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The lattice-dynamical properties of LiGaO2 have been studied by means of first-principles density-functional
calculations using the pseudopotential linear-response approach in the local-density approximation. For com-
parison, similar calculations are performed for the related materials ZnO and GaN. The quantities calculated
are the elastic constants, the piezoelectric constants, the static and high-frequency dielectric constants, and the
zone-center vibrational modes. The latter are used to calculate infrared optical spectra and compared with
experiment. The results are compared to available experimental data, indicating overall satisfactory agreement
typical of the methodology used. The nature of the vibrational modes is examined in terms of the mode
eigenvectors and indicates a large mixing of wurtzite derived modes due to the lower symmetry.
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I. INTRODUCTION

Recently, there has been a renewed interest in tetrahe-
drally bonded oxides, such as ZnO and related alloys �e.g.,
ZnxMg1−xO� for various optoelectronic properties, transpar-
ent conducting oxides, etc. Closely related to ZnO is the
material LiGaO2, which can be thought of as related to ZnO
by replacing the group II element Zn by a group III �Ga� and
a group I element Li in an ordered arrangement. LiGaO2 has
been explored as a suitable substrate for GaN �Refs. 1–4�
and ZnO thin-film growth.5 Not only is the basal plane lattice
mismatch less than 1% but also large crystals can be grown
by the Czochralsky method.6 Furthermore, heteroepitaxial
growth of LiGaO2 on ZnO has been achieved.7 Surface prop-
erties of LiGaO2 and etching have been investigated in rela-
tion to their use in epitaxial growth.8–10 Even mixed alloys of
LiGaO2 and ZnO have been reported.11 LiGaO2 was consid-
ered in the past for nonlinear optical properties12–14 and is
also a promising material for ultrasonic devices, such as
resonators and transducers because it has a piezoelectric ef-
fect with high coupling coefficient.15,16 Limpijumnong et
al.17 did the first band-structure calculations using first-
principles calculations and considered different wurtzite-
derived crystal structures for LiGaO2. They showed that the
important factor for the bonding is the exclusive occurrence
of Li2Ga2 tetrahedra surrounding oxygen. Although experi-
mental data for the elastic constant, piezoelectric constants,
and various optical properties, related to the vibrational
modes �Raman and infrared reflectivity� have been available
in literature for some time,14,15 no attempts have been made
to obtain these properties from first-principles calculations.

The purpose of this paper is to present a comprehensive
computational study of the lattice-dynamical properties of
this material in comparison with those of ZnO and GaN.
First, a comparison of calculated properties for perfect ma-
terial with experimental results may give insight in the qual-
ity of the crystals that were used in those experiments and in
the accuracy of the measurements. In particular, only a few
groups have reported results on these materials, so their
properties are not yet well established. Second, a comprehen-
sive study may provide insights in the relations between

these properties and gives us access to quantities difficult to
measure, such as the individual phonon modes. We use the
linear-response approach in the local-density approximation
�LDA� to calculate elastic, piezoelectric and dielectric prop-
erties, and vibrational modes of orthorhombic LiGaO2 and
compare them with the available experimental data. Another
reason for our interest in these materials is that their crystal
structure is isomorphic to that of the Zn-IV-N2 semiconduc-
tors for which we recently presented comprehensive studies
of the vibrational and related properties.18–21 Unlike those
materials, which are only available in thin film or needle
form, LiGaO2 is available as large single crystals and thus a
more complete set of data on vibrational modes for different
symmetries is available. It is also of interest to study the
relationship of the properties in this material with those in
the parent compound ZnO and because of the close lattice
mismatch to GaN, we also perform some related calculations
on GaN for comparison.

II. COMPUTATIONAL METHOD

The underlying computational approach of this paper is
density-functional theory.22,23 The computational method
used to apply this theory is the plane-wave pseudopotential
iterative minimization approach24 as implemented in the AB-

INIT package.25

However, besides the total energies and structural relax-
ation, we are here also interested in calculating various de-
rivatives of the total energy. For instance, to calculate vibra-
tional modes, we need force constants, which are second
derivatives of the total energy versus atomic displacements,
to calculate elastic constants, we need derivatives versus uni-
form strain and to calculate piezoelectric constants, and we
need polarization, which is a derivative of the total energy
versus electric field. To obtain these various derivatives, the
ABINIT package uses the density-functional perturbation
theory �DFPT�.26–28 The approach of Hamann et al.29 is used
to deal systematically with strains and piezoelectric effects
are treated as defined in Wu et al.30

The LDA in the Perdew-Zunger31 parametrization was
used for the exchange and correlation energy. While the gen-
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eralized gradient approximation �GGA� has recently become
more popular, it is not clear which of the two gives the better
results for elastic constants or vibrational modes. GGA tends
to overestimate lattice constants slightly while LDA under-
estimates them, so LDA overestimates and GGA underesti-
mates the bonding strength. As we will show, the LDA pro-
vides fairly accurate lattice constants for these materials and
is thus suitable for this study. Neither GGA nor LDA pro-
vides good band gaps. Therefore the study of the electronic
band structure is not emphasized here and left for a future
study using the more accurate GW �Green’s function G and
screened Coulomb interaction W� approach. Here we focus
on ground-state properties.

We use norm conserving Fritz-Haber pseudopotentials32

The 3d electrons of Ga were treated as valence electrons.
The calculations were carried out with a 60 Ry plane-wave
energy cutoff and the orthorhombic Brillouin zone was
sampled with a regular and shifted 6�6�6 k-point mesh.
Our tolerance for convergence of the squared residual of the
wave functions �����H−E�2��� with E= ���H���� is
10−18 hartree2 while for the forces it is 10−6 hartree /bohr.

III. RESULTS

A. Lattice parameters

The orthorhombic crystal structure of LiGaO2 is closely
related to the wurtzite structure as follows: a�2a1

wz, b
�a1

wz+2a2
wz, and c=cwz. Here, a2

wz is at an angle of 120°
from the a1

wz. The Li and Ga atoms are ordered in a particular
way in the cation sublattice as shown in Fig. 1. The space
group is Pna21 and the atoms occur in 4�a� Wyckoff posi-
tions.

When the twofold screw axes along the z direction is cho-
sen to pass through the origin of the unit cell, the reduced
coordinates of each type of atom are �x ,y ,z�, �x̄ , ȳ , 1

2 +z�,
� 1

2 −x , 1
2 +y ,z�, and � 1

2 +x , 1
2 −y , 1

2 +z�, with x ,y ,z given in
Table I. Note that we have reversed the a and b axes from the

conventional definition of the space group to more clearly
see the relation to wurtzite. Our choice corresponds to a
�b�c. With our choice of axes, the space group should be
labeled Pnb21.

Table II shows the calculated lattice constants, band-gap
energy, average bond lengths, and bond angles, compared
with the experimental results. We can see that lattice con-
stants of the orthorhombic structure are obtained in agree-
ment with experiment to better than 2% and the internal
positions are also in excellent agreement.

Because of the close relation to GaN and ZnO, we also
show our calculated lattice properties for GaN and ZnO ob-
tained within the same approach in Table III. We find indeed
a lattice match to within 2% with the lattice constant of GaN
and ZnO. The LiGaO2 a lattice constant divided by two cor-
responds to the wurtzite lattice constant and is 3.1275 Å.
However, the lattice match is better between ZnO and GaN
than between LiGaO2 with either of the two. Also, note that
the b /a ratio in LiGaO2 is 0.857 rather than �3 /2=0.866 the
ideal ratio derived from the parent wurtzite structure. The
ratio 2c /a is 1.5836 which is significantly smaller than the
wurtzite c /a of ZnO or GaN. Thus, there is good lattice
match in a direction of the basal plane but somewhat larger
mismatch −3.2% for the b direction or c direction �−3.3%�
with ZnO. With GaN, the mismatches in a, b, and c direc-
tions are −2%, −3%, and −4.5%.

LiGaO2 is a wide-band gap and direct-gap semiconductor.
Its experimental direct band-gap energy is 5.6 eV.7 The gap

FIG. 1. �Color online� Crystal structure of LiGaO2, small red
spheres O, large dark blue spheres Li, and large light green spheres
Ga.

TABLE I. Reduced coordinates of the atoms in LiGaO2.

Atom x y z

Present calculation Ga 0.1241 0.0818 0

OI 0.1177 0.4178 0.8850

OII 0.1323 0.0876 0.3760

Li 0.1255 0.4160 0.4970

Experimenta Ga 0.1263 0.0821 0

OI 0.1388 0.4066 0.8927

OII 0.1121 0.0697 0.3708

Li 0.1267 0.4207 0.4936

aReference 33.

TABLE II. Calculated lattice constants �Å�, bond lengths �Å�,
and bond angles �° � of LiGaO2, compared to experimental data.

Calc. Expt.a

Lattice constant a 6.255 6.372

b 5.361 5.402

c 4.953 5.007

Band gap energy 3.136 5.6b

Average bond lengths Ga-O 1.858 1.848

Li-O 1.923 1.985

Bond angles Ga-O-Ga 112.3 109.2

Li-O-Li 107.5 103.3

aReference 33.
bFrom Ohkubo et al. �Ref. 7�, and references therein.
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obtained from our calculations is 3.136 eV. This close to the
results reported earlier, 3.415 eV by Limpijumnong et al.17

with a different band-structure approach. As usual LDA un-
derestimates the band gap. One expects the band-gap correc-
tion to be similar to that in ZnO. For ZnO, the LDA gap is
0.81 eV and the experimental gap is 3.4 eV.35 Assuming a
similar correction one would obtain a gap of 5.7 eV for
LiGaO2 in close agreement with the experiment. Since this
paper is focused on lattice-dynamical properties, which are
electronic ground-state properties, rather than electronic
excited-state properties, we do not discuss the band structure
in further detail. A discussion of the band structure can be
found in Ref. 17.

B. Elastic constants

In accordance with the orthorhombic crystal structure and
the point symmetry group C2v, there are nine distinct elastic
constants. The stress and stain tensors are related by

�
�1

�2

�3

�4

�5

�6

	 = �
c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

	�
�1

�2

�3

�4

�5

�6

	 , �1�

where �i and �i represent stresses and strains, respectively, in
absence of any external electric field. In wurtzite, on the
other hand, one has c11=c22, c13=c23, c44=c55, and c66
= �c11−c12� /2, leaving only five independent elastic con-
stants Because of the close relation of the structure to wurtz-
ite, we expect these relations to be still approximately valid.
We note that all our elastic constants are calculated in the
absence of electric field or polarization while experimentally,
one distinguishes measurements taken at constant finite elec-
tric field or electrical displacement vector. We compare with
experimental data at constant electric field.

To establish the accuracy of the computational approach,
we first calculated the elastic constants and piezoelectric con-
stants of ZnO and GaN. These results are shown in Table IV.
Our calculated elastic constants for ZnO and GaN are in
good agreement with previous DFT calculations �made by a

more direct numerical differentiation approach of the total
energies�, thus establishing the accuracy of the DFPT as well
as the adequate convergence of our present ABINIT calcula-
tions. They are also in good agreement with the measured
values. Deviations are on the order of 15% for ZnO and 10%
for GaN.

The elastic stiffness and compliance tensors of LiGaO2
are given in Table V. The piezoelectric constants are also
included in this table and discussed in the next section.

We can see that our calculated results show some signifi-
cant deviations from Nanamatsu’s experimental values. No-
tably, our values are systematically larger for both compres-
sional and shear moduli. On the other hand, they are smaller
than the shear moduli given by Jaffe and Berlincourt.46 The
largest discrepancies occur for c12 and c13, which seem
anomalously low in the experimental data. We note, how-
ever, that these are obtained rather indirectly from the experi-
mental data. The directly measured quantities by Nanamatsu
et al.15 are given in Table VI and show a maximum deviation
in compliances of 9% and in stiffnesses of 29%. A large
variation in error occurs for different elastic constant combi-
nations, which correspond to differently cut samples, indicat-
ing that the problem is at least in part experimental, since on
the theory side there is no bias to obtain one coefficient more
accurately than another.

We may also notice that the deviations from the hexago-
nal symmetry predictions are more significant for compres-
sional moduli than for shear moduli: c22�c11 by 27% while
c13�c23. On the other hand, c55�c44 by 19%. Comparing
with ZnO and GaN, we may note that LiGaO2 is significantly
softer than ZnO which in turn is softer than GaN.

It is also of some interest to extract orientation averaged
elastic moduli for polycrystalline materials. This gives a sim-
pler way to compare the different materials. The Reuss aver-
age corresponds to averaging the compliances over direc-
tions while the Voigt average corresponds to averaging the
stiffnesses directly. The equations for orthorhombic
symmetry47 are given below and can easily be adapted for
hexagonal materials, simply by applying the additional sym-
metries: c11=c22, c13=c23, c44=c55, and c66= �c11−c12� /2 and
similar equalities for the sij.

GR = 15
4�s11 + s22 + s33 − s12 − s13 − s23�

+ 3�s44 + s55 + s66��−1, �2�

GV =
1

15
�c11 + c22 + c33 − c12 − c13 − c23� +

1

5
�c44 + c55 + c66� ,

�3�

BR = 
�s11 + s22 + s33� + 2�s12 + s13 + s23��−1, �4�

BV =
1

9
�c11 + c22 + c33 + 2c12 + 2c13 + 2c23� . �5�

Since the Voigt and Reuss isotropic averages of the bulk and
shear moduli represent an upper and lower limit, it also
makes sense to take their arithmetic average B= �BR+BV� /2
and G= �GR+GV� /2, as a better estimate of the bulk and

TABLE III. Lattice constants of wurtzite ZnO and GaN.

Method a c /a u

ZnO DFTa 3.199 1.612 0.379

DFTb 3.197 1.616 0.380

Hartree Fock 3.286 1.595 0.383

Expt. 3.250 1.602 0.382

GaN DFT 3.19 1.63 0.376

DFT-LMTOc 3.17 1.62 0.379

Expt. 3.189 1.625

aPresent work.
bFrom Wu et al. �Ref. 30�.
cFrom Kim et al. �Ref. 34�.
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shear moduli of polycrystalline aggregates. One can also de-
fine an average Young’s modulus Y = �9BG� / �3B+G� and the
Poisson’s ratio �= �3B−2G� / �6B−2G� to further character-
ize the average elastic behavior. The ratio of B /G is also of
interest since it gives a qualitative measure of ductility: low
G means low resistance to shear, hence ductility while low B
means low resistance to fracture, hence brittleness. Thus high
B /G indicates brittle material and a critical value from pre-
vious work appears to be a ratio of 1.75.47 These quantities
are computed using the calculated elastic and compliance
tensors above and tabulated in Table VII. We also calculated
the corresponding averages from the experimental data by
Nanamatsu et al.15 We may note that our calculated bulk
modulus is significantly higher than the experimental value.
Note, however that there is no direct measurement of the
bulk modulus. The low values of B in the “experimental”
data, result from the experimental underestimate of the shear
moduli s12, s13, and s23 noted before. As a further check, we
use a different method to calculate the bulk modulus of
LiGaO2, namely, by fitting the Vinet-Rose equation of state48

to the energy versus volume curves. The structures were re-
laxed with respect to the internal degrees of freedom but c /a
and b /a were kept fixed as the volume was changed. Also, as
a further test, we switched from plane-wave calculations to
the all electron full-potential linearized muffin-tin orbital
�FP-LMTO� method49,50 for this calculation. The result is B
=93.6 GPa in excellent agreement with our calculations
based on the elastic constants. Note that the Reuss average

corresponds exactly to the usual definition of the Bulk modu-
lus as B=−Vdp /dV. Our results for the bulk moduli of ZnO
and GaN in Table VII also agree well with previous results
extracted from equation of state fits to energy versus volume
curves and to experimental data. For instance for ZnO, the
experimental values range from 136 to 183 GPa.51 For GaN,
the experimental values range from 188 to 245 GPa.34 Com-
paring the different materials, we can conclude that the shear
moduli for LiGaO2 are rather close to those of ZnO while the
bulk moduli are significantly smaller. All materials studied
here can be qualified as being brittle.

C. Piezoelectric constants

Several types of piezoelectric constants need to be distin-
guished, the first type gives the polarization in response to
strain

P� = e�i�i. �6�

Here we use � to distinguish the Cartesian component of
the polarization and i to denote the strain component in Voigt
notation �1=xx, 2=yy, 3=zz, 4=yz ,zy, 5=xz ,zx, and 6
=xy ,yx�. The summation convention of summing over re-
peated indices is used. The second type of piezoelectric co-
efficient gives the polarization in response to stress

P� = d�i�i. �7�

Obviously, the two are related by the elastic compliance
tensor,

TABLE IV. Elastic constant �relaxed-ions� and piezoelectric coefficients in units of GPa and C /m2, respectively, of ZnO and GaN.

Method

Elastic Piezoelectric

c11 c12 c13 c33 c44 e31 e33 e15

ZnO Present �DFPT� 220 139 122 241 37 −0.66 1.28 −0.54

DFPTa 226 139 123 242 40 −0.67 1.28 −0.53

DFT-PWb −0.51 0.89

DFT-LAPWc −0.51 1.21

Hartree Fockd 246 127 105 246 56 −0.55 1.19 −0.46

Expt.e 207 118 106 210 45 −0.62 0.96 −0.37

GaN Present �DFPT� 345 130 95 383 91 −0.42 0.70 −0.30

DFT-LMTOf 396 144 100 392 91

DFT-PWg 367 135 103 405 95

DFTh 350 140 104 376 101 −0.32 0.63

DFTi −0.49 0.73

Expt.j 390 145 106 398 105

Expt.k −0.55 1.12 −0.29�0.02

aFrom Wu et al. �Ref. 30�.
bBernardini et al. �Ref. 36�.
cDal Corso et al. �Ref. 37�.
dFrom Catti et al. �Ref. 38�.
eElastic constants from Kobiakov �Ref. 39� and piezoelectric constants Tokarev et al. �Ref. 40�.
fFrom Kim et al. �Ref. 34�.
gWright et al. �Ref. 41�.
hShimada et al. �Ref. 42�.
iBernardini et al. �Ref. 36�.
jPolian et al. �Ref. 43�.
kGuy et al. �Ref. 44� and Muensit et al. �Ref. 45�.
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d�i = e�jcji
−1 = e�jsji. �8�

Alternatively, the converse piezoelectric effect shows that d�i
can also be viewed as the strain, in response to an electric
field,

�i = di�E�. �9�

The piezoelectric coefficients of hexagonal wurtzite ZnO
and GaN are given in Table IV. In hexagonal wurtzite system
with symmetry 6mm, we have e15=e24 and e31=e32. Those of
orthorhombic LiGaO2 are given in Table V. For wurtzite
ZnO, our results are very close to the other DFPT calculation
by Wu et al.30 but this is no surprise since we use the same
approach and even the same code. Our results are also close
to those of Bernardini et al.36 for GaN and for ZnO and with
those of Shimada et al. for GaN. Bernardini et al. used the
Berry phase approach to calculate the polarizations but
implemented the strain by a direct numerical differentiation.
Here we use the Hamann et al.29 linear-response or DFPT
approach. Although a similar numerical strain Berry phase
approach method was used by Dal Corso et al.37 using a
linearized augmented-plane-wave �LAPW� implementation,
their values are closer to ours.

More recently, Bernardini and Fiorentini52 calculated the
d tensor directly by performing calculation of the Berry
phase under finite stress. Their values for d31, d33, and d15
using LDA are −1.4, 2.7, and −3.3 pm /V. Our values can be
obtained from the e tensor and the compliance matrix s and
are −1.39, 2.51, and −3.29 pm /V, in excellent agreement
with theirs. These authors however pointed out that the val-
ues are sensitive to the exchange-correlation potential used
and differ for GGA. Their value for d15 in particular is
−1.8 pm /V but the LDA value appears to be closer to ex-
perimental value of −3.1 pm /V.45 This among other justifies
our use of the LDA.

On the experimental side, there is also still some uncer-
tainty on these values. For GaN, the coefficient which were
actually measured are the d15 in Muensit et al.45 and d33 in
Guy et al.44 In both cases, the strain was measured in re-

TABLE V. Calculated elastic constants and piezoelectric con-
stants compared with experimental data for LiGaO2.

Present Expt.a Expt.b

c11 �GPa� 143 120

c12 75 14

c13 57 31

c22 182 140

c23 60 28

c33 154 140 160.4

c44 40.5 47.4 49.8

c55 48.0 57.1 56.8

c66 49.7 69.0

s11 �10−12 m2 /N� 9.58 9.1 9.0

s12 −3.19 −0.5

s13 −2.30 −2.0

s22 7.37 7.3 7.1

s23 −1.69 −1.4

s33 8.0 8.0

s44 24.6 21.1

s55 20.8 17.5

s66 20.1 14.5

e15 �C /m2� −0.29 −0.34 −0.29

e24 −0.30 −0.32 −0.30

e31 −0.21 −0.31

e32 −0.09 −0.17

e33 0.52 0.96 0.90

d15 �pm/V� −6.04 −6.0

d24 −7.41 −6.9

d31 −2.92 −4.7

d32 −0.87 −2.5

d33 4.80 8.6

aFrom Nanamatsu et al. �Ref. 15�.
bFrom Jaffe and Berlincourt �Ref. 46�.

TABLE VI. Combinations of elastic compliances �10−12 m2 /N�
and stiffnesses �GPa� directly measured by experiment.

Present Expt.a
Error
�%�

s11 9.58 9.1 5

s22 7.37 7.3 1

s33 8.0 8.0 0
9s11+6s12+s22+3s66

16 3.03 3.04 1
s11+6s13+9s33+3s55

16 8.13 7.6 7
s22+2s23+s33+s44

4 9.15 8.4 9

c44 40.5 47.4 15

c55 48.0 57.1 16
c44+c66

2 58.2 45.1 29

aReference 15.

TABLE VII. The elastic moduli in units of GPa, the dimension-
less Poisson ratio and B /G ratio.

Components

Calculation Expt.a

LiGaO2 ZnO GaN LiGaO2

GR 46.151 41.52 105.15 55.05

GV 46.77 46.90 108.10 56.52

BR 94.42 160.74 190.34 60.24

BV 95.89 147.00 190.33 66.67

G 46.46 44.21 106.63 55.78

B 95.16 153.87 190.34 60.45

Y 119.88 121.03 269.54 127.98

� 0.58 0.74 0.53 0.294

B /G 2.05 3.48 1.79 1.08

aCalculated from the experimental data of Nanamatsu et al.
�Ref. 15�.
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sponse to an external electric field, at constant stress, i.e., the
converse piezoelectric effect. To obtain the values given in
the table, they assumed d31=−d33 /2 and the equations

e15 = d15c44,

e33 = d33c33 + 2d31c13,

e31 = d33c13 + d31�c11 + c12� . �10�

The values given for eij by Guy et al.44 use the elastic con-
stants of Wright41 to convert, so for consistency we used the
same for converting their d15 to e15. For ZnO, the values
given in Table IV are the recommended values given in Ref.
53, although a range of values from different authors is given
there: for instance e15 ranges from −0.25 to −0.59, e33 from
0.96 to 1.56, and e31 from −0.251 to −0.62.

Experimental values of e15 are −0.30 and −0.37 C m−2

for bulk GaN and ZnO, respectively, while for LiGaO2 e15
are 0.29 and e24 are −0.30 C /m2. A similar type of discrep-
ancy appears to exist for LiGaO2. While the values for e15
and e24 are in good agreement with experiment, the calcula-
tions seem to underestimate e33. The dij derived from it and
the compliance matrix suffers from similar discrepancies.

D. Dielectric properties

From the present calculations, we obtain several types of
dielectric constants the electronic dielectric constant, 	i


 and
the relaxed ion dielectric constant 	i

0, where i stands for xx,
yy, and zz. Because of the orthorhombic symmetry only di-
agonal elements occur in the second-rank tensor. We clarify
that the electronic dielectric constant corresponds to frequen-
cies high with respect to the phonons but to energies �� well
below the band gap, so not including UV interband optical
transitions. They correspond in other words to the visible
index of refraction squared, n=�	
. The indices of refraction
in the visible were measured by Lenzo et al.54 In Table VIII
we compare with the values at the longest wavelengths �660
nm� given in their figure. We also compare with a calculation

by Rashkeev et al.13 That calculations is based on calculating
Im
	���� from the interband transitions and evaluating the
corresponding Re
	�0�� in the static limit. That calculation
includes also only the electronic contributions but did not
include local-field effects. As explained in the methods sec-
tion, here, the ABINIT code calculates the electronic contribu-
tion from the derivative of the polarization versus electric
field using the Berry phase procedure to calculate polariza-
tion and DFPT to evaluate derivatives versus static electric
field. This method inherently includes local-field effects.

As for the relaxed ion dielectric constant, these pertain to
the region of frequencies below the infrared. They differ
from the true static dielectric constant measured say in a
capacitor with dc voltage because the effects of the lattice
distortion due to the piezoelectric effect are not included in
it. In other words, it corresponds to the microwave frequency
or far IR regime where the unit-cell deformation cannot fol-
low the electric field, or to the clamped value at constant
strain, the full static dielectric constant at constant stress
�unclamped� can be written �in SI units�

	�

s = 1 + ��


elec + ��

phon + ��


piezo �11�

with

��

piezo =

1

�0

�P�

��i

��i

�E


=
1

�0
e�id�i �12�

with �0 the permittivity of the vacuum.
The relaxed ion dielectric constant, labeled 	0 omits only

the last term in Eq. �11�. The values of the dielectric tensor
components corresponding to different frequencies are given
in Table VIII.

We note that our calculated �
 are larger than the mea-
sured ones at 660 nm. This may in part be because the LDA
underestimates the gap and hence overestimates the elec-
tronic screening. In part, it may also be related to the down-
ward bending of the dielectric constants as we start ap-
proaching the phonon region. Comparison to Rashkeev et
al.’s results13 gives some indication of the importance of
local-field effects although it may in part also result from the
use of a different band-structure approach. In agreement with
experiment, both calculations predict the xx component to be
smaller than the yy and zz components, which in turn are
quite close to each other. Interestingly, while the structure is
derived from wurtzite in which one would have expected the
xx and yy components to be closer and different from the zz
component, it is the xx component that stands out making the
material approximately biaxial.

The static dielectric constants are found to be within 5%
of the experimental values reported by Nanamatsu et al.15

The piezoelectric contribution is rather small, only of order
0.2–0.4.

E. Vibrational modes and infrared spectra

1. Symmetry considerations

As LiGaO2 belongs to the point group C2v, it has optically
active modes corresponding to the irreducible representa-
tions a1, b1, and b2. The latter have the same symmetry as a

TABLE VIII. Dielectric constants of LiGaO2 in different fre-
quency ranges.

Present Expt. Other

	1

 3.3424 2.99a 2.78b

	2

 3.4918 3.05 2.89

	3

 3.4904 3.05 2.89

	1
0 6.37

	2
0 6.98

	3
0 7.44

	1
s 6.57 6.5c 6.0d

	2
s 7.23 7.5 7.0

	3
s 7.9 8.3

aFrom Lenzo et al. �Ref. 54�.
bFrom Rashkeev et al. �Ref. 13�.
cFrom Nanamatsu et al. �Ref. 15�.
dFrom Jaffe and Berlincourt �Ref. 46�.
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vector along z, x, and y, respectively, chosen along the c, a,
and b axes of the crystal and thus couple to electric fields in
these directions. The other irreducible representation a2 is
Raman but not infrared active.

To guide further discussions, we show the symmetry char-
acter of the mode displacement in Fig. 2. For each type of
atom, there are four equivalent atoms in the unit cell, as
indicated. Their x, y, and z displacements are related to each
other as indicated for each irreducible symmetry. For ex-
ample, in an a1 mode the z motions of all four atoms are in
the same direction but the atoms 1 and 2 �see figure� have
opposite x motions because these two atoms are related by a
glide mirror plane �indicated in the figure by the vertical
dashed line and labeled “a”� with translation by b /2, perpen-
dicular to x �which is horizontal� and the a1 mode pattern

must be even under this mirror plane. However, this mirror
operation turns x in to −x. Atoms 1 and 4 move in the same
direction because they are related by a glide mirror plane of
the type n �indicated by the dashed-dotted lines� with both an
�a+c� /2 translation. This operation is perpendicular to y so it
leaves x invariant in a symmetric pattern. Atom 3 has oppo-
site x motion to atom 1 because the two are related by a
twofold screw axis �21� which turns x into −x. These labels
of the symmetry elements explain the space-group notation
Pna21. Now, within these symmetry constraints the motions
of the four types of atoms �Li, Ga, OI, and OII� of atoms can
still be rather complex as we will discuss below.

Since there are 16 atoms in the cell, there are in total 48
modes. Removing the zero-frequency “acoustic modes” cor-
responding to a pure translation along z, x, or y at the
Brillouin-zone center, we retain the optical modes

� = 11a1 + 12a2 + 11b1 + 11b2. �13�

2. Mode frequencies and infrared spectra

The calculated phonon frequencies at � for LiGaO2 are
shown in Table IX. They are compared with the experimental
data from Knoll and Kuzmany14 or more precisely the
supplementary data provided with that reference. They were
extracted from a combination of Raman and infrared reflec-
tivity spectra. While for some modes the agreement is rather
good, others show significant deviations. We emphasize that
the individual mode frequencies are ultimately extracted
from the data by means of an oscillator model and involve a
rather complex fitting procedure to the data. We therefore
need to make the comparison more directly in terms of the
spectra predicted by our calculations.

One of the most widely used methods to measure phonons
is infrared absorption. The oscillator strengths are calculated
from28

Sn,�� = �

�

Z�,��
� Un��,���2

�14�

with Z�,�

� =V� P� /���
�q=0� the Born effective charge ten-

sor components, Un�� ,�� the eigenvector for mode n in

a1

21

n

a

1

2

3

4

b1

21

n

a

b

21

n

a 2

a2

21

n

a

FIG. 2. �Color online� Displacement patterns for modes of dif-
ferent symmetry. The symmetry elements are indicated. The spheres
indicate the positions of one type of atom �say the Li atom� with
large spheres in the bottom plane and the small sphere in the plane
c /2 higher.

TABLE IX. Calculated zone-center phonon frequencies �in cm−1� and oscillator strengths �in atomic units� in LiGaO2. The numbers in
parentheses are experimental data from Knoll and Kuzmany �Ref. 14�.

a2 b1T b1L Sxx
b1 b2T b2L Syy

b2 a1T a1L Szz
a1

129.8 �244.0� 199.2 �205.0� 201.2 �207.0� 1.0�10−5 130.1 �140.3� 130.1 �140.3� 5.2�10−8 119.5 �129.5� 119.6 �129.5� 4.7�10−8

144.2 �290.0� 235.5 �251.0� 236.7 �252.0� 6.7�10−6 197.4 �204.7� 197.6 �204.7� 9.1�10−7 201.7 �219.5� 201.9 �219.5� 1.4�10−6

241.6 �324.0� 319.6 �320.0� 323.9 �322.0� 3.9�10−5 294.0 �301.0� 305.3 �302.5� 1.2�10−4 247.4 �253.0� 247.5 �253.0� 3.0�10−7

281.5 �408.0� 360.0 �364.0� 361.3 �366.0� 1.3�10−5 312.5 �314.5� 316.1 �322.0� 1.3�10−5 295.7 �309.5� 312.1 �324.5� 1.6�10−4

313.7 �437.0� 442.2 �407.0� 442.2 �411.0� 2.8�10−7 447.1 ��324.0� 468.2 �324.0� 3.9�10−4 434.4 �388.2� 439.5 �407.3� 1.5�10−4

441.6 �480.0� 470.8 �434.0� 475.1 �446.0� 1.1�10−4 476.4 �406.5� 477.3 �435.0� 9.2�10−6 453.0 �408.0� 460.7 �425.0� 1.6�10−4

452.1 �487.0� 481.8 �504.0� 482.6 �515.0� 1.5�10−5 485.6 �451.5� 492.5 �472.0� 7.3�10−5 473.8 �445.0� 479.3 �445.0� 1.0�10−4

476.8 �504.0� 529.3 �515.5� 548.1 �535.0� 9.8�10−4 517.8 �494.0� 552.9 �502.0� 2.8�10−4 505.7 �493.2� 509.8 �502.5� 3.1�10−4

509.0 �558.0� 548.1 �536.0� 605.4 �586.0� 9.6�10−7 564.9 �503.0� 566.6 �537.0� 6.4�10−6 514.2 �503.2� 579.6 �573.0� 3.3�10−4

560.2 �647.0� 639.8 �657.5� 694.9 �708.0� 2.7�10−4 638.7 �656.5� 678.6 �704.0� 5.6�10−4 627.6 �644.8� 628.8 �646.0� 8.0�10−5

633.8 �655.0� 696.2 �723.0� 741.3 �768.0� 5.5�10−6 686.2 �714.0� 762.3 �776.0� 8.3�10−5 633.3 �655.0� 737.1 �757.5� 3.0�10−4

699.6 �721.0�
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which � labels the atom, and � the Cartesian directions. P� is
the polarization, V the volume of the unit cell, and �� the
position of the �th atom. Note that because of the orthorhom-
bic symmetry Z�.�


� has only diagonal elements. For �=z, x,
and y the oscillator strengths are only nonzero for a1, b1, and
b2 modes, respectively. The calculated Born effective
charges are given in Table X.

In terms of these oscillator strengths, the dielectric func-
tion is given by

	����� = 	��

 +

4�

V



n

Sn,��

�n
2 − �2 − i�n�

, �15�

where �n and �n are the mode frequencies and damping
factors, respectively. For the latter we assume a constant
value of 5 cm−1 except for the b2 modes for which we use
the mode-dependent experimental values given in Ref. 14.
They are similar in magnitude.

The transverse modes are given by the peaks in Im
	����
and the longitudinal modes are given by the peaks in Im

−	−1���� which are shown in Fig. 3. Experimentally, the di-
rectly measured quantity by Knoll and Kuzmany14 is the
normal-incidence infrared reflectivity, given by

R = ��n − 1�/�n + 1��2, �16�

where the index of refraction n is the square root of the
complex dielectric function n=�����. We thus compare our
calculated reflectivity with the experimental data by Knoll
and Kuzmany.14 The experimental curves in the lower panel
of Figs. 4–6 are reproduced from the their figure.

We now discuss the nature of the modes. In wurtzite,
there are three “quasiacoustic” modes, E2

low �Raman active�

and B1
low �silent�. These can be thought of as zone-boundary

�L� phonons in zinc blende folded to the � point. Their char-
acteristic is that the two molecules in the unit cell move in
antiphase to each other. In the LiGaO2 structure, with four
times as many atoms, one expects 12 modes of this type.
While E2 becomes a1+a2 and B1 becomes b1, there are also
modes that in wurtzite lie at the zone boundary which now
appear as zone-center modes. Thus, we cannot exactly pre-
dict from symmetry considerations how many modes or each
symmetry are weak quasiacoustic modes. For example, it
appears that the third b2 mode and fourth a1 mode are al-
ready true optic modes with strong oscillator strength.

For a1 symmetry the reflectivity consists of several clearly
distinguishable bands. The lowest one is at 300 cm−1 and
has pretty high intensity for such a low mode. Then appear
three evenly spread modes between 400 and 500 cm−1 fol-
lowed by a strong pair of modes slightly above 500 cm−1

and another pair of modes at about 630 cm−1 of which one
has a strong oscillator strength. This leads to several clearly
defined reststrahlen bands in the reflectivity. One can clearly
see how the up-swing of each reflectivity band corresponds
to the corresponding transverse mode and the down-swing to
the longitudinal mode. In the experiment, the three peaks
which we find between 350 and 500 cm−1 seem to occur at
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FIG. 5. �Color online� Comparison of experimental �lower
panel� infrared reflectivity of b1�y� with calculated �upper panel�
reflectivity.

TABLE X. Born effective charge tensor components in
LiGaO2.

Li Ga OI OII

x 1.0207 2.5394 −1.7786 −1.7815

y 0.9529 2.7772 −2.2325 −1.4976

z 1.0034 2.7731 −1.5218 −2.2448
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FIG. 3. �Color online� Calculated infrared spectra, Im
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�red solid line� and Im
−1 /	���� �blue dashed�: �a� a1, �b� b1, and
�c� b2.
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FIG. 4. �Color online� Comparison of experimental �lower
panel� infrared reflectivity of a1�Z� with calculated �upper panel�
reflectivity.
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significantly lower frequency, namely, between 350 and
425 cm−1 and appear to be closer together, although one can
still recognize three features in it. The higher two bands and
the low-frequency 300 cm−1 band are in much better agree-
ment between theory and experiment.

For b1 symmetry, the visual agreement between the spec-
tra is excellent. Again, the spectrum can roughly be divided
in three regions, a low-frequency mode near 300 cm−1 fol-
lowed by a three peak region between 400 and 550 cm−1 and
a high-frequency band between 600 and 800 with a sharp dip
in the middle. The spectrum for b2 symmetry is qualitatively
very similar to that for b1 symmetry. In both cases, we note
that the features in the middle range �350–550 cm−1� are
somewhat shifted up relative to the experiment while for the
high-frequency range, the theory seems to underestimate
slightly the experimental frequencies. Note, for example, the
position of the sharp dip in reflectivity.

3. Further discussion of vibrational modes

To gain further insight, we inspect the mode eigenvectors.
All the modes have a rather mixed character, making it dif-
ficult to assign a clear signature to them. An example, Fig. 7

shows the displacements on the different atoms in the cell in
x, y, and z directions for the fourth a1T mode at 295.7 cm−1.
The x displacements are shown as black bars, the y displace-
ments as red bars, and the z displacements as green bars
�ordered from left to right� for each atom. The first four
atoms are Li, the next four are Ga, and so on as indicated on
the x axis. The positions of atom numbers �1–16� in the cell
are shown in Fig. 8. One can see that the Li and OI �which is
above each corresponding Li� all move in phase in the z
direction. Also, the Ga and OII move in phase but opposite to
the Li and OI. The fact that all four atoms of the same type
move in phase is consistent with a1 symmetry as mentioned
earlier in connection with Fig. 2. The fact that Li and OI
move in phase means that this is a low-frequency mode in
which molecules Li-OI move against Ga-OII rather than at-
oms moving against each other in each bond. The strongest z
motions are on Li and OI. Nonetheless, the displacement of
OI is larger than that of Li and thus there is a bit of bond
compression and stretching and this explains why it can have
a significant oscillator strength. In the Ga-OII bonds in the z
direction, in this low-frequency mode essentially only Ga
moves because it is much heavier than O. The displacements
in x and y directions can be checked to be consistent with a1
symmetry. For instance Li1 moves opposite to Li2. Further
considering the x motions, one can see for instance that at-
oms Li1 and OI

3, which are nearest neighbors to each other
also move in the same direction. So, overall, in this mode the
molecules move against each other, however, because of the
unequal displacements of Li and OI and Ga and OII some
bond stretching occurs and gives the mode a rather strong
oscillator strength.

Figure 9 shows the highest a1L
11 mode, displayed in similar

fashion. In this case, we see that the motion is predominantly
in the z direction but now Li and OI and Ga and OII move
opposite to each other. OI sits right on top of Li and OII on
top of Ga while Li and Ga move in phase with each other
and OI moves in phase with OII. So, this is mostly a bond
stretch mode in the c direction as expected. The largest am-
plitudes occur on the Li and the OII. As expected for this
high-frequency mode, in the bond stretch, the lightest atom
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FIG. 6. �Color online� Comparison of experimental �lower
panel� infrared reflectivity of b2�x� with calculated �upper panel�
reflectivity.
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FIG. 7. �Color online� Displacements in x �black or left�, y �red
or middle�, and z �green or right� for each atom in the unit cell for
mode a1T

4 as discussed in the text.
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FIG. 8. �Color online� Atom numbering in the unit cell corre-
sponding to Figs. 7–12. Large open circles represent Li �1-4� and
Ga �5-8� as indicated and small filled spheres represent OI �9-12�
and OII �13-16� atoms sitting on top of cations. Larger spheres of Li
�1,2� and Ga �5,6� lie in bottom plane, smaller spheres Li �3,4� and
Ga �7,8� lie in upper basal plane.
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has the largest displacement. One can however also see sig-
nificant x and y displacements on OII in this mode and one
can check that they correspond also to stretches of the bonds
with the nearest neighbors. Thus, although this mode could
be said to be derived mostly from an A1L wurtzite type mode,
it is does not purely have this character.

The highest transverse optical mode of a1 symmetry has a
rather different eigenvector as can be seen in Fig. 10. One
can still see the Ga-OII stretch in the z direction. The eigen-
vectors for corresponding longitudinal and transverse modes
are not purely dictated by symmetry in this material and thus
there is no need for the corresponding modes to have the
same eigenvectors.

The eigenvector of b2L
11 is shown in Fig. 11. As expected,

this mode is strongly polarized in the y direction and there-
fore has a strong coupling to an electric field in that direc-
tion. One sees again all atoms of the same type move in
phase in the y direction. Li1 is bonded to atoms OI

3 and OII
3

and OII
4 in its basal plane and OI

2 above it. One can see that
the displacements of the basal plane oxygen atoms in the y

direction are all opposite to that of Li1. So, this mode has a
strong E1L wurtzite type character. Consistent with the order-
ing of modes in ZnO, ��E1L����A1L�, we also find in
LiGaO2 that the mostly in-plane b1L and b2L modes are
slightly higher than the a1L mode. But again, the mode is not
pure, some x- and z-like motions are mixed in, mostly on OII.

We now examine a mode a1T
8 at 505 cm−1 as shown in

Fig. 12. Focusing on the x motions and isolating part of the
structure, we see that locally around atom Li1 it looks as
shown schematically in Fig. 13. So, this corresponds to a
stretching of in-plane bonds but the upper layer is in an-
tiphase with the lower layer. This is characteristic of an E2

high

wurtzite type mode. This is consistent with its frequency
being between that of the typical transverse optical modes
and the longitudinal optical modes. On the other hand, there
are significant z motions in this mode similar to the high
frequency a1L

11 with Ga-OII and Li-OO stretch character. So
one could say it is some mixture of wurtzite A1 and E2 and
this gives it a net dipolar character whereby it has a strong
oscillator strength for coupling to electric fields in the z
direction.
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FIG. 9. �Color online� Displacements in x �black or left�, y �red
or middle�, and z �green or right� for each atom in the unit cell for
mode a1L

11 as discussed in the text.
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FIG. 10. �Color online� Displacements in x �black or left�, y �red
or middle�, and z �green or right� for each atom in the unit cell for
mode a1T

11 as discussed in the text.
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FIG. 11. �Color online� Displacements in x �black or left�, y �red
or middle�, and z �green or right� for each atom in the unit cell for
mode b2L

11 as discussed in the text.
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FIG. 12. �Color online� Displacements in x �black or left�, y �red
or middle�, and z �green or right� for each atom in the unit cell for
mode a1T

8 as discussed in the text.
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One could further analyze the many remaining modes in a
similar fashion but in summary we can just conclude that the
low symmetry leads to a significant interaction of the basic
modes of wurtzite so that they are barely recognizable. It is
only after in-depth inspection that one can recognize some
correspondence to wurtzite like modes. For example, the
E2

high wurtzite like mode �which in wurtzite is only Raman
active� splits into a1 and a2 modes and thus the a1 compo-
nent now has significant interaction with other a1 modes and
becomes infrared active. As expected, high-frequency modes
correspond to bond stretch modes of the cation-anion bonds
but one cannot clearly distinguish pure Li-O and pure Ga-O
bond stretch modes. Low-frequency modes have a quasia-
coustic zone-boundary character in which molecules vibrate
against each other.

IV. CONCLUSIONS

In summary, a comprehensive computational study was
carried out of the structural and lattice-dynamical properties
of LiGaO2. Throughout this paper, we compared the calcu-
lated results for LiGaO2 with those of ZnO and GaN �which
were also recalculated here�. The lattice constants of LiGaO2
agree with experiment to better than 2%. The elastic con-
stants for ZnO and GaN agree generally with experimental
values and prior calculations to within 15% and 10%, respec-
tively. Part of these discrepancies are probably due to the
underestimation of the lattice constants �overbinding� of
LDA while part of the discrepancy may also result from

variations in experimental samples. For LiGaO2 our calcu-
lated compliances agree within 10% with all directly mea-
sured experimental values while for the elastic stiffnesses,
the discrepancies are between 15% and 30% with the one
experimental study that determined the full set of elastic con-
stants. Some individual elastic constants, notably c12 and c13
show a large deviation from the values reported in the litera-
ture but we notice that these are derived from the data in an
indirect manner and are therefore subject to a larger uncer-
tainty.

There remains also significant uncertainty on piezoelectric
constants in all of these materials with our calculated values
falling well within the range of previous computational and
experimental values. Both the high-frequency dielectric con-
stants, relevant to the optical properties in the visible and
near IR and the static dielectric constants agree well with
experiment. We included the small piezoelectric contribution
to the static dielectric constants. Curiously, in terms of an-
isotropy and in agreement with experiment, one finds one of
the in-plane directions to stand out more from the other two
directions than the c direction in spite of the close connection
of this crystal structure to the hexagonal wurtzite structure.

The infrared reflectivity spectra are well reproduced by
our calculations although again, there are disagreements on
individual modes probably resulting from the complex fitting
procedure involved in assigning the modes via an oscillator
model. The nature of the modes was discussed. We find that
the mode patterns are complex with Li-O and Ga-O bond
stretches significantly mixed as well as a significant mixing
of z motion and in-plane motions. This is different from
wurtzite where the high symmetry leads to A1 and B1 sym-
metries being purely z-like and E1, E2 modes being purely in
plane. The only thing one can say is that the highest fre-
quency modes show a clear strong dipolar character in each
bond whereas the lower frequency modes are characterized
by in-phase motion of nearest-neighbor atoms.
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