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Quantum-mechanical calculation of coherent electron transmission in the presence of inelastic electron-
phonon interaction is calculated and compared with the semiclassical predictions of simple first-order pertur-
bation theory. It is found that a small electron-phonon matrix element cannot be used to justify semiclassical
behavior. Only if the transmission coefficient is small enough at the phonon threshold, causing unitary feed-
back effects to occur primarily in reflection, do nonperturbative and first-order perturbative solutions appear
qualitatively similar. There are situations in which predictions of simple perturbation theory cannot approach
the nonperturbative quantum calculation even in the presence of both weak coupling and large elastic-
scattering strengths.
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I. INTRODUCTION

Inelastic electron scattering can play a critical role in de-
termining the transport properties and performance of elec-
tron devices. Typically, processes such as electron-phonon
scattering are treated as incoherent events and the scattering
rates are calculated using simple first-order time-dependent
perturbation theory. This approach ignores unitarity and co-
herent processes that could exist and be important in small
nanoscale devices. Simple first-order perturbative approxi-
mations cannot access key features of nonperturbative quan-
tum predictions. The preservation of unitarity in a self-
consistent quantum model drives a feedback mechanism
between all inelastic channels. Even under the condition of
weak coupling, which is commonly invoked to justify per-
turbation theory, the incident electron must be affected by the
existence of inelastic channels and there is no guarantee that
the predictions of first-order perturbation theory can qualita-
tively mimic the behavior of a nonperturbative quantum
model.

Nonequilibrium Green’s functions �NEGFs� can be used
to incorporate many-body effects1 into the Landauer model
of electron transmission.2,3 However, these many-particle in-
teractions make numerical solutions to the NEGFs intrac-
table and usually force one to resort to first-order perturba-
tive methods. This often reduces the solution to a random-
phase approximation, averaging out many quantum-
mechanical effects and resulting in a semiclassical
approximation often interpreted in terms of tunneling and
scattering rates for localized particles.

To solve the inelastic-scattering problem nonperturba-
tively we use an established prototype model4–7 that consid-
ers the interaction between an electron and a localized vibra-
tional mode �an Einstein phonon�. This model has been used
to investigate feedback-related features such as Fano-like
resonances in the transmission,8 impurity band formation in
quantum wells,9 and inelastic effects on wave-packet
propagation.10 The model has a very rich solution space
which may be attributed to treatment of the electron-phonon

interaction as a coherent and unitary process even though it
does not include many-body and some self-consistent effects
such as energy level shifts, collisional broadening, and
electron-electron interactions. In the following, we assume it
is more important that an exact solution be obtained to a
simpler model than a perturbative solution be obtained to a
more complex model, such as in Ref. 11.

II. THEORY

Inelastic scattering between an electron and dispersionless
phonons is modeled by Einstein phonons linearly coupled to
the electron wave function. We consider one-dimensional
electron transport in the x direction in a semiconductor. It is
assumed that the electron density is sufficiently small that
electron-electron interactions may be ignored. For an elec-
tron of effective mass m interacting with Einstein phonons,
the Hamiltonian is4

Ĥ = −
�2

2m

�2

�x2 + V�x� + ��0b̂†b̂ + g1�b̂† + b̂���x − x0� , �1�

where the first two terms are kinetic energy and potential
energy of the electron, respectively; the third term is the total
energy stored in the phonons; and the final term couples the
electron to the Einstein phonons located at position x=x0.
The creation and annihilation operators for a phonon of en-

ergy ��0 are b̂† and b̂, respectively. The electron-phonon
coupling constant is g1 and has units of energy times dis-
tance. We assume that a conduction-band electron interacts
with a longitudinal-optic �LO� phonon via the Frölich inter-
action in the semiconductor GaAs at temperature T=0 K.
The effective electron mass is m=0.07m0, where m0 is the
bare electron mass, and the phonon energy is ��0
=36 meV.

When the electron inelastically scatters it may lose �gain�
energy by emitting �absorbing� a phonon. The number of
phonons excited by the electron is n, with positive n denot-
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ing a net emission of phonons. Conservation of energy re-
quires that the electron’s final energy be En=E0−n��0,
where E0 is the injection energy of the electron. The exis-
tence of a ground state restricts n�0.

The propagation matrix method12,13 may be used to solve
the Schrödinger equation for states,

�k�x� = �
n

�k,n�x��n� . �2�

Here, it is assumed that the electron, �, and phonon, �n�,
wave functions are separable. The domain of interest is dis-
cretized in space and the static potential V�x� is approxi-
mated as a series of potential steps. The diagram in Fig. 1
shows two regions of the domain separated by a potential
step and Einstein phonons located at position x=x0. The elec-
tron states in regions j and j+1 are assumed to be of the
form

�k,n�x� = aneikn
j x + bne−ikn

j x, �3�

for x�x0, and

�k,n�x� = cneikn
j+1x + dne−ikn

j+1x, �4�

for x�x0, where

kn
j =

�2m�En − Vj�
�

. �5�

The Schrödinger equation is solved by first integrating
about position x=x0 to give

� ��n

�x
�

x=x0
+

−� ��n

�x
�

x=x0
−

= �n
2mg1

�2 �cn−1 + dn−1�

+ �n + 1
2mg1

�2 �cn+1 + dn+1� . �6�

Substituting Eqs. �3� and �4� into Eq. �6� and forcing conti-
nuity of the wave function yields the recursion relations

an = i�n
mg1

�2kn
j �cn−1 + dn−1� +

1

2
�1 +

kn
j+1

kn
j 	cn +

1

2
�1 −

kn
j+1

kn
j 	dn

+ i�n + 1
mg1

�2kn
j �cn+1 + dn+1� , �7�

bn = − i�n
mg1

�2kn
j �cn−1 + dn−1� +

1

2
�1 −

kn
j+1

kn
j 	cn

+
1

2
�1 +

kn
j+1

kn
j 	dn − i�n + 1

mg1

�2kn
j �cn+1 + dn+1� , �8�

which allow each channel n to feed into channel n+1 and
feed back into channel n−1.

We solve for the electron wave function at the left and
right edges of the system by creating propagation matrices P j
for each region of the domain and solving



a0

b0

]

aN

bN

� = �
j

P j

c0

d0

]

cN

dN

� , �9�

where N inelastic channels are included in the simulation and
each of an and dn is given by boundary conditions.

The inelastic channels are independent due to the orthogo-
nality of the oscillator states �n�. The total electron transmis-
sion is then the sum of the transmission probabilities of all
propagating channels,

T�E0� = �
n=0

E0/��0−1

Tn�E0� = �
n=0

E0/��0−1
kn

k0
�cn�E0��2, �10�

where the upper limit of the summation ensures that only
propagating modes contribute and the velocity normalization
ensures unitarity.

A. Strong-coupling regime

Numerical solutions require that only a finite number of
phonons are included in the simulation. However, the solu-
tion to the truncated system will not converge with increas-
ing N when g1 exceeds a critical value g1,c. For g1�g1,c, the
inelastic channels are so strongly coupled that all inelastic
channels contribute significantly to the total response of the
system, and hence the matrix may not be truncated for any
value of N.

To determine g1,c analytically consider the continued frac-
tion solution,

c0 =
1

1 +

m2g1
2

�4k0k1

1 +

2m2g1
2

�4k1k2

�

. �11�

For large N the coupling element approaches

lim
N→	

i
�Nmg1

�2kN
=

�mg1

��2��0

, �12�

and the continued fraction expansion becomes

Vj

Vj+1

g1Region j Region j+1

a0

Position, x0x x�

a1

a2

b0

b1

b2

d0c0

d1c1

d2c2

��0

FIG. 1. Diagram of a potential step with Einstein phonons lo-
cated at position x=x0. Electron waves are incident from the left
and right with amplitudes an and dn, respectively. Waves will be
scattered from position x=x0 to the left and to the right having
amplitudes bn and cn, respectively. The electron-phonon coupling
constant is g1 and the phonon energy is ��0.
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�

1 −
p2

1 −
p2

1 −
p2

�

, �13�

where p is equal to Eq. �12�. This is the continued fraction
solution of the quadratic equation

x2 − x + p2 = 0 ⇒ x = 1 −
p2

x
, �14�

which diverges by oscillation if 1−4p2
0. Hence, from Eq.
�12� one obtains g1,c=0.14 eV nm for GaAs.

B. Simple first-order perturbation theory

Simple first-order perturbation theory predictions are ob-
tained by truncating the continued fraction expansion solu-
tion at the first term in the Born series. This is equivalent to
removing the first term from Eqs. �7� and �8� and only con-
sidering excitation of the first phonon. As an example, con-
sider an electron of energy E0 incident on Einstein phonons
in an otherwise constant background potential V�x�=0 eV.
The first-order perturbation theory solution of the transmitted
waves is

c0 = 1, c1 = − i
mg1

�2k1
, �15�

yielding a transmission of

T�E0� = 1 +
m2g1

2

�4k0k1
��E0 − ��0� . �16�

These results are clearly not self-consistent as the transmis-
sion violates unitarity and c1 is infinite at E0=��0.

For comparison, the exact quantum solution considering
only the n=0 and n=1 channels is

c0 =
1

1 +
m2g1

2

�4k0k1

, c1 = − i

mg1

�2k1

1 +
m2g1

2

�4k0k1

. �17�

Simple first-order perturbation theory is usually justified on
the basis of weak coupling, suggesting the g1

2 term in the
denominator can be ignored. However, it is this term that
provides feedback between the channels and preserves uni-
tarity, giving rise to important features in the quantum solu-
tion.

We compare the quantum and perturbative transmission
spectra when the value of the coupling constant yields a ma-
trix element equal to that of the Frölich interaction. The ma-
trix element coupling initial state �k0� to final state �k1� is

�
k1�Ĥ�k0��2 = g1
2��1�0��4. �18�

For a conduction-band electron of energy E0=52 meV inter-
acting with an LO phonon in GaAs, Eq. �18� is equal to the
matrix element for the Frölich interaction per unit volume
when g1=0.008 eV nm.

III. COMPARISON BETWEEN FIRST-ORDER
PERTURBATION THEORY PREDICTIONS

AND EXACT QUANTUM SOLUTION

A. Introduction to exact quantum solution

To understand the behavior of our model we first consider
the system under symmetric conditions. For illustrative pur-
poses, a unit amplitude sinusoidal wave function is injected
from both the left- and right-hand sides of the spatially sym-
metric potential illustrated in Fig. 2�a�. The probability of an
electron of energy E0 exiting the right-hand side of Fig. 2�a�
in channel n is

�cn��E0��2 =
kn

k0
�cn�E0��2. �19�
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FIG. 2. �a� A rectangular potential barrier containing Einstein phonons �dotted line�. The phonons are centered within the barrier and the
electron injected with energy E0 has plane-wave components incident from �	. �b� Probability of an electron of energy E0 exiting the
right-hand side of �a� in channel n. The potential barrier has energy V0=0.1 eV and length L=1 nm, the phonons have energy ��0

=36 meV, and the coupling constant is g1=0.05 eV nm. The effective electron mass is m=0.07m0, the number of inelastic channels
included in the simulation is N=11, and the simulation converged with a relative error of less than 10−10.
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For energies E0
��0, only �c0��
2 is nonzero. Once the n

=1 channels open, this probability must decrease to preserve
unitarity when �c1��

2 becomes finite. To a lesser extent �c0��
2 is

also increased by the feedback as the electron may emit a
phonon, reflect off the step change in the potential barrier,
and reabsorb the phonon at position x=x0. As a result the n
=0 channel may not be considered an elastic channel. One
may see that the feedback between the channels driven by
unitarity gives rise to features in the spectrum.

B. Inelastic scattering in an otherwise constant
background potential

When calculating inelastic-scattering rates, it is com-
monly assumed that weak coupling leaves the incident wave
unchanged by the inelastic-scattering event and that simple
first-order perturbation theory is an accurate approximation.

Figure 3 shows that this is not the case. We show in Fig. 3�a�
the quantum and in Fig. 3�b� the perturbative predictions for
the transmission of an electron of energy E0 incident from
x=−	. The Einstein phonons are in a constant background
potential V�x�=0 eV with coupling constants of g1
=0.008 eV nm �solid line� and g1=0.08 eV nm �dashed
line�. The inset of Fig. 3�a� shows the features of the quan-
tum transmission given a coupling constant of g1
=0.008 eV nm on a fine energy scale. Although these fea-
tures are resolved due to the assumed long lifetime of the
electron states, we anticipate that energy broadening due to
finite lifetime effects will not qualitatively alter the results.

Rather than a decrease in transmission near E0=��0 pre-
dicted in the quantum case, the perturbative solution violates
unitarity and has lost the features found in the exact quantum
solution. Even under conditions of weak coupling with g1
=0.008 eV nm, the quantum and perturbative solutions are
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FIG. 4. �a� Quantum and �b� first-order perturbative solutions for the transmission of an electron of energy E0 injected from x=−	
through the potential shown in Fig. 2�a�. The potential barrier has energy V0=0.25 eV and length L, g1=0.05 eV nm, ��0=36 meV, the
effective electron mass is m=0.07m0, and N=11 inelastic channels were included in the simulation.
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FIG. 3. Transmission through Einstein phonons located in a constant background potential V�x�=0 eV with coupling constants of g1

=0.008 eV nm �solid line� and g1=0.08 eV nm �dashed line� using the �a� exact quantum solution and �b� perturbative solution including
the n=2 channel to same order �dots�. The electron of effective mass m=0.07m0 is injected from x=−	 with energy E0, the phonon energy
is ��0=36 meV, and N=11 inelastic channels were included in the simulation. The inset shows the features of the transmission about
E0=��0 with a coupling constant of g1=0.008 eV nm on a fine energy scale.
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dramatically different. Clearly weak coupling alone does not
guarantee that the predictions of first-order perturbation
theory will appear similar to the exact quantum solution.

C. Condition when perturbation solution appears
similar to exact calculation

Consider the potential shown in Fig. 2�a� with an electron
of energy E0 injected from x=−	. The transmission through
this system is shown for the quantum case in Fig. 4�a� and
for the first-order perturbation theory approximation in Fig.
4�b�. We use a rectangular potential barrier of energy V0
=0.25 eV and length L, and an electron-phonon coupling
constant of g1=0.05 eV nm. Again we use the relatively
strong coupling constant to enhance the features.

For small L the features exhibited by the quantum and
perturbative transmission spectra are dramatically different
for energies both higher and lower than E0=��0. For lower
energies the quantum transmission is influenced by the exci-
tation of virtual phonons. Virtual phonon assisted tunneling
increases the transmission probability by effectively lower-
ing the energy of the potential barrier. This results in a higher
transmission probability for the quantum transmission than
the predictions of perturbative calculations. For energies
greater than E0=��0, the L=0.4 nm perturbative transmis-
sion shows the semiclassical “opening of a new channel,”
whereas the quantum transmission does not. However, as L
increases the transmission reduces and the quantum and per-
turbative solutions appear qualitatively similar on the scale
shown.

Near E0=��0 the behavior of the two solutions become
qualitatively similar for large L, as shown in Fig. 5. The
figure shows the quantum �solid line� and perturbative
�dashed line� solutions for the transmission shown in Fig. 4
for L=1 nm �Fig. 5�a�� and L=5 nm �Fig. 5�b�� on a fine
energy and transmission scale. The transmission curves have
been offset by T���0�, so that the two solutions may be
compared.

For L=5 nm, the perturbative solution exhibits features
qualitatively similar to those found in the quantum model. In
both cases the transmission is well approximated by expo-
nential tunneling through the barrier and a rapid increase
occurs once the electron has enough energy to emit a pho-
non. However, the reflection spectra will not be qualitatively
similar since the quantum reflection will reduce to preserve
unitarity while the perturbative reflection will increase due to
an additional channel for reflection. For the smaller barrier
length, perturbation theory is not a good approximation to
the quantum solution. Thus, as the strength of the potential
barrier is increased the semiclassical transmission behavior
predicted by first-order perturbation theory appears qualita-
tively similar to the behavior of the quantum model.
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length L is swept until �T /�E0=0 at energy E0=��0. The simula-
tion used a coupling constant of g1=0.008 eV nm, phonon energy
of ��0=36 meV, electron effective mass of m=0.07m0, and N
=11.
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of �a� L=1 nm and �b� L=5 nm. The transmission curves have been offset by T���0�, so that the quantum and perturbative solutions may
be compared. The potential barrier has energy V0=0.25 eV and length L, and the phonon is characterized by g1=0.05 eV nm and ��0

=36 meV. N=11 inelastic channels were included in the simulation and the effective electron mass is m=0.07m0.
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D. Threshold at which perturbation solution appears
similar to exact calculation

We have seen that as the transmission coefficient de-
creases due to increasing potential barrier strength, the exact
quantum transmission as a function of increasing electron
energy changes from a decrease at the first phonon threshold
to an increase. We choose

� �T

�E0
�

E0=��0
+

=� �T0

�E0
�

E0=��0
+

+� �T1

�E0
�

E0=��0
+

� 0, �20�

for the exact quantum case as the condition under which the
features in the first-order perturbation theory solution appear
qualitatively similar to those of the exact quantum solution.
We consider the potential used in Fig. 4, and to simplify the
expressions we consider only the n=0 and n=1 channels.

Evaluating the derivatives in Eq. �20� we find that

� �T0

�E0
�

E0=��0
+

= − T���0��� �T1

�E0
�

E0=��0
+

+� �R1

�E0
�

E0=��0
+
	

= − 2T���0�� �T1

�E0
�

E0=��0
+

, �21�

where R1 is the reflection coefficient of the n=1 channel and
the last step comes from the spatial symmetry forcing T1 and
R1 to be equal. Since the sum of the derivatives gives the
total rate of change of the n=1 channel, the transmission

coefficient is the fraction of this rate of change that is due to
the transmission coefficient. The remaining fraction comes
from the reflection coefficient. Substituting into Eq. �20�, the
features in the first-order perturbation theory solution appear
similar to those of the quantum solution when

T���0� �
1

2
. �22�

We see that similarity between the quantum and perturba-
tive transmission spectra occurs when the transmission coef-
ficient has reduced enough for a majority of the quantum
feedback effects to occur in the reflection. If T���0� is very
small due to a large potential barrier, the transmission con-
tributes little to the opening of the new inelastic channel and
the simple first-order perturbation approximation emulates
quantum behavior. The coupling constant contributes to this
condition through the virtual phonon assisted tunneling.
Larger coupling results in larger T���0�, which will require a
stronger potential barrier to reach T���0��1 /2.

If we move the phonon to one side of the potential barrier,
the existence of a propagating state next to the phonon will
enhance the inelastic scattering, while the reflection of only
one inelastically scattered wave inside the barrier decreases
the feedback. These two effects combine to make the trans-
mission decrease faster at the phonon threshold, requiring a
smaller transmission coefficient to reduce �T0 /�E0 suffi-
ciently that �T /�E0�0. The condition becomes

T���0� �
cosh2�
VL�

2�cosh2�
VL� −
1

2
sinh2�
VL���cosh2�
�L� −

1

2
�1 −

��0

V − ��0
	sinh2�
�L�� , �23�

when the phonon is located on the right side of the barrier, and

T���0� �

cosh2�
�L� +
��0

V − ��0
sinh2�
�L�

2�cosh2�
VL� −
1

2
sinh2�
VL���cosh2�
�L� −

1

2
�1 −

��0

V − ��0
	sinh2�
�L�� , �24�

when the phonon is located on the left side of the barrier,
where 
V=�2mV /� and 
�=�2m�V−��0� /�.

We show in Fig. 6 the simulated transmission coefficient
at which �T /�E0=0 at energy E0=��0 when the phonon is
centered �solid line�, placed on the right side �dashed line�,
and placed on the left side �dotted line� of the potential bar-
rier. In the simulations, V0 is fixed while L is swept until the
condition is satisfied, with g1=0.008 eV nm and N=11. Po-
tential barrier lengths of up to L=55 nm were considered.
As predicted the threshold occurs at T���0�=1 /2 when the
phonon is centered independent of the strength of the poten-
tial barrier and smaller transmission coefficients are required
for the asymmetric cases. However, as V0 is increased L is

decreased to achieve the threshold transmission, lessening
the asymmetry and causing the three cases to converge as
L→0.

When the phonon is placed on the left-hand side of the
potential barrier the transmitted waves for both the n=0 and
n=1 channels must tunnel through the potential barrier be-
fore exiting the system. The n=1 channel has a larger decay
constant than the n=0 channel, decreasing T1 more than T0
and requiring a smaller �T0 /�E0 to satisfy Eq. �20�. For po-
tential barrier energy on the order of the phonon energy this
effect becomes so great that first-order perturbation theory
does not approximate well the quantum solution for any bar-
rier length L. In Fig. 6 the cutoff occurs at V0=111.4 meV
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and L=4 nm. One may make the argument that requiring the
transmission coefficient to be small in order for perturbation
theory to be a good approximation is equivalent to requiring
the inelastic coupling strength be weak relative to the elastic-
scattering strength. However, the existence of the cutoff
shows that this is not the case as the combination of weak
coupling and large elastic-scattering strength is not always
sufficient. Thus, even in the case of weak coupling and large
potential barrier length, conditions exist under which pertur-
bation theory cannot appear qualitatively similar to the exact
quantum solution.

IV. CONCLUSION

We have shown that weak coupling alone is not a suffi-
cient condition for the predictions of simple first-order per-

turbation theory to qualitatively approximate the nonpertur-
bative quantum predictions of electron transmission spectra
in the presence of electron-phonon interaction. Only if the
transmission coefficient is small enough at the phonon
threshold, causing the feedback effects to occur primarily in
reflection, can the quantum and perturbative solutions appear
qualitatively similar. The conditions under which this simi-
larity can occur are determined analytically. There are situa-
tions in which predictions of perturbation theory cannot ap-
proach the quantum calculation even in the presence of both
weak coupling and large elastic-scattering strengths. Calcu-
lation of inelastic electron transmission using simple first-
order perturbation theory is a fundamentally flawed approach
for a unitary system. Qualitative agreement with nonpertur-
bative calculation of inelastic electron transmission spectra
occurs only under highly restrictive conditions.
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