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We present a theoretical study of the intrinsic quality factor of the fundamental flexural vibration in a carbon
nanotube and its dependence on temperature, radius, length, and tension. In particular, we examine three- and
four-phonon decays of the fundamental flexural mode within quantized elasticity theory. This analysis reveals
design principles for the construction of ultrasensitive nanotube mass sensors: under tensions close to the
elastic limit, intrinsic losses allow for single yoctogram mass resolution at room temperature while cooling
opens the possibility of subyoctogram mass resolution.
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Recently, much experimental effort has gone into fabricat-
ing nanoelectromechanical systems �NEMS� which employ
carbon nanotubes as mechanical resonators.1–4 The combina-
tion of small mass density and large mechanical stiffness
makes carbon-nanotube NEMS ideal candidates for ultrasen-
sitive mass detectors which do not require disruptive ioniza-
tion of the analyzed molecule: recent experiments achieved a
mass resolution of �100 yg�1 yg=10−24 g�.5,6 However,
for isotopic or chemical identification of molecules adsorbed
on the nanotube or real-time monitoring of chemical reac-
tions, yoctogram mass resolution is necessary.

The mass resolution of nanotube NEMS depends strongly
on the quality factor of the lowest flexural mode, which im-
poses a lower bound on the frequency differences which can
be resolved. The quality factors found in most experiments
have been surprisingly low, not exceeding Q�2000.4,5,7

Only very recently, Hüttel et al.3 measured Q�105 but at
milikelvin temperatures.

The intrinsic quality factor of a nanotube sets aside all
extrinsic losses, such as defect or clamping losses, and sets
an upper limit to the quality factor achievable in experiment.
Both molecular-dynamics simulations8 and analytical
approaches9,10 have been used to study the intrinsic quality
factor theoretically, finding relatively low values similar to
those in the experiments. However, simulations are limited to
extremely short tubes, and the analytical approaches to date
have either employed simplified phonon spectra9 or focused
solely on low-temperature four-phonon decays of the flexural
mode10 using an analysis appropriate to extremely long
tubes.

In this Brief Report, we present a theoretical analysis ap-
propriate to the length of tubes and operating temperatures
commonly found in experiments. We discover that applica-
tion of tension drastically increases the intrinsic quality fac-
tor of nanotube oscillators and opens the theoretical possibil-
ity of single yoctogram mass resolution in such oscillators at
room temperature, with further improvements possible with
cooling. Indeed, the recent experiments of Wei et al. demon-
strate a promising technique for controlling the tension in
nanotubes.11

For our analysis, we employ continuum elastic theory,
which reliably describes long-wavelength phonons in nano-
tubes, to study the decay of the lowest flexural mode due to

phonon-phonon interactions, the most important source of
intrinsic losses in semiconducting nanotubes. Following the
work of De Martino et al.10 and Suzuura et al.,12 we describe
a nanotube as a rolled-up two-dimensional elastic sheet and
expand the free energy in powers of the strain tensor uij and
the curvature tensor Sij. Curvature contributions to the free
energy are generally small but need to be included in the
quadratic part to describe optical phonons properly. Using
the isotropy of the elastic sheet leads to

U2 =
�

2
�Tr u�2 + � Tr u2 +

kc

2
�Tr�S − S0��2, �1�

U3 = �1�Tr u�3 + �2 Tr u2 Tr u , �2�

where U2 and U3 denote contributions to the energy density
including quadratic and cubic powers of uij and Sij. Also, �
and � denote the Lamé moduli, kc the bending stiffness and
S0 the curvature tensor of the undeformed tube. �1 and �2 are
anharmonic elastic constants.

Next, using the standard expressions for uij and Sij in
cylindrical coordinates,10,12 we express the potential energy
in terms of displacements un with n=x ,y ,z �x denotes the
tangential direction, y is along the tube axis, and z is the
radial direction�. uij contains both linear and nonlinear con-
tributions in un, which gives rise to two types of nonlineari-
ties in the resulting Hamiltonian: material nonlinearities, de-
scribed by the explicitly higher-order terms in Eq. �2�, and
geometric nonlinearities, where the lower-order terms, such
as terms in Eq. �1�, contribute at higher orders due to higher-
order terms in the expansion of uij in terms of the degrees of
freedom un. Material nonlinearities are often suppressed by a
factor of kR �k being the phonon wave vector and R the tube
radius� compared to geometric nonlinearities10 and can there-
fore be neglected for long-wavelength phonons. However,
when evaluating the three-phonon contribution to the quality
factor, high-energy phonons, whose wavelength is no longer
comparable to the length of the tube, play a crucial role. We,
therefore, also consider in this work the contribution of ma-
terial nonlinearities in the three-phonon decay channel.

To determine accurate numerical values of the elastic con-
stants in Eqs. �1� and �2�, we evaluate total energies of
strained graphene sheets and various semiconducting nano-
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tubes within density-functional theory in the local-density
approximation13 and fitted the results to the continuum
theory described above. Table I summarizes our results,
which for the elastic constants of U2 are in good agreement
with previous calculations.14,15

We next impose canonical commutation relations to quan-
tize the resulting elastic theory and diagonalize the quadratic
part of the Hamiltonian by expressing the displacement op-
erator in terms of normal modes.

Figure 1 shows the resulting phonon-dispersion curves for
a tube with radius R=0.5 nm, which are in good agreement
with force-constant models16 and ab initio calculations.15 In
particular, we find as the lowest-frequency long-wavelength
modes two degenerate flexural modes with angular momen-
tum component �= �1 along the tube axis and a quadratic
dispersion relation

�F�k� =
�k2

2m
+ O�k4�, m =

�

R
�	M�� + 2��

8��� + ��
, �3�

where �F denotes the angular frequency of the flexural pho-
non and 	M =7.68
10−7 kg /m2 is the areal mass density of
graphene. We also find a variety of low-lying optical
phonons. Note that inclusion of curvature terms into Eq. �1�
is crucial to obtain the correct optical phonon spectrum. In
particular, the gap of the lowest optical branch vanishes if
curvature terms are neglected.

Next, we employ conservation laws to analyze the pos-
sible decay mechanisms of the fundamental flexural mode. In
addition to energy conservation, translational invariance
along the tube axis imposes conservation of k. Rotational
invariance around the tube axis imposes conservation of �.
These conservation laws forbid the decay of the fundamental
flexural mode in a three-phonon process which involves two

other low-frequency modes.10 If, however, the fundamental
flexural mode, which has a wavelength comparable to the
length of the tube, interacts with a high-energy phonon of
momentum k�, energy, and momentum conservation enforce
that the third phonon also has a high energy and momentum
k��k�. Because the flexural mode carries �= �1, the angu-
lar momenta of the two high-energy phonons must differ by
one. In sum, three-phonon decays of the fundamental flex-
ural mode are only possible at crossings of two phonon
bands whose angular momentum quantum numbers differ by
one. Inspection of Fig. 1 reveals that very few such crossings
for energies comparable and smaller than kBT�24 meV�at
room temperature� exist.

To compute the three-phonon contribution to the quality
factor, we evaluate the imaginary part of the Matsubara
Green’s function obtained from the lowest-order bubble dia-
gram, which contains a sum over intermediate high-energy
phonon momenta. Because the energy uncertainty resulting
from the short lifetimes17 of these modes is larger than the
energy difference of phonons at neighboring allowed wave
vectors of the finite-length tube, the sum can be converted
into an integral. Then we use the energy-conserving � func-
tion to reduce the integral into a sum over allowed crossings.
Our final expression for the inverse quality factor resulting
from the decay of a long-wavelength flexural mode of wave
vector k in a three-phonon process involving two high-
energy modes �labeled � and �� at a phonon crossing at wave
vector k
 and angular frequency �
 is

Q3
−1 = �




gF���k,k
,���

�2n��
��n��
� + 1�
R�F�k��


2 	v�

 − v�


	
, �4�

where gF�� is a complicated coupling function that depends
on the polarization vectors of all three phonons and gives a
complete description of both material and geometric nonlin-
earities. Also, �
 denotes a sum over allowed crossings; v�/�




are the phonon group velocities and n���=1 / �exp�
���
−1� is the Bose-Einstein factor with 
=1 / �kBT� being the
inverse thermal energy.

Experiments with doubly clamped tubes inevitably in-
volve some amount of strain. Here we consider the case of
positive strain, corresponding to some amount of tension in
the tube. To study the quality factor of such a strained tube,
we expand the displacement around the new equilibrium
value, taking into account the relaxation in the equilibrium
radius. Evaluation of Eq. �2� at the strained equilibrium con-
figuration leads to two categories of additional contributions
to the quadratic Hamiltonian: one set of terms is already
present in U2 and can be absorbed into a redefinition of the
linear elastic constants; the other set of terms gives the ex-
pected Hamiltonian for a string under tension, proportional
to ��yux�2+ ��yuz�2 with a prefactor proportional to the
tension.

Computationally, having obtained the phonon dispersions
for a given radius, we numerically determine k
, �
, and
v�/�


 , which are needed to evaluate gF�� and ultimately the
losses, for all relevant crossings. Our results indicate that
geometric nonlinearities give the largest contribution to
three-phonon losses, with material nonlinearities contribut-

TABLE I. Lamé moduli, anharmonic elastic constants of U3, and
bending stiffness for semiconducting carbon nanotubes from ab ini-
tio density-functional calculations.

�
�J /m2�

�
�J /m2�

�1

�J /m2�
�2

�J /m2�
kc

�eV�

59.57 147.94 −145.17 −387.93 1.46

0

0.01

0.02

0.03

0.04

0.05

0.06

0 1 2 3 4 5 6

en
er

gy
[e

V
]

kR (dimensionless)

l=0
l=1
l=2
l=3
l=4

FIG. 1. Energy of phonons versus kR for a R=0.5 nm tube. The
black dots denote phonon crossings, where three-phonon decays of
the fundamental flexural mode are allowed.
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ing only about 1%. Also, we find that the primary effect from
the application of tension is to change the frequencies of the
acoustic phonons while the polarization vectors and the
optical-phonon frequencies change very little.

Figure 2 shows our results for the three-phonon contribu-
tion to the inverse quality factors for tubes of typical experi-
mental radii as a function of inverse temperature. At low
temperatures �right side of Fig. 2�a��, Q3

−1 approaches zero
exponentially because the first Bose-Einstein factor in Eq.
�4� rapidly diminishes the occupation of the high-energy
modes at the crossings, which are the modes responsible for
the scattering. At higher temperatures, T�100 K, the modes
associated with the relevant crossings are classically occu-
pied and we find that Q3

−1 is proportional to temperature.
Comparing the losses of tubes of different radii in Fig.

2�a�, we find that at low temperatures the tube with the
smallest radius, R=0.35 nm, exhibits the lowest dissipation
while at high temperatures, it exhibits higher losses than
many tubes with larger radii �see Fig. 2�b��.

To understand this nontrivial radius dependence of Q3, we
note that for T�40 K the largest contribution to the losses
comes from the crossing which is lowest in energy. The en-
ergy of this crossing of the flexural mode and the lowest
optical mode is approximately equal to the gap of the optical
mode given by Egap=�kc / �5	M�6� /R2, which depends sen-
sitively on the radius of the tube. Therefore, at low tempera-
tures, the occupation of the high-energy modes at this cross-
ing is much more strongly suppressed for tubes with smaller
radii �and therefore higher optical frequency�, which leads to
smaller losses according to Eq. �4�. At higher temperatures,
the contributions from other crossings become important �see
Fig. 1�. We find that those contributions depend quite sensi-
tively on R, which leads to the observed crossover behavior
of the R=0.35 nm tube.

Figure 3�a� shows the dependence of Q3 on the length L
of the nanotube. In a tensionless tube �solid line�, we find a
remarkable cancellation between the length dependence of
the coupling function, gF���k2 for small k, and the length
dependence of �F�k2 in Eq. �4�, resulting in a quality factor
which is insensitive to tube length beyond �300 nm.
Strained tubes do not exhibit this cancellation because �F�k�

is shifted by a constant proportional to the tension � if the
tension is small �dashed line�.18 If � is large, �F�k����k and
Q3 becomes linear in L for long tubes �dotted line�.18

For tubes shorter than 300 nm, Fig. 3�a� shows a signifi-
cant length dependence of Q3 even for tensionless tubes. In
particular, in tubes with lengths of only a few nanometers Q3
is reduced by more than an order of magnitude. This may be
related to the small quality factors, Q�1500, found by Jiang
et al.,8 who model the decay of the fundamental flexural
mode in a 3-nm-long singly clamped tube via molecular-
dynamics simulations.

Next, we compare the magnitude of the computed intrin-
sic quality factor to experimental findings. At T=300 K, we
find Q3�5
104, which is at least one order of magnitude
larger than experimental results, Qexp�2000,4,7 suggesting
that it is worthwhile to continue improving the control of
losses in experiments. We find that the resulting �intrinsic�
mass resolution, �m=2M /Q, of a tensionless nanotube mass
sensor depends sensitively on the tube length L with a mini-
mum of �5 yg for very short tubes �Fig. 3�b��. On the other
hand, we find �i� that application of tension can reduce the
mass resolution �m to a single yoctogram if a tension close
to the elastic limit, �c�100 nN,19 is applied and �ii� that �m
becomes independent of L for long tubes, simplifying the
design and fabrication of actual devices.

At lower temperatures, as discussed above, three-phonon
processes are exponentially suppressed due to the energy gap
of the optical modes, and the resulting dissipation becomes
much smaller than the experimental findings in the mil-
likelvin range.3 We, therefore, now move on to consider
losses from four-phonon decays.

To estimate the role of four-phonon processes, we com-
pute the leading-order contribution, the fishbone diagram,
due to a quartic coupling between four low-energy flexural
modes. Following De Martino et al.10 and our findings for
the three-phonon case, we only take into account quartic
geometric nonlinearities resulting from replacing uij in Eq.
�1� by its nonlinear part. The resulting expression for the
four-phonon contribution to the quality factor contains a
triple sum over intermediate phonon momenta and is given
by20
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FIG. 2. Temperature dependence of Q3 for tubes of different
radii and length L=500 nm.
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FIG. 3. �a� Length dependence of Q3 for tubes with R
=0.5 nm at T=300 K. �b� Length dependence of mass resolution
�m for tubes with R=0.5 nm at T=300 K.
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Q4
−1 = �

q1q2q3

�
�1,�2,�3=�

�1�2�3D�q1,q2,q3,k��/�
��F�k� + �1�1 + �2�2 + �2�3�2 + �2



n��1�1�n��2�2�n��3�3�
n��1�1 + �2�2 + �3�3�

, �5�

where qi denote intermediate momenta, �i
�F�qi� and D
denotes the coupling function. Here, � is the inverse lifetime
associated with the dressed phonon lines representing the
actual phonons in the system with loss.

In evaluating Eq. �5�, proper account of the finite length
of the tube, which leads to a finite spacing of the allowed
wave vectors, is of crucial importance. For long-wavelength
flexural phonons in tubes of experimental lengths, the energy
uncertainty �E� associated with the observed lifetimes is
actually much smaller than the energy difference �E�k of
phonons at neighboring wave vectors. Expressing � in terms
of the quality factor, �=�F / �2�Q�, we find �E� /�E�k
=1 / �4�Q�, which is much smaller than unity at low
temperatures.3 Thus, the sums over intermediate momenta
cannot be converted into integrals for the tubes in the experi-
ments. Converting the sums into integrals, as De Martino et

al.10 do, is appropriate for much longer tubes but leads to an
underestimate of Q4 due to inclusion of processes which are
not present in the experiments.

To describe four-phonon decays in experimentally rel-
evant nanotubes, we carry out numerically the discrete triple
sum over intermediate momenta in Eq. �5� using the discrete
frequencies of a finite-length doubly clamped beam and ex-
perimentally observed inverse lifetimes �. The result then
gives the contribution to the observed losses from four-
phonon processes. The resulting contributions to the quality
factor are Q4=6.6
108 at T=1 K and Q4=1.6
1014 at T
=0.01 K for a tube of length L=800 nm and R=1.5 nm.3

This indicates that, at low temperatures, four-phonon decays
give only a small contribution to the observed losses, which
are Q�104 at T=1 K and Q�105 at T=0.01 K.3 Although
small, these losses are still much greater than the three-
phonon contributions: Q3=3.1
1027 at 1 K and even greater
at 0.01 K. Our analysis, contrary to the aforementioned the-
oretical studies, suggests that the losses observed by Hüttel
et al.3 are mostly extrinsic.
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