̃�z��

+ 
��,��
11 + �̄�,��

11 �k�G̃�z�k�� , �13�

where

��,��
11 =

2

m0
2 �

m�s

�s,1�s,m��U1m�pm�s
� ps1

�

−
4

m0
2�

ss�

�s,1�s�,1�U1spss�
� ps�1

� ,

��,��
11 =

2

m0
2�

ss�

�s,1�s�,1p1s
� �Uss�ps�1

�

−
4

m0
2 �

m�s

�s,1�s,m�p1s
� �Usm�pm�1

� ,

�̄�,��
11 =

2

m0
2 �

m�s

�s,1�s,m��U1spsm�
� pm�1

� ,

�̄�,��
11 =

2

m0
2 �

m�s

�s,1�s,m�p1s
� �Usm�pm�1

� . �14�

By substituting Eq. �9� into the formula for the effective
mass, m0 /m1,��=���+ �2 /m0��sp1s

� ps1
� / �E1−Es�, it can be

shown that 1 /m1,��
B =1 /m1,��

A + ���,��
11 −��,��

11 �.
For the case of a 6�6 Hamiltonian based on �15 valence

states, the �̄�,��
11 and �̄�,��

11 terms are zero. For the 8�8 case
which also includes the �1 conduction states, �̄�,��

11 and �̄�,��
11

either contain terms with momentum matrix elements which
are zero when inversion symmetry applies, and so as dis-
cussed earlier, are reduced in the present case roughly by a

factor of �k̄a�, or they contain terms which are very small
because they have large denominators �involving d- or
higher energy states�. For this reason, both �̄�,��

11 and �̄�,��
11

should be of order �V̄ · �k̄a�3 and can be ignored.
Takhtamirov and Volkov9 have shown that Eq. �13� can then
be rearranged to give

H̄11 =
�2

2 �
�=

x,y,z

k�

1

m1,��
�lc� k� + �2�

zi

��,zz
11

4
	i��̃�z − zi� , �15�

where m1,��
�lc� is the local mass value.

Estimates can be made for ��,zz
11 with �1�= ���, �X�, �Y�, or

�Z�, by ignoring all terms with momentum matrix elements
that are zero when inversion symmetry applies. Also any
term with a very large denominator �involving d- or higher
energy states� can reasonably be ignored in favor of other
terms with a much smaller denominator. Since ��,zz

11 is of

order �V̄ · �k̄a�2 any such the terms can be considered to be
below the required accuracy limit. For example, for the
6�6 case ��,zz

ZZ is given by

��,zz
ZZ =

2

m0
2�C,V

2 �UZZpZ�
z p�Z

z = −
2

�2

F�

EG
�EV, �16�

where F� is the Kane parameter of the reference crystal
�which includes contributions from both bonding and anti-
bonding s states�, EC and EV are the conduction and valence-
band edges of the reference crystal �EG=EC−EV�, and �EV is
the valence-band offset. The expressions for ��,zz

XX , ��,zz
YY , and
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��,zz
�� can be deduced in terms of the Kane parameters in a

similar way and these are listed in Sec. VI.
The second component that must be added to Eq. �12�,

due to the higher order terms in Eq. �6�, concerns a correc-
tion to the off-diagonal energy term, ��,�=x,y,zk�C��

12 k�. Since
C��

12 in Eq. �12� is equal to C��
12,A, which is a parameter of the

reference crystal, A, and is constant throughout, this term can
be rewritten: N12

A k�k�=���,��=x,y,zC����
12,A k��k��. With the cor-

rection, the off-diagonal energy term becomes

H̄12 = N12
A k�k� + r��k���N12 + �n̄12� · G̃�z�k�

+ r��k���N12 + �n̄12� · G̃�z�k�,

where the local value, N12
�lc� is given by N12

�lc�=N12
A

+�N12· G̃�z� and r��=1−r��. The term �n̄12�z�=�n̄12· G̃�z�
that appears in the Hamiltonian is not related to the bulk
Kane parameter, N12, but is an extra term produced by the
expansion in Eq. �6�. For clarity let us consider a specific
case where the local states have �15 symmetry and are �1�
= �Z� and �2�= �X�. In this case Cxz

ZX=H1, Czx
ZX=D=F�−G, and

all other C��
ZX are zero. F�, H1, and G are the Kane parameters

based on states of �1, �15, and �12 symmetries, respectively.
Performing an analysis similar to that for the diagonal terms
in Eq. �13� and assuming the Bloch functions are real, the
corrections for the off-diagonal energy term in Eq. �12� are

rxz�NZX = −
�2

2m0
2 �

m�s

B/2

�s,m��s,X�UZm�pm�s
x psX

z

−
�2

2m0
2 �

m�s

H/2

�s,m��s,X�UZm�
pm�s
z �
psX

x �

+
�2

m0
2�

ss�

J

�s,X�s�,X�UZspss�
z 
ps�X

x �

+
�2

m0
2�

ss�

R

�s,X�s�,X�UZspss�
x ps�X

z

+
�2

m0
2�

ss�

A

�s,X�s�,XpZs
x �Uss�ps�X

z ,

rxz�n̄ZX = −
�2

2m0
2 �

m�s

M/2

�s,m��s,X�UZs
psm�
z ��pm�X

x �

and

rzx�NZX = −
�2

m0
2 �

m�s

L

�s,m��s,X
pZs
z ��Usm��pm�X

x �

−
�2

m0
2 �

m�s

K

�s,m��s,X�pZm�
z ��Um�s
psX

x �

−
�2

2m0
2 �

m�s

H/2

�s,m��s,X
pZs
z �
psm�

x ��Um�X

−
�2

2m0
2 �

m�s

B/2

�s,m��s,XpZs
x psm�

z �Um�X

+
�2

m0
2�

ss�

T

�s,X�s�,X
pZs
z ��Uss�
ps�X

x �

+
�2

m0
2�

ss�

I

�s,X�s�,X
pZs
z �pss�

x �Us�X

+
�2

m0
2�

ss�

C

�s,X�s�,XpZs
x pss�

z �Us�X

=�1 − rxz��NZX,

rzx�n̄ZX =
�2

2m0
2 �

m�s

−L/2

�s,m��s,X
pZs
z ��Usm��pm�X

x �

+
�2

2m0
2 �

m�s

−K/2

�s,m��s,X�pZm�
z ��Um�s
psX

x �

−
�2

2m0
2 �

m�s

N/2

�s,m��s,X�pZm�
z �
pm�s

x ��UsX, �17�

where �NZX= �NZX
B −NZX

A �, and where each term has been
labeled with a superscript above its summation sign for ease
of identification later on. In Eq. �17�, terms containing mo-
mentum matrix elements pm�X

z = pm�Z
x =0 have been dropped.

Round brackets are used to identify momentum matrix ele-
ments which are zero for the 6�6 case. Curly brackets are
used to identify elements which are rather small for remote s
and p states in the 8�8 case, because they vanish in the
presence of inversion symmetry, and so are suppressed in the

present case by a factor of ��k̄a�. These matrix elements can
be larger for remote d states but then the term to which they
belong will be very small because it contains the square of
the energy gap Ed−EX in the denominator, where Ed is a
d-state energy. Matrix elements suppressed by inversion
symmetry include elements of the form p��Z

z and p�Z�
z in

which � ���� is the antibonding �bonding� s state and Z �Z��
is the bonding �antibonding� p state. The appearance of the
�n̄ term in Eq. �17�, similar to the �̄�,��

11 and �̄�,��
11 terms

above, introduces a dependence on the choice of reference
crystal into the Hamiltonian. However, this dependence is
much weaker than for the lower order Hamiltonian of Eq.
�12� because, similar to the �̄�,��

11 and �̄�,��
11 terms, �n̄ is

either zero �in the 6�6 case� or else it is of order �V̄ · �k̄a�3

which is small enough to be ignored �in the 8�8 case�.
The separation of the terms in Eq. �17� between �NZX and

�n̄ZX is based on an expression for �NZX, obtained by sub-
stituting Eq. �9� into the expression for the coefficient of the
off-diagonal energy term in the reference crystal: C��

ZX

= ��2 /m0
2��spZs

� psX
� / �Ev−Es�, where Czx

ZX=D, Cxz
ZX=H1, and

�NZX=�D+�H1. On performing this substitution, the fol-
lowing result is obtained:
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�H1 =
�2

m0
2�

s�

A

�
s

�X,s�X,s�pZs�
x �Us�spsX

z

−
�2

m0
2�

s

B

�X,s
2 pZs

x psX
z �UZZ

+
�2

m0
2�

s
�
s�

C

�X,s�X,s�pZs
x pss�

z �Us�X

+
�2

m0
2�

s
�
s�

R

�X,s�X,s��UZs�ps�s
x psX

z

and

�D =
�2

m0
2�

s�
�

s

T

�X,s�X,s�pZs�
z �Us�spsX

x

−
�2

m0
2�

s

H

�X,s
2 pZs

z psX
x �UZZ

+
�2

m0
2�

s
�
s�

I

�X,s�X,s�pZs
z pss�

x �Us�X

+
�2

m0
2�

s
�
s�

J

�X,s�X,s��UZs�ps�s
z psX

x

+
�2

m0
2�

s
�
m�

K

�s,m��X,spZm�
z �Um�spsX

x

+
�2

m0
2�

s
�
m�

L

�s,m��X,spZs
z �Usm�pm�X

x . �18�

In Eq. �18�, terms containing momentum matrix elements
pm�X

z = pZm�
x =0 have been dropped. The widely accepted form

of the H̄ZX term based on the Burt formulation13,14,16–18 is

H̄ZX
Burt = kzD

�lc�kx + kxH1
�lc�kz

= NZX
A kzkx + kz�D · G̃�z�kx + kx�H1 · G̃�z�kz.

If we ignore �n̄ZX for the reasons given above, the

present treatment gives H̄ZX=NZX
A kzkx+kzrzx�NZX· G̃�z�kx

+kxrxz�NZX· G̃�z�kz. Comparing Eqs. �17� and �18� shows
that rzx�NZX��D �for ease of comparison each term in Eqs.
�17� and �18� is labeled with an alphabetic superscript above
its summation sign�. For example, the second term in �H1 is
made up from the sum of the first term in rxz�NZX and the
fourth term in rzx�NZX. Therefore the Burt formulation is not
correct and the formulation presented here must be adopted
instead.

In the 6�6 case, a reasonable approximation can be
found for rxz�NZX, in terms of the Kane or Luttinger param-
eters, as follows. This expression is written as rxz�NZX=
−B /2−H /2+A+J+R, where each of the five terms B /2, etc.,
represents a �labeled� term in the first part of Eq. �17�. In
evaluating these terms, only s, p, and d states are considered

since the f states will make a negligible contribution. Also,
contributions are ignored which have matrix elements sup-

pressed by a factor ��k̄a�, due to their vanishing in the pres-
ence of inversion symmetry. Each term can be expanded in
terms of the Kane parameters and appropriate band gaps and
band offsets, as follows: B= �2

m0
2 �s=�15

− �s,X
2 �UZZpZs

x psX
z =

−H1
�EX

EX�−EX
, where X and X� are the bonding ��15

+ � and anti-
bonding ��15

− � p states, respectively, and �EX=�EV=EV
B−EV

A

is the valence-band offset.
H= �2

m0
2 �s=�1


,�12

 �s,X

2 �UZZpZs
z psX

x =−F�
�EV

EG
+G

�EV

ED�−EX
, where

�1

 are the bonding and antibonding s states and �12


 are the
bonding and antibonding d states. In deriving this formula it
was assumed that contributions containing the matrix ele-

ment p��Z
z � p�Z

z �k̄a� can be ignored, as discussed above. ED�
is the energy of the antibonding d states ��12

− �.
A = �2

m0
2 �s=�15

− ,s�=�15
− �s,X�s�,XpZs

x �Uss�ps�X
z = −H1

�EX�
�EX�−EX� ,

where �EX���X�EV is the band offset of the antibonding p
states. Since the bonding and antibonding p states should
have nearly the same probability densities, it is to be ex-
pected that �X is fairly close to unity.

The other two terms in rxz�NZX are negligible. J
= ��2 /m0

2��s=�15
− , s�=�1


,�12

 �s,X�s�,X�UZspss�

z ps�X
x is negligible

since each term in the sum, including terms with d
states, contains a momentum matrix element which is zero
when the crystal exhibits inversion symmetry. R
= ��2 /m0

2��ss��s,X�s�,X�UZspss�
x ps�X

z is negligible since it has a
very large denominator involving the product of antibonding
p states and bonding or antibonding f states.

Combining all terms, we have rxz�NZX= 
F� /EG
−G / �ED�−EV�− 
2�X−1�H1 / �EX�−EX����EV /2�. The Kane
parameters F�, H1, and G may be evaluated from the Lut-
tinger parameters as described in Sec. VI. Typical values for
GaAs in units of 3�2 /m0 are −2.4, −0.61, and −0.14 respec-
tively. The energy gap between p states has a value of ap-
proximately EX�−EX�5 eV. If we also assume that ED�
−EV�10 eV, it is found that the term proportional to G
contributes less than 1% to the value of rxz�NZX and so can
be neglected. Its contribution is also negligible in other com-
mon superlattice systems, such as those considered below in
Table II. This term will therefore be ignored. Thus we can
write

rxz�NZX = � 1

EG
F� −


2�X − 1�
EX� − EX

H1��EV

2
. �19�

A similar treatment can be performed for rzx�NZX= �1
−rxz��NZX by ignoring terms with matrix elements that are
suppressed by inversion symmetry and also terms with de-
nominators in which at least one of the remote states is an f
state. Also terms are ignored where the two remote states are
d states or a combination of d and bonding s states since the
latter are as remote as d states and even d states were shown
above to make a negligible contribution. The one exception
is the term labeled T in the second part of Eq. �17�, which
contributes a term with a denominator containing both anti-
bonding s and d states. It also contributes a much larger term
whose denominator contains two antibonding s states. This is
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shown explicitly in Eq. �20� in which �EC is the conduction-
band offset,

T =
�2

m0
2 �

s,s�=�1

,�12




�s,X�s�,XpZs
z �Uss�ps�X

x

�
�2

m0
2��,X

2 pX�
x p�X

x �U�� − 2
�2

m0
2��,X�D�,XpX�

x pXD�
x �U�D�

�−
F�

EG
�EC + 2Pz

�1 − fZ�
z �

EG
�Pz

�lc��1 −
EG

ED� − E�
� . �20�

In Eq. �20�, the term in the middle line proportional to �U�D�
has been expressed in the last line in terms of �Pz

�lc�, using
the expressions in Eqs. �9� and �11�. Setting the square
bracket in the last line equal to one since EG�ED�−E�, the
result for �1−rxz��NZX, analogous to Eq. �19�, is

�1 − rxz��NZX =
H1

2

�EV

EX� − EX
+

F�

2EG
��EV − 2�EC�

+ 2
�1 − fZ�

z �Pz

EG
�Pz

�lc�. �21�

Combining Eqs. �19� and �21� yields

�NZX = rxz�NZX + �1 − rxz��NZX � − F�
�EG

EG

+ 2
�1 − fZ�

z �Pz

EG
�Pz

�lc� + 
1 − �X�
H1

EX� − EX
�EV.

�22�

Equation �22� shows that on crossing an interface, the main
change in N=F�−G+H1, is the term proportional to �EG,
which is due to the denominator of F� that depends mainly
on the antibonding s states. Changes in the squared momen-
tum matrix element of the numerator make a much smaller
contribution, proportional to �Pz

�lc�. The change in H1 is
given by the third term in Eq. �22� and is very small, van-
ishing for �X=1. This term is due to the change in the band
gap between the bonding and antibonding p states, which is
fairly similar in both materials. Any change in H1 due to the
squared momentum matrix element in its numerator is neg-
ligible because the change in the numerator involves f , or
higher states, according to Eq. �9�. The contribution from the
G term is negligible because it has a very large denominator.

Its variation is expected to be of order �G /G��V̄ /�E

which yields �G�G�k̄a�2
�V̄ ·a2 since Gk̄2
Fk̄2��V̄.

Since �V̄ ·a2 corresponds to an energy contribution �V̄ · �k̄a�2,
which is the accuracy limit in this section, we can write
�G�0. Equation �22� means that in the 8�8 case consid-
ered below, where the contribution from the antibonding s
band is excluded, �NZX��H1�
1−�X��H1 /EX�−EX��EV,
which vanishes for �X=1.

Substituting Eq. �22� into Eq. �21�, we end up with the

final result for the operator ordering parameter, rxz:

rxz�6 � 6�

=

1

2��2�X − 1�
EG

EX� − EX

H1

F�
− 1� �EV

�EG

1 − 2�1 − fZ�
z �

Pz

F�

�Pz
�lc�

�EG
− 
1 − �X�

H1

F

EG

EX� − EX

�EV

�EG

.

�23�

Note that H, F�, and the band-gap energies EG and EX�
−EX in Eq. �23� refer to the reference crystal, and that
�EV /�EG is simply the valence-band offset ratio at each in-
terface. As shown below in Sec. VII, the first term in the
denominator of Eq. �23�, and the second term in the brackets
of the numerator, will dominate in narrow gap systems and
rxz then takes a value close to minus half the valence-band
offset ratio.

In arriving at the expression for rxz, where �1
−rxz�kzNZXkx makes an interface contribution of order

�V̄ · �k̄a�2, a number of small terms have been neglected due
to small momentum matrix elements which would be zero in
the presence of inversion symmetry or due to large energy
denominators. This can be justified by supposing that they

will each make a contribution at least ��k̄a� times smaller

than other larger terms, of order �V̄ · �k̄a�2, and so can rea-
sonably be neglected. The same argument was already ap-
plied above to the diagonal ��,zz

11 terms. It should also be
noted that if rxz is determined by substituting �NZX=
−3�2��3 /m0 into Eq. �19�, the results are less reliable, being
much more dependent on the choice of reference crystal than
those obtained by substituting Eq. �22�. This is because
�NZX has a nonlinear variation with composition, as evident
from Eq. �22�.

For the 8�8 case, there is no contribution from the anti-
bonding s states, so the F� and Pz terms can be dropped in
Eqs. �19�, �21�, and �22�. No other significant terms are in-
troduced. This gives rxz�NZX=−
2�X−1��N and �1
−rxz��NZX=�N with �N= 
H1 / �EX�−EX���EV /2. Hence
�NZX=−2
�X−1��N and rxz is given by the following
simple relationship:

rxz�8 � 8� =
�X − 0.5

�X − 1
. �24�

Note that for �X→1, �NZX→0. However, the product
rxz�NZX remains finite.

Based on the preceding results, a second version of the
Hamiltonian for superlattice structures can be constructed

which now includes all terms up to order �=2 in �V̄ · �k̄a��. It
takes the form
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EFZ = ��2

2 �kx
1

mZ,xx
�lc� kx + ky

1

mZ,yy
�lc� ky + kz

1

mZ,zz
�lc� kz� + �

zi

��2

4
��,zz

Z + �ZZ�	i���z − zi�

+ �0,zzkz
4 + �1,zz
kx

4 + ky
4� + �0,zzkx

2ky
2 + �1,zz
kx

2kz
2 + ky

2kz
2�

�FZ + EZ
�lc�FZ − i
fPz

�lc�kz + �1 − f�kzPz
�lc��F�

+ 
rkxN
�lc�kz + �1 − r�kzN

�lc�kx�FX + 
rkyN
�lc�kz + �1 − r�kzN

�lc�ky�FY + �
zi

	i��z − zi�
�Z�F� + �ZXFX + �ZYFY�

+ �
zi

��z − zi�
�Z�
a F� + �ZX

a FX + �ZY
a FY + �ZZ

a FZ� + �
zi

���z − zi��Z�
a F�, �25�

where the inclusion of the �0,11, �1,11, �0,11, and �1,11 non-
parabolicity terms was first pointed out by Takhtamirov and
Volkov.9,10 These �and additional off-diagonal contributions
not explicitly included� come, for example, from the next
term in the expansion of Eq. �6� and are evaluated for the
reference crystal. For low lying confined states these terms
can probably be ignored, especially in an 8�8 treatment,
where the remote states of the reference crystal that contrib-
ute to the nonparabolicity coefficients are more distant in
energy than in the 6�6 case.

The terms on the last line of Eq. �25� with superscript “a”
are due to the antisymmetric part of G��z� and apply in the
case of a no common atom superlattice, as discussed in Sec.
III. Note that they do not contain a factor 	i since G��z� �a
has the same sign at each interface �see Appendix B�. Note
also that the notation has been simplified by invoking cubic
crystal symmetry and Hermiticity of the Hamiltonian: r
=rxz=ryz, f = fZ�

z , Pz
�lc�= Pz

�Z�lc�, and N�lc�=NZX
�lc�=NZY

�lc�. r is
given by Eqs. �23� and �24� for the 6�6 and 8�8 cases,
respectively.

In the next section the full 6�6 and 8�8 Hamiltonian
matrices are presented, based on the forgoing treatment.

VI. HAMILTONIAN FOR �1 CONDUCTION AND �15

VALENCE STATES

Following from the preceding results, it is possible to con-
struct a complete 6�6 Hamiltonian matrix for the zone-

center �15 valence states. Similarly a complete 8�8 Hamil-
tonian matrix can be constructed which also includes the �1

conduction states. These Hamiltonians matrices are pre-
sented below. The nonparabolicity terms are not included for
the reasons discussed in Sec. V but could easily be incorpo-
rated at the expense of adding several more fitting param-
eters. Additional contributions due to relativistic corrections
are considered in Sec. VIII. The Hamiltonian matrix is made

up of two diagonal blocks, M� , one for each spin direction,

where M� =M1
� +M� IF1

+M� IF2
+M� IF1

� +M� IF2
� . The matrices M� IF2

and M� IF2
� may be omitted for common atom superlattices,

which have a negligible G��z� �a �see Appendix B�. More-

over, as discussed below, the matrices M� IF1
� and M� IF2

� are
usually small enough to be below the level of uncertainty in
any comparison with experimental data and can be omitted

in most cases. The main exception is M� IF1
� in the 6�6 case.

Table I shows the definitions of the terms that appear in the

matrix M� , which is written explicitly below. The
8�8 Hamiltonian matrix has the following states as the local
basis: S↑, X↑, Y↑, Z↑, S↓, X↓, Y↓, and Z↓ while in the
6�6 Hamiltonian matrix the S↑ and S↓ states are excluded.
Only the spin-up matrices are given below.

The 8�8 Hamiltonian is as follows, where the super-
script �lc� refers to local piecewise values,

M� 1 = �
�A��lc��kx

2 + ky
2�

+ kzA��lc�kz + EC
�lc� � iP�lc�kx iP�lc�ky i��1 − f�P�lc�kz

+ fkzP
�lc� �

− iP�lc�kx �L��lc�kx
2 + M�lc�ky

2

+ kzM
�lc�kz + EV

�lc� � N�lc�kxky �1 − r�kxN
�lc�kz + rkzN

�lc�kx

− iP�lc�ky N�lc�kxky �M�lc�kx
2 + L��lc�ky

2

+ kzM
�lc�kz + EV

�lc� � �1 − r�kyN
�lc�kz + rkzN

�lc�ky

− i� fP�lc�kz

+ �1 − f�kzP
�lc� � rkxN

�lc�kz + �1 − r�kzN
�lc�kx rkyN

�lc�kz + �1 − r�kzN
�lc�ky �M�lc��kx

2 + ky
2�

+ kzL��lc�kz + EV
�lc� � � , �26�
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M� IF1
= �

i

	i��z − zi� � �
0 i�1ky i�1kx �

− i�1ky 0 � i��0 + �2�kx

− i�1kx � 0 i��0 + �2�ky

� − i��0 + �2�kx − i��0 + �2�ky 0
� , �27�

M� IF2
= �

i

��z − zi��
D0,��

a i�1kx i�1ky i�1kz

− i�1kx D0,XX
a 0 i�0ky

− i�1ky 0 D0,XX
a i�0kx

− i�1kz − i�0ky − i�0kx D0,ZZ
a

� , �28�

M� IF1
� = �

i

	i���z − zi��
d1,�� 0 0 0

0 �X − �0 + d1,XX 0 0

0 0 �X − �0 + d1,XX 0

0 0 0 �2 + d1,ZZ

� , �29�

and

M� IF2
� = �

i

���z − zi��
0 0 0 �̄

0 0 �̄ + �2 0

0 �̄ + �2 0 0

�̄ − �1 0 0 0
� . �30�

A term of the form Bkykz can be added to iP�lc�kx, with similar combinations for the other P�lc� terms. It contributes to a small
spin splitting in the conduction band.26 However, it is often ignored since it vanishes in the presence of inversion symmetry
and is not included here explicitly. P is given by P= �� / im0�p�X

x .
Equations �27� and �28� contain matrix elements due to QL,12

� +QR,12
� and Eqs. �29� and �30� contain matrix elements due to

QL,12
z , as defined in Eq. �8�. Contributions to these elements from �1 bonding s states are ignored �since they are

TABLE I. Definition of parameters appearing in the 8�8 and 6�6 Hamiltonians. EG is the band gap, in the absence of the spin-orbit
interaction, between antibonding s states which form the conduction-band edge, EC, and bonding p states which form the valence-band edge,
EV. �EV=EV

B−EV
A is the valence-band offset and EX�−EX is the band gap between the antibonding ��15c� and bonding ��15v� p states at the

zone center. �X is the ratio of the �15c and �15v band offsets. F�, G, and H1 are the Kane parameters. The second of these should not be
confused with the profile function G�z�.

Parameter 8�8 6�6

L� F�+2G+�2 /2m0

M H1+�2 /2m0

N F�−G+H1

A� ��2 /2m0��m0 /mc−EP�EG+� /3� / 
�EG−� /3��EG+2� /3���
F� −�3�2 /m0��+ ��2 /2m0��EP /EG� −�3�2 /m0��
G −�3�2 /m0��
H1 −�3�2 /m0�	
� −�1+�1−8�2−12�3� /18

� �1+�1+�2−3�3� /9

	 �1+�1−2�2� /6

EP 2m0P2 /�2

r

�X − 0.5

�X − 1

1
2

2�X − 1�

EG

EX�−EX

H1

F�
− 1� �EV

�EG

1 − 2�1 − fZ�
z �

Pz

F�

�Pz
�lc�

�EG
− 
1 − �X�

H1

F

EG

EX�−EX

�EV

�EG

�Z −�F� /2EG��EV

�X −�H1 /2
EX�−EX���EV
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zero in the presence of inversion symmetry�, as are contribu-
tions from f , or more remote states. The coefficients
in Eq. �27� and �29� which come from the symmetric part of
G��z� are �0= i�� /m0�D0,YX�

s pX�Z
y / �EX�−EX�, �2

= i�� /m0��s=�12

 pYs

y D0,sZ
s / �Es−EX�, and �1

= i�� /m0�D0,�Z�
s pZ�X

y / �EX�−EX+EG /2�. In deriving the terms
proportional to �0 or �1 in Eq. �27�, symmetry relations be-
tween momentum matrix elements of the form pY�Z

x are ap-
plied, as given in Ref. 28, and the following symmetry rela-
tions for the D0 operator are used: D0,XY�

s =D0,YX�
s =D0,Y�X

s

and D0,YZ�
s =D0,XZ�

s =0. The other terms in Eq. �27� are di-
rectly related to the D0 operator: �=D0,XY

s and �=D0,�Z
s . The

coefficients in Eqs. �28� and �30� which come from the anti-
symmetric part of G��z�, as defined in Appendix B, are �0

= i�� /m0��pXZ�
y D0,Z�Z

a +D0,XX�
a pX�Z

y � / �EX�−EX�, �1

= i�� /m0��s=�12

 D0,�s

a psZ
z / �Es−EX�, and �2

= i�� /m0�pXY�
z D0,Y�Y

a / �EX�−EX�. The diagonal terms: D0,��
a ,

D0,XX
a =D0,YY

a , and D0,ZZ
a in Eq. �28� were introduced in Sec.

III and are due to the D0 operator. Similarly �̄=−iD1,XY
a and

�̄=−iD1,�Z
a in Eq. �30� are due to the D1 operator and are

analogous to the �, � coefficients of the D0 operator.
The appearance of �1 in Eq. �30� ensures Hermiticity

when combined with Eq. �28�. Note, however, that the terms
in �1 and �2 are probably quite small relative to the other �i
and �i terms in the interface matrices since they are due to
fairly remote antibonding d states �the contributions due to
bonding d states are negligible since they would be zero in
the presence of inversion symmetry�. These terms might be

considered to be smaller than �V̄ · �k̄a�2 and ignored, thereby

simplifying the interface matrices for no common atom su-
perlattices quite significantly.

In Eq. �29�, the �X term is related to ��,zz
XX , which was

discussed after Eq. �16�. It is given by �X= ��2 /4���,zz
XX . Cor-

responding terms ��= ��2 /4���,zz
�� and �Z= ��2 /4���,zz

ZZ con-
tain two �12 d states and are taken to be negligible: ��,zz

��

= �2 /m0
2��s=�12


 �U�spsZ
z pZ�

z / �Es−EV��Es−EC� and ��,zz
ZZ �

−G�4 /�2��Ed−EV��EV, where Ed is a typical d-state energy.
The d1,nn terms in Eq. �29� are due to the D1 operator, where
d1,nn=−iD1,nn is real. These terms may be small enough to be
ignored, according to the values estimated for d1,nn in Sec.
III. In fact, all the terms in Eqs. �29� and �30� should be
comparable in size to the d1,nn terms, so it is probably a

reasonable approximation to omit M� IF1
� and M� IF2

� altogether.
Note that �, � and D0,��

a , D0,XX
a , and D0,ZZ

a in Eq. �27� and

�28� are of order �=1 in �V̄ · �k̄a�� while the rest of the terms
in Eqs. �27�–�30� are of order �=2. Note also that the diag-
onal �=1 terms in Eq. �28� couple the same states as the
diagonal �=2 terms in Eq. �29� and that the off-diagonal �
=1 terms in Eq. �27� couple the same states as the off-
diagonal �=2 terms in Eq. �30�. Therefore, in no common

atom superlattices, the omission of M� IF1
� and M� IF2

� can be
justified, not only on the grounds that they are very small but
also because their contributions can simply be considered to
renormalize the values of the �=1 terms.

In the 6�6 Hamiltonian, M� 1, M� IF2
, and M� IF2

� are given by
the lower right-hand 3�3 block for the X↑, Y↑, and Z↑
states in Eqs. �26�, �28�, and �30�, respectively, with the r
parameter in Eq. �26� defined for the 6�6 case in Table I.
The other interface matrices are as follows:

M� IF1
= �

i

	i��z − zi�� 0 � i�P�/EG + �0 + �2�kx

� 0 i�P�/EG + �0 + �2�ky

− i�P�/EG + �0 + �2�kx − i�P�/EG + �0 + �2�ky 0
� �31�

and

M� IF1
� = �

i

	i���z − zi���X − �0 + d1,XX 0 0

0 �X − �0 + d1,XX 0

0 0 P�/EG + �Z + �2 + d1,ZZ
� . �32�

The appearance of P� /EG in Eq. �31� is due to expressions
like 
QL,YZ

y +QR,YZ
y � which can now include a term

i�� /m0�pY�
y D0,�Z / �E�−EX� in addition to i�0. A similar term

appears in QL,ZZ
z and hence in Eq. �32� due to the remote

antibonding s band �which was not remote in the 8�8 for-
mulation�. This band also contributes to �Z= ��2 /4���,zz

ZZ

which had only weak d-band contributions in the 8�8 case.
The expression for ��,zz

ZZ is given in Eq. �16�. Unlike the 8

�8 case, M� IF1
� cannot be totally ignored since, as shown

below, the �Z term can be quite large in some superlattices.

VII. NUMERICAL ESTIMATES OF r, �X, and �Z

In this section the parameters r, �X, and �Z which depend
on bulk Kane parameters, and which give rise to interface
contributions in the Hamiltonian, are estimated. Table II
shows the values of r, �X, and �Z for four rather
different heterojunction systems: GaAs /Al0.3Ga0.7As,
Al0.7Ga0.3As /AlAs, In0.53Ga0.47As / InP, and InAs/GaSb. In
the last case, only results appropriate to the 8�8 Hamil-
tonian are listed because the valence band of GaSb overlaps
with the conduction band of InAs, making the 6�6 treat-
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ment inappropriate. Values are compared using both well and
barrier parameters, in order to show the sensitivity of the
result to a change in the reference crystal from the well to the
barrier material.

Luttinger parameters and band-gap data were taken from
Refs. 29–32 as indicated in the table. The �15

+ −�1
− band gap,

EG, was set equal to E0+�0 /3, where E0=E�6c
−E�8v

is the
fundamental band gap of the material and �0 is the spin-orbit
splitting energy. In In0.53Ga0.47As and AlxGa1−xAs alloys, the
procedure outlined by Vurgaftman et al.31 was used to deter-
mine E0, using the bowing parameters in Ref. 31. In
AlxGa1−xAs, a linear interpolation was also performed for
heavy and light hole masses, EP, �0, and �3−�2. The Lut-
tinger parameters for the alloy were then calculated from the
mass values and the interpolated value for �3−�2.

The �15c−�15v band gap, EX�−EX, between bonding and
antibonding p states, is set equal to E�7c

−E�8v
+ �2 /3��0�

+ �1 /3��0, where �0�=E�8c
−E�7c

. For the alloys, a linear in-
terpolation was performed. This band gap is fairly constant
among III-V materials with the same lattice constant. How-
ever, even small variations in the value of EX�−EX can affect
the value of the parameter �X quite significantly. Fortunately,
this only has a very small effect on the values of r �6�6�
and �X, except for superlattice systems with a large band
gap, where E0 and EX�−EX are comparable in size, as dis-
cussed below. Although r �8�8� is sensitive to the value of
�X, the product r�N�lc� is much less so, and this is what
determines any interface contribution. Such contributions
are, in any case, quite small.

As discussed after Eq. �22�, �H1�
1−�X��H1 /EX�
−EX��EV and �G�0. In addition, F��8�8��0, since only
the bonding s states ���� contribute to this Kane parameter,
and their contribution is very small, due both to their large
energy separation from the valence-band edge ��10 eV�,
and to the small value of the momentum matrix element
p��X

x , the squared modulus of which appears in the numerator
of F� and which vanishes in the presence of inversion sym-
metry. These last two conditions can be written, E0 /E��X

� �k̄a�, where E��X=EV−E�� and P���k̄a�P, where P�

= �� / im0�p��X
x �see Ref. 26�. Thus F��8�8� · k̄2

= ���2 /2m0�EP� /E��X�k̄2 � �k̄a�3� ����2 /2m0��EP� /E��X

−EP /E0��k̄2�. Since the square bracket in the last term is just

�F��6�6�� and �F��6�6� · k̄2���V̄, this shows that �F��8
�8� · k̄2�
�V̄ · �k̄a�2. Hence, F��8�8��0 is consistent with

our accuracy limit of �V̄ · �k̄a�2. These constraints on F�, H1,
and G, together lead to the following relations:

1 + �1 − 8�2 − 12�3 + 3�4 � 0, �33a�

��2 − ��3 � −
�

3
�1 + �1

A − 2�2
A� �33b�

��2 + ��3 �
��4

3
�33c�

where �4=EP /EG, �= 
1−�X��EV / �EX�
A −EX

A�, �EV=EV
B−EV

A,
��2=�2

B−�2
A, etc., in which A and B are the well and barrier

materials and A is the reference crystal. As a result, the num-
ber of band-structure fitting parameters can, in principle, be
reduced from 8 ��1, �2, �3 and �4 for each material of the
superlattice� to just 4 �e.g., �1, �2, and �4 for the well mate-
rial and �4 for the barrier material�. Note that Eq. �33� refers
to materials, A and B, which are perfectly lattice matched.
Thus Luttinger parameters deduced using Eq. �33�, may dif-
fer by a small amount from bulk values, if material B has a
slightly different lattice parameter than material A. Of the
superlattice materials in Table II, InAs/GaSb has a signifi-
cantly larger lattice mismatch ��0.6%� than the others and
so might be expected to show the most significant deviation
from the bulk values.

In Table II, the band-structure parameters taken from the
literature have been slightly modified in some instances, in
order to achieve consistency with Eq. �33�. It is not claimed
that they are more accurate in each case than the literature
values since no attempt has been made to fit them to experi-
mental data or to include strain effects. The purpose is only
to provide typical estimates for the magnitudes of r, �X, and
�Z, which are presented both with the original literature pa-
rameters and with the adjusted parameters, for comparison.
Where the parameters are not the same, the literature values
are shown in square brackets. It should be noted that the
literature parameters sometimes lead to inconsistencies, such
as a value for �F��6�6�� in both InAs and GaSb which is
about 25% greater than ��2 /2m0��EP /EG�, when in fact it
must be very slightly smaller.

The operator ordering parameter r�6�6�, calculated in
Table II, depends on the second operator ordering parameter,
f , which is defined in Eq. �11�. Its value is not known, so the
r values given in Table II are computed for f =0.5. For com-
parison with the r value, the equivalent result for the operator
ordering in the Burt formulation, rBurt=�H1 / ��D+�H1�, is
also included in Table II, where D=F��6�6�−G. It can be
seen from the table that r is fairly insensitive to the choice of
reference crystal and is also quite different from the Burt
value. This is true, regardless of the value chosen for f . Note
that both in GaAs /Al0.3Ga0.7As and In0.53Ga0.47As / InP, r
takes a value quite close to minus half the valence-band off-
set ratio, �EV /�EG��EV0 /�E0. The reason for this was dis-
cussed earlier. For Al0.7Ga0.3As /AlAs, r appears to be much
more sensitive to the parameters f and aX. Presumably this is
because EG=E�−EX is no longer substantially smaller than
EX�−EX, so the second term in the numerator and the first
term in the denominator of Eq. �23�, which are due only to
the antibonding s states ���, are no longer dominant. How-

ever, even in this case the error in r is less than ��k̄a�, which

will only introduce an error of order �V̄ · �k̄a�3 into the inter-
face term due to �N�lc�. Thus simply setting r equal to minus
half the valence-band offset ratio in all cases is an acceptable
simplification.

In the 8�8 case, the operator ordering parameter, r�8
�8�, and the Burt value, rBurt=�H1 / ��D+�H1�, are again
generally different for most of the heterojunctions. In this
case D=F��8�8�−G. An exception appears to be InAs/
GaSb, but the near agreement for this heterojunction is likely
to be coincidental, for the reasons discussed after Eq. �18�. In
fact, for the 8�8 case, �N=�D+�H1��H1 is quite small,
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as is the parameter, �N, defined before Eq. �24�, which de-
termines the interface contribution to the Hamiltonian due to
operator ordering. Thus, operator ordering in the 8�8 case
is probably less important than in the 6�6.

Values are given in Table II for the �Z parameter in the
6�6 Hamiltonian and the �X parameter appropriate to both
the 6�6 and 8�8 Hamiltonians. The diagonal derivative of
a delta-function parameter �X is typically 0.1–1.3 eV Å2.
This should be comparable in size with the d1,XX parameter
with which it appears in both the 6�6 and 8�8 Hamilto-
nians. However, the �Z derivative of a delta-function param-
eter can be quite large and it exhibits a large sensitivity to the
choice of the reference crystal, especially for narrow gap
systems such as In0.53Ga0.47As / InP. In this case it can only
be determined with an error of �50% if a suitable virtual-
crystal average is used as the reference crystal �e.g.,
10
5 eV Å2�. Even in GaAs /Al0.3Ga0.7As it can only be
determined with an error of �25% �e.g., 2.4
0.6 eV Å2�.
Thus even if the correct operator ordering and all relevant
interface contributions are taken into account, these uncer-
tainties in �Z will limit the ultimate accuracy of the 6�6
treatment. As an example, the matrix element of �Z for the
lowest light hole state in a quantum well of width L takes a
value of approximately 2	�Z /3L2. For L=100 Å and �Z
=10 eV Å2, this corresponds to an energy of �3 meV,
which represents the expected level of precision. Since �Z is
proportional to the band offset, the precision will improve
with a smaller band offset �smaller �x in AlxGa1−xAs�. This

is as anticipated since it reduces the value of �V̄ /EG and
makes the 6�6 treatment a better approximation.

VIII. RELATIVISTIC CORRECTIONS

In this section the relativistic corrections to the preceding
Hamiltonians are considered. Based on the treatment of
Takhtamirov and Volkov10 the spin-orbit interaction adds two
important terms to the right-hand side of Eq. �3�:
�n�
��n��UA�p ·��n�� /4m0

2c2�Fn��k� and �n�
��n���U
�p ·��n�� /4m0

2c2���G�kz−kz����k� −k���Fn��k��dk� in
which � is the Pauli spin matrix vector. These terms intro-
duce an extra term into Eq. �6�: 1

3�n���nn�
+ G̃�z���nn��Fn��r� in which �nn�
=3�n���UA /�r�L ·S /r�n�� /2m0

2c2 and ��nn�=3�n���
UB

−UA� /�r�L ·S /r�n�� /2m0
2c2 and S is the spin angular momen-

tum operator. This leads to the addition of the familiar spin-
orbit energy matrix to Eq. �25�. It has the form

HSO =
��z�

3
� G� ��

− ��
� G�

� �, where

TABLE II. Values of the operator ordering parameter r determined in the 6�6 �with f =0.5� and 8�8 Hamiltonians, and the equivalent
Burt parameter rBurt=�H1 /�D+�H1, calculated for different heterojunction combinations. Values are also calculated for the �Z parameter
in the 6�6 Hamiltonian, and the �X parameter appropriate to both the 6�6 and 8�8 Hamiltonians. The source of each band-structure
parameter is indicated by a letter as follows: a= Ref. 29, b= Ref. 30, c= Ref. 31, and d= Ref. 32. The parameter values for AlxGa1−xAs alloys
are determined from the parameter values of the binary materials, as described in the text. In cases where �1, �2, or �3 have been changed,
for reasons given in the text, the original literature values, and the computed results based on the literature values, are given in square
brackets.

Reference crystals

Parameters 6�6 Both 8�8

�1 �2 �3

EP

�eV�
E0

�eV�
�0

�eV�
EX�−EX

�eV�
�EV0

�E0
rBurt r

�Z

�eV Å2�
�X

�eV Å2� rBurt r

3.19 0.19 −3.1 −0.24 2.2

GaAs 6.84a 2.10a �2.9a� 25.7a 1.52c 0.34b 4.73a −0.01 �0.19� �−2.8� �−0.24� 1.0 �2.2�
5.58 1.44 2.55 −0.4 �0.04� 0.18 −1.8 −0.25 �0.25� 2.2

Al0.3Ga0.7As �5.2� �1.38� �2.12� 24.3 1.94 0.33 4.66 �0.18� �−1.6� �−0.23� �2.2�
2.01 0.17 −1.7 −0.34 2.8

Al0.7Ga0.3As 4.0 0.89 �1.56� 22.5 2.46 0.33 4.57 −0.02 �0.15� �−1.3� �−0.34� 1.0 �2.8�
3.31 0.52 1.66 −0.4 �0.08� 0.12 −1.0 −0.35 �0.24� 2.8

AlAs �3.45a� �0.68a� �1.29a� 21.1a 3.10c 0.32b 4.50a �0.10� �−0.8� �−0.33� �2.8�
4.97 0.32 −15.5 −0.41 0.0

In0.53Ga0.47As 11.01d 4.18d �4.84d� 25.3d 0.816c 0.36a 4.75a 0.01 �0.33� �−15.2� �−0.41� 1.0 �0.0�
6.58 2.02 2.78 −0.6 �0.07� 0.38 −5.1 −0.39 �0.53� 0.0

InP �4.95a� �1.65a� �2.35a� 20.4a 1.424c 0.11c 4.88a �0.42� �−4.3� �−0.29� �0.0�
6.33 0.62 0.8

InAs 19.7a 8.37a �9.29a� 22.2a 0.418a 0.38c 4.76a �0.62� 1.0 �0.8�
13.72 4.95 3.20 1.3 0.96 �0.88� 0.8

GaSb �11.8a� �4.02a� �5.26a� 22.4a 0.812a 0.75c 3.72a �0.95� �0.8�
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G� = �
0 0 0 0

0 0 − i 0

0 i 0 0

0 0 0 0
� and �� = �

0 0 0 0

0 0 0 1

0 0 0 − i

0 − 1 i 0
�

�34�

with ��z�=�A+ G̃�z���B−�A� and �A=�X↑Z↓
A =

−i�3� /4m0
2c2��X���UA�p�y�Z�.

Takhtamirov and Volkov10 also derived interface-band
mixing terms Sl,nn� which are analogous to the Dl,nn� terms in
Eq. �4� and also an additional interface contribution:
�1 /2	����k� −k���B0,nn�Fn��k��d3k�, all of which should
be added to Eq. �3�. For a symmetric interface in which
G��z� �a�0, B0,nn� is given by B0,nn�=��n�����0

s�U� · ��k�
�����n�� /4m0

2c2 and the Sl,nn� terms by S0,nn�=�nn�
0

and S1,nn�= i��nn�
1 −�nn�

0 �, with �nn�
0 =��n�����0

s�U�
�p ·���n�� /4m0

2c2 and �nn�
1 =��n���1

s � ��U��p ·���n�� /
4m0

2c2. In principle, S0,nn� gives a contribution of order

�V̄SO · �k̄a� while the other two terms are of order �V̄SO · �k̄a�2,

where �V̄SO is a typical band offset due to the spin-orbit

energy: �V̄SO��B−�A. However, since the difference in the
spin-orbit splitting, �B−�A=−i�3� /4m0

2c2��X�����U�
�p�y�Z�, is usually quite small in many common superlattice

materials, it might be reasonable to suppose that the spin-
orbit related interface-band mixing is substantially smaller
than the interface-band mixing due to the D0,nn� and D1,nn�
terms. An exception may be in InAs/GaSb, where the differ-
ence in the spin-orbit splitting is comparable with the
valence-band offset. For this reason, the form of the S0 and
S1 contributions has been evaluated below. For a symmetric
interface, the complete spin-orbit related interface mixing

takes a form analogous to Eq. �8�: �zi
	i�̃�z−zi�
�11

SOF̃1�r�
+�12

SOF̃2�r��+	i�̃��z−zi�
�11
SOF̃1�r�+�12

SOF̃2�r�� in which

�11
SO = S0,11 + B0,11 + F0,11 + �

�=x,y,z

QL,11

SO,� + QR,11
SO,��k�,

�12
SO = S0,12 + B0,12 + F0,12 + �

�=x,y,z

QL,12

SO,� + QR,12
SO,��k�,

�11
SO = − i
S1,11 + QL,11

SO,z� ,

�12
SO = − i
S1,12 + QL,12

SO,z� . �35�

In Eq. �35�, QL,12
SO,�= �� /m0��s�2�12,sp1s

� S0,s2 and QR,12
SO,�

= �� /m0��s�2�12,sS0,1sps2
� . F0 is a term due to Foreman,33

which will be discussed below. The S0 and F0 terms are
expressed in matrix form as

S�0 + F� 0 = �
0 0 0 0 0 − A iA 0

0 i�C4 0 0 A 0 0 − i�C4

0 0 − i�C4 0 − iA 0 0 �C4

0 0 0 0 0 0 0 0

0 A iA 0 0 0 0 0

− A 0 0 − i�C4 0 − i�C4 0 0

− iA 0 0 − �C4 0 0 i�C4 0

0 0 0 0 0 0 0 0

� , �36�

where the elements containing the parameter, A, are due to
S0, and the rest are due to F0.

The S1 term can be written

S�1 = iS1a� G� ��

− ��
� G�

� � + iS1b� 0 �S

− �S
� 0

�

with �S = �
0 1 − i 0

− 1 0 0 0

i 0 0 0

0 0 0 0
� , �37�

where S1a and S1b are real.

The parameter A in Eq. �36� is given by A

= �� /4m2c2��S↑���U /r�r��0
s�xpz−zpx��y −�U�0

s�px�y�X↓�.
Similar expressions can be derived for the other parameters
in Eqs. �36� and �37�, apart from �C4.

The F0 terms are proportional to �C4. They are of order

�V̄SO · �k̄a�, and are analogous to the term

F̃2��/m0���k��s�2�12,sG̃�z�p1s
� �Us2

in Eq. �10� in which �Us2 is replaced by the relativistic term

��s���U�p ·��2� /4m0

2c2�. Foreman discusses this contri-
bution in Ref. 33, where he shows it is stronger than the bulk
linear-k mixing but it is still very weak. Not surprisingly, the
superlattice combinations where it is strongest are InAs/
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GaSb and InP / In0.53Ga0.47As which have a relatively large
difference in the value of �. In each case he estimates a
value of �C4�0.2 eV Å. This however is much less than
the first-order nonrelativistic interface-band mixing, which in
InP / In0.53Ga0.47As is estimated to be D0,XY�2.9 eV Å for
InAs-like interfaces and 0.87 eV Å for InGaP-like
interfaces.23 In the case of GaAs/AlAs, where the materials
have a very small difference in the value of �, the relativistic
�C4 interface contribution is an order of magnitude
smaller,�C4�0.02 eV Å, and is again much less than the
first-order nonrelativistic interface-band mixing, D0,XY
�0.2 eV Å.

Contributions analogous to �� and �� in Eq. �14� or
r���N12 and �1−r����N12 mixing in Eq. �17�, in which the
nonrelativistic matrix element �Unn� is again replaced by the
equivalent relativistic term, will give rise to very compli-
cated expressions. Fortunately such contributions will be a
factor k̄a smaller than the �C4 contribution and so can rea-
sonably be ignored.

In the above expressions for the matrices S�0 and S�1, three
parameters have been defined: A, S1a, and S1b. In the light of
the discussion for �C4, it may be assumed that the last two
are generally extremely small since they should give contri-
butions �k̄a smaller than the first, and this term should be
smaller than the equivalent nonrelativistic D0 term. The same
goes for any additional parameters introduced in an evalua-
tion of B� 0. In addition the S1a and S1b terms have the same
symmetry as the bulk SO mixing and the A-related mixing,
respectively, which are significantly larger.

The matrices for the Q terms in Eq. �35� can be evaluated,
based on the well-known properties of the momentum matrix
elements and the symmetry of the S0 term given above.
However, since they will generally be smaller than the non-
relativistic �V̄ · �k̄a�2 terms, they can probably be ignored,
similar to the case of the S1 and B0 terms discussed above.

Finally, as for the nonrelativistic case, the effect of the
antisymmetric contribution in the derivative of the interface
profile function, G��z� �a, should be considered. If we assume,
according to the previous argument, that only the A term is
significant among those terms that depend on the details of
the microscopic interface structure ��C4 does not�, then a
similar treatment to the above for the symmetry of this term
due to an antisymmetric profile function, shows that it will
make a �-function contribution �with no 	i factors� propor-
tional to the spin-orbit matrix given in Eq. �34�.

In summary, the relativistic contributions need only be
considered in superlattices where the difference in the spin-
orbit splitting energies is comparable with the valence-band
offset. For these cases, a reasonably accurate approximation
for the relativistic contribution might be given by Eq. �36�.
The effect of asymmetry in the derivative of the interface
profile function may appear as a small interface contribution
proportional to the spin-orbit matrix. It is likely that even
then, all of the relativistic interface terms will have a weaker
effect than the nonrelativistic D0 term and so it may be pos-
sible to ignore them in many cases.

IX. SUMMARY AND CONCLUSIONS

A Kane-like Hamiltonian has been derived for lattice-
matched semiconductor superlattice structures with metallur-

gically abrupt interfaces, which considers all terms of order
�V̄ · �k̄a�2 or larger. As pointed out by Takhtamirov and
Volkov, terms of this order must be included, if differences in
the mass parameters of the well and barrier materials are to
be treated consistently. The basic approach that has been
used here is based on Burt’s original idea, of treating the
crystal potential of the superlattice structure as a weak per-
turbation on that of a bulk reference crystal. However, since
Burt did not include all terms of order �V̄ · �k̄a�2, his result
for the operator ordering of the mass terms has been revised
in the present work. An operator ordering scheme has also
been proposed for the linear-k P terms coupling �1 conduc-
tion and �15 valence states, which was not considered in the
Burt treatment. The aim of the present work has been to
obtain a consistent Hamiltonian for the �1 conduction and
�15 valence states, which preserves the familiar form of the
bulk Kane Hamiltonian, and which keeps the number of
mass and interface related parameters as small as possible.
This is intended to provide a practical and familiar envelope
function equation with improved accuracy, which may be
applied to the analysis of experimental data.

In the present work, the use of local, bulk, P and mass
parameters has been justified in regions far from the inter-
faces. The operator ordering scheme deduced for the mass
parameters has been compared with Burt’s scheme, where it
has been shown to give significantly different results for the
off-diagonal terms. The two possible orderings of the off-
diagonal mass terms are divided in the ratio r and 1−r. In the
6�6 case ��1c excluded�, r is roughly equal to minus half
the valence-band offset ratio, especially when the superlat-
tice band gap is small. In the 8�8 case ��1c included�, r
depends on the ratio between the band offsets for the anti-
bonding and bonding p states, �X. However, in this case the
operator ordering should have a relatively insignificant effect
due to the small change in the bulk mass parameter, N, with
which r appears. For the diagonal mass terms, the familiar
symmetrical operator ordering scheme has been obtained.
However, additional derivative of a �-function terms are in-
troduced, which are quite significant for the 6�6 case. Non-
parabolicity terms should also properly be included, espe-
cially in the 6�6 case.

Approximate constraints can be placed on the Kane pa-
rameters of perfectly lattice-matched superlattice materials:
�H1�
1−�X��H1 /EX�−EX��EV, �G�0, and F��8�8��0.
This is based on the assumption that the contributions to the
Kane parameters, or their differences between the well and
barrier materials, that come from momentum matrix ele-
ments which would be zero in the presence of inversion sym-
metry, or that come from energy denominators from suffi-

ciently remote states, are significantly smaller than �V̄a2. In
principle, this allows the number of independent Luttinger
related fitting parameters to be reduced to just four, e.g., �1,
�2, and �4 for the well material and �4 for the barrier mate-
rial in the 8�8 case, where �4=EP /EG. If one of the super-
lattice materials, e.g., the barrier material, is not perfectly
lattice matched, the above constraints apply to the material
after it has been hydrostatically deformed to achieve a per-
fect lattice match. A change occurs in �4 that can be deter-
mined from the strain Hamiltonian, given for example in
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Ref. 34, which modifies the values of both EP and EG. The
Luttinger parameters of the deformed barrier material can
then be deduced from the constraint equations, after which
the strain Hamiltonian should be applied in the usual way to
take any tetragonal deformation into account.35

A distinction can be made between superlattices made
from materials with a common atom, such as
GaAs /AlxGa1−xAs, where the derivative of the profile func-
tion, G��z�, is expected to be an essentially symmetric func-
tion on the common atom interface plane and superlattices
with no common atom, such as InAs/GaSb, where G��z� ex-
hibits a significant antisymmetric component on the atomic
plane closest to the interface. A symmetric G��z� gives rise to
relatively simple interface matrices, with off-diagonal
�-functionlike terms and diagonal derivative of a
�-functionlike terms, respectively. Compared with a simple
piecewise approach in which the interfaces are not treated
properly, essentially only four more parameters are needed in
the present treatment of an 8�8 Hamiltonian for a common
atom superlattice.36 Of these, the three parameters which de-
fine the derivative of a �-functionlike matrix can probably be
omitted37 since they couple to the same states as affected by
a one monolayer variation in the layer thicknesses but their
effect is much smaller. Unfortunately, six additional param-
eters are needed in a no common atom superlattice.38 How-
ever, two of these make such a small contribution, relative to
other interface contributions that couple to the same states,
that they can probably also be omitted.39,40

In this work, off-diagonal linear-k interface terms have
been introduced which depend on a combination of the mi-
croscopic interface potential and the k ·p interaction. They
result in terms proportional to kx
 iky when the spin-orbit
interaction is included �i.e., in the Luttinger Hamiltonian�
and can introduce a small electric field dependence into the
in-plane effective masses for fields applied parallel to the
growth direction. However, they also compete with bulk
terms which are significantly larger and which are also pro-
portional to kx
 iky. The most important interface contribu-
tions are clearly the five k-independent �-functionlike poten-

tials, of order �V̄ · �k̄a�, which include the off-diagonal � and
� terms. These off-diagonal terms provide a mechanism for
zone-center band mixing that is totally absent from bulk k ·p
models. This can lead to some dramatic observable effects,
such as in-plane anisotropy of both the optical and electrical
properties when an electric field is applied along the super-
lattice growth direction. Some examples may be seen in
Refs. 41–43. In contrast to the off-diagonal terms, the diag-
onal �-functionlike potentials do not cause band mixing but
simply modify the relative alignment of states at the zone
center, such as heavy and light hole, somewhat analogous to
the effect of an in-plane biaxial strain. However, while strain
causes an effective change in well depth, the interface poten-
tials cause an effective change in well width. For example,
the energy shift of a superlattice heavy-hole state is given by
�EHH�−��EHH /�L��2D0,XX

a /�V�, where L is the width of
the well layers and �V is their depth.44 The heavy holes thus
behave as if their well width is increased by an amount,
−2D0,XX

a /�V. The five k-independent interface potentials can
be treated as fitting parameters, or they can be estimated

using the functions �0
s and �0

a defined in this work, and
model basis functions, deduced, for example, by the pseudo-
potential method.11 The functions �0

s and �0
a are sensitive to

the interface abruptness and so the effect of interface abrupt-
ness may also be included. However, it should be noted that
according to Ref. 12, the results may become unreliable
when the interface becomes significantly graded.

In superlattice combinations which exhibit a large differ-
ence in spin-orbit splitting energies, there can be additional
weak relativistic interface contributions. The main common
superlattice candidates for such contributions are InAs/GaSb
and InP/InGaAs. Even here, the nonrelativistic contributions
are expected to be larger. Part of the 8�8 interface matrix
due to relativistic corrections has also been derived, which
includes the most significant terms. However, in the interest
of limiting the fitting parameters to a reasonable number, the
relativistic interface contributions should most usually be
omitted in any practical analysis of experimental data, unless
symmetry considerations or other special arguments justify
their inclusion.
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APPENDIX A: DERIVATION OF THE INTERFACE TERMS
IN THE REAL-SPACE ENVELOPE FUNCTION

EQUATION

Equation �3� is the envelope function equation in recipro-
cal space. It has been derived by Takhtamirov and Volkov10

using the method of Luttinger and Kohn.1 In the derivation
of Eq. �3� the following normalization conditions are

used: �n�Ô�n��= �2	�3 /��cellun
�Ôun�d

3r and �cellun
�un�d

3r
=�nn�� / �2	�3, where � is the volume of the unit cell. Equa-

tion �3� contains an extra factor 	ie
−i�k−kz��zi that does not

appear in Ref. 8 because the equivalent equation in Ref. 8 is
for a representative interface at z=0 while here all the inter-
faces are included explicitly. Also the factor ��k� −k��+Kj��
has been replaced here by ��k� −k��� since it is shown in Ref.
8 that the only contribution is for Kj� =0.

In order to derive the envelope function Eq. �5�, Eq. �3�
must be transformed back to real space. Noting that the wave
function in reciprocal space is written Fn��k��=Fn��kz����k��
−q��, where q� is the in-plane wave vector, this procedure is
quite straightforward up to the term in �Unn� which is de-
rived with a standard application of the convolution theorem.

Writing the interface potential as Hnn�
IF =Hnn�

IF,0+Hnn�
IF,1, the next

term transforms as follows:
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�
n�

Hnn�
IF,0F̃n���,zi� = �

n�
�
zi

P�zi�
D0,nn�

2	
	 Fn��kz��e

ikz�zi��k�� − q��dkz�d
2k��	 eikzze−ikzzieik�·�dkzd

2k���k� − k���

=�
n�

�
zi

	i

D0,nn�

2	
	 Fn��kz��e

ikz�zidkz�	 eikzze−ikzzieik�·�dkzd
2k���k� − q��

=eiq�·��
n�

�
zi

	iD0,nn�F̃n��zi��̃�z − zi� = �
n�

�
zi

	iD0,nn�F̃n���,zi��̃�z − zi� �A1�

where �= �x ,y�. Thus Hnn�
IF,0=	i�zi

D0,nn��̃�z−zi�.
The last term transforms in a similar way,

�
n�

Hnn�
IF,1F̃n���,zi� = �

n�
�
zi

	ie
−i�kz−kz��zi

D1,nn�

2	
	 	 �kz − kz��Fn��k��d3k�eik.rd3k��k� − k���

=eiq�.��
n�

�
zi

	i

D1,nn�

2	

1

i

�

�z
	 eikz�z−zi�dkzF̃n��zi� − 	iD1,nn�

1

i

�

�z
	 Fn��kz��e

ikz�zdkz��z=zi
�̃�z − zi�

=iD1,nn��
n�

�
zi

	i�� �F̃n���,z�

�z
�

z=zi

�̃�z − zi� − F̃n���,zi��̃��z − zi�� . �A2�

Using Eq. �A2� we can evaluate the matrix element,

�F̃n��,z��Hnn�
IF,1�F̃n���,z�� = iD1,nn��

zi

	i	
−�

� �� �F̃n���,z�

�z
�

z=zi

F̃n
���,z��̃�z − zi� − F̃n

���,z�F̃n���,zi��̃��z − zi��dz

=iD1,nn��
zi

	i�� �F̃n���,z�

�z
�

z=zi

F̃n
���,zi� + F̃n���,zi�� �F̃n

���,z�
�z

�
z=zi

� . �A3�

Thus Hnn�
IF,1=−iD1,nn��zi

	i�̃��z−zi�.
In the above derivation, the following identities have been used:

	 F̃n��z��̃�z�dz =
1

2	
	

L�	1st

BZ

Fn��k��eik�zdk��	1st

BZ

e−ikzdkdz =
1

2	
	

L�	1st

BZ

dk	1st

BZ

Fn��k��ei�k�−k�zdk��dz

=	1st

BZ

dk	1st

BZ

Fn��k����k� − k�dk� = 	1st

BZ

dkFn��k� = �	1st

BZ

Fn��kz�eikzzdk�
z=0

= �F̃n��z��z=0 �A4�

and

	
−�

�

F̃n��z��̃��z�dz = �F̃n��z��̃�z��−�
� − 	

−�

� �F̃n��z�

�z
�̃�z�dz = �−

�F̃n��z�

�z
�

z=0
. �A5�

APPENDIX B: DEFINITION OF THE INTERFACE CELL
IN SUPERLATTICES WITH NO COMMON ATOM

In this appendix the interface cell is defined for an ideal-
ized no common atom superlattice in which there are no
strain effects, taking InAs/GaSb as an example. The metal-
lurgical interface is located midway between the Sb and In
atoms for an InSb-like interface and midway between the As
and Ga atoms for a GaAs-like interface.

The cell used to calculate the D0 and D1 matrix elements,
�n�Dl�n��, defined in Eq. �4�, can be specified in several
ways. If the origin of the cell �z=0� is defined as the metal-
lurgical interface, then the atomic orbitals in the Bloch func-
tions of the reference crystal, �n� and �n��, are located at
positions z= 
a /4, where a is the period of the Bloch func-
tions and is also the size of the cell used to calculate
�n�Dl�n��. In �001� superlattices, it is convenient to choose an

OPERATOR ORDERING AND INTERFACE-BAND MIXING… PHYSICAL REVIEW B 81, 235314 �2010�

235314-19



a value equal to half the cubic lattice constant of the refer-
ence crystal. For a symmetric metallurgically abrupt inter-
face located at z=0, as defined for Figs. 1 and 2, this arrange-
ment gives nonzero diagonal D0 terms such as �Z��U ·�0

s �Z�
and nonzero off-diagonal D1 terms such as ����U · 
�1

s

+�1
s��Z�. These terms have the same sign at GaSbIn and

InSbGa interfaces. They should be comparable in size to the
off-diagonal D0 and diagonal D1 terms, respectively, such as
����U ·�0

s �Z� and �Z��U · 
�1
s +�1

s��Z� which do change sign
at opposite interfaces. Note that the following relations for
the microscopic potential and the product of Bloch functions
hold at opposite interfaces: �UGaSbIn�z�=�UInSbGa�−z� and
uZ�z�u��z� �GaSbIn=−uZ�−z�u��−z� �InSbGa.

As an alternative to the above, it is instructive to define
the interface location, z=0, instead, as the anion or cation
plane nearest to the metallurgical interface since this con-
figuration is more directly comparable with the case of com-
mon atom superlattices such as GaAs /AlxGa1−xAs, where the
interface is located on an As plane. This definition changes
the values of zi which define the �-function positions in Eq.
�25� by 
a /4, which is probably small enough to be ignored,
but not the width of each layer which is still determined by
��z� �defined after Eq. �7��. Choosing the Sb plane at an InSb
interface, the derivative of the profile function at neighboring
interfaces can be expressed as GGaSbIn� �z�=��z−��=��z�
+ �z� and GInSbGa� �z�=−��z+��=−��z�+ �z�, where �=a /4.
The symmetric function ��z�= ���z−��+��z+��� /2 corre-
sponds to G��z� �s and the antisymmetric function  �z�
= ���z−��−��z+��� /2 to G��z� �a. Only the contribution from
the symmetric function changes sign at opposite interfaces
and this gives rise to the factor 	i. that appears in Eq. �5�
while there is no such factor for the antisymmetric contribu-
tion since it has the same sign at each interface.

Functions analogous to those in Sec. III can be defined
for the G��z� �a contribution as follows: IG

a �Kzj�=

−i�−d
d G��z� �asin�Kzjz�dz and ĪG

a �Kzj�
= i�−d

d zG��z� �acos�Kzjz�dz, where IG
a is an odd function of Kzj,

and ĪG
a is an even function. Three real functions are also

defined: �0
a=� j�0�eiKzjz / iKzj�IG

a �Kzj�, �1
a

=� j�0�eiKzjz /Kzj
2 �IG

a �Kzj�, and �̄1
a=� j�0�eiKzjz /Kzj�ĪG

a �Kzj�,
where �0

a is an even function of z, and �1
a and �̄1

a are odd
functions. Figures 3 and 4 show plots of �0

s and �0
a, and

�1
s +�̄1

s and �1
a+�̄1

a, respectively, for metallurgically abrupt
interfaces in which the � functions in ��z� and  �z� are re-
placed by Gaussians with a full width at half maximum of
0.8 Å �Ref. 45�. Inspection of these functions shows that
G��z� �s and G��z� �a make contributions of a similar magni-
tude at an interface in a no common atom superlattice and
that there will thus be nonzero diagonal D0 terms such as
�Z��U ·�0

a�Z� and nonzero off-diagonal D1 terms such as
����U · 
�1

a+�1
a��Z� comparable in size to ����U ·�0

s �Z� and
�Z��U · 
�1

s +�1
s��Z�, respectively.

The preceding, one dimensional, model treatment of a
metallurgically abrupt interface contains the assumption that
G��z� is symmetric about the plane z=a /4, i.e., that the av-
erage microscopic potential on a plane midway between the
In and Sb atoms is equal to that for the virtual-crystal aver-
age of InAs and GaSb at that position. If this equality occurs
on a plane at some other position between the In and Sb
atoms, this can be taken into account by adjusting the value
of � in the functions ��z� and  �z�. This will change the
magnitudes of the matrix elements �Z��U ·�0

a�Z�, etc., but
will make no qualitative change to the above conclusions,
i.e., there will still be nonzero diagonal D0 terms comparable
in magnitude to the off-diagonal D0 terms and nonzero off-
diagonal D1 terms comparable in magnitude to the diagonal
D1 terms.
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FIG. 3. Interface functions �0
s �solid� and �0

a �dashed� for a
metallurgically abrupt InSb-like interface located at the plane of Sb
atoms in an idealized InAs/GaSb superlattice with no strain effects.
G��z� is a Gaussian with a full width at half maximum of 0.8 Å and
a peak located half way between the Sb and In planes.
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FIG. 4. Interface functions �1
s +�̄1

s �solid� and �1
a+�̄1

a �dashed�
for the same interface as in Fig. 3.
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