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Symmetry and selection rules for localized surface plasmon resonances in nanostructures

Weihua Zhang (3K{fi4€),* "% Benjamin Gallinet,* and Olivier J. F. Martin®#3
Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
(Received 8 April 2010; published 29 June 2010)

We describe a general theoretical framework based on the Bergman spectral representation to study how a
nanostructure interacts with an external electromagnetic field. The selection rules for localized surface plasmon
resonances (LSPRs) are obtained by implementing the group theory upon the electric vector field. The influ-
ence of symmetry breaking on the splitting of degenerated modes and the switching of dark modes by specific
illuminations are discussed. These results emphasize the fact that the selection rules for a vector field are
different from the case of a scalar field and essentially induced by the geometry of the structure. Finally, this
work not only points out that measurements of LSPRs may result in very different results with different
external fields, but also provides a strategy to selectively excite specific LSPRs of plasmonic structures.
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In the optical regime, a metal nanostructure can interact
strongly with photons by virtue of the collective oscillation
modes of the free electrons, namely, the localized surface
plasmon resonances (LSPRs).! Some of these resonance
modes—the bright modes (i.e., radiative modes)—bridge the
electromagnetic fields between the near-field and far-field
zones of the structure, letting the nanostructure function as
an optical antenna.>3 Other resonance modes—the dark
modes (i.e., nonradiative modes)—are tightly bound to the
surface of the nanostructure and do not couple with light
propagating in the far-field zone. These dark modes produce
a nanometer-sized resonator which is essential for generating
coherent surface plasmons.* Interestingly, the interaction be-
tween the different LSPR modes and the photons depends on
the symmetry of both the nanostructure and the external
field, which can be either the incident or the scattered field.
Indeed, recent reports indicate that the optical properties of
plasmonic nanostructures can be controlled by changing the
symmetry of the structure or that of the external field.>”
Inspired by this idea, in this work we develop a theoretical
framework to investigate the influence of the symmetry of
the system on the LSPRs using the Bergman spectral repre-
sentation. This approach allows us to solve the photon-LSPR
interaction as an expansion series of eigenmodes.®? This will
allow us to establish selection rules for the interaction of
LSPR with different types of external field, namely, plane
wave excitations, spatially modulated fields, and electrical
dipolar fields.

The Bergman representation was originally developed to
determine the effective refractive index of composite mate-
rials and later implemented for studying the LSPRs associ-
ated with nanostructures.®” In this work, we use the Berg-
mann spectral representation combined with the Green’s
tensor method in order to separate the excitation field from
the boundary conditions.'? This allows us to handle arbitrary
external fields.

Let us first recall briefly the theory and consider an arbi-
trary shape object with permittivity & in vacuum. The scat-
tering problem in the frequency domain can be described
with Lippmann-Schwinger equation,
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E(r):Em(r)+f dr’As(r’)k%GO(r,r’)~E(r’), (1)

where E,,, is the external field and G, is the dyadic Green’s
tensor.!! Defining [GE](r)=J.unerdr’ Go(r,r')-E(r')k2, Eq.
(1) can be rewritten as E:Em+%(A}E, where s=1/Ae
=1/(e—1). This can be solved as an eigenvalue problem

GE=sE. Under the quasistatic approximation, the operator

G is real and symmetric. Thus, it has a set of real eigenval-
ues {s,} and orthonormal eigenmodes {E,}. The scattered
field can be expressed as the sum of these eigenmodes,

E=2>a,E,, )

n

where a,1=s_%n(En|Em> is the interaction strength between
the nth eigenmode and the external field.

In the following, we shall use this formalism to determine
the selection rules of LSPRs for different conditions. Consid-
ering that the dimension / of the structure is much smaller
than the wavelength (i.e., the quasistatic approximation), the
external field in the object can be described with the Taylor
expansion around the position r, of the structure,

ext(rO) 2 ﬁE@Xt(rO) it oo (3)

E,,(r)=

In the case of a free-space propagating external field, the
diffraction limit implies that the second term of the expan-

sion [Eq. (3)], 8E“’ o) —="—=r,, has the same order of smallness as
[/ N\ compared W1th the E,,(ry). We can therefore treat E,,, as
a constant vector over the structure. Hence, the excitation
strength of mode n is

*®

* Pn
<En|Eexz> =E,,- f dl‘En(I') =E,,- ;, (4)

scatter

where P, is the total dipole moment of the nth eigenmode of
nanostructure and « is the effective polarizability per unit
volume of the nanostructure.

Hence, a mode is bright (i.e., interacts with the external
field) when there is one component of P,—the integral in Eq.
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TABLE 1. Character table for the group Cy,.

E 2Cy C, 20, 20,
Ay 1 1 1 1 1
A, 1 1 1 -1 -1
B 1 -1 1 1 -1
B, 1 -1 1 -1 1
E 2 0 -2 0 0

(4)—that does not vanish. To reveal the role of symmetry
here, let us consider a symmetric nanostructure characterized
by a point group G. Defining a symmetry operator 'f‘g for
each element ge G, we have the commutation relation
é’fg=’f‘gé. According to group theory, each invariant
eigenspace of G carries an irreducible representation (irrep)
I' of G. In the case of a scalar field f (e.g., a wave function in
quantum mechanics), the selection rules can be found in text-
books: eigenmode f,, cannot be excited unless f, is the base
of a unit irrep of G.12

In this work however, we are dealing with a vectorial field
E and the selection rules are more complicated than for a
scalar field. Indeed, a bright mode may acquire its intensity
from any of the three components of E and these compo-
nents do not necessarily transform in the same way. For ex-
ample, in Cartesian coordinates, if we define a rotation trans-
formation R, for each symmetry operator 'f‘g, ’f‘g will act on
vector field E as [’IA‘gE](r)=RgE(R;1r) instead of [’i’gf](r)
= f(R;,lr) as would be the case for a scalar field £.!>!* Hence,
in the cases of a sufficiently high symmetry, the transforma-
tion of each component will involve other components since
R, also rotates the vector E, and a component of the eigen-
vector may not transform as an irrep of G. Even in the case
of a one-dimensional irrep, the three components of the vec-
tor field may be the bases of different irreps. Therefore, the
selection rules become in our case: E,, is a dark mode, unless
one of its components contains the unit irrep of G.

Let us take a square flake which bears the D, symmetry
as an example. The profiles of the possible modes can be
generated with the help of the character Table 1415 These
modes are shown in Fig. 1(a); for simplicity, we only con-
sider the modes of Cy, in the x-y plane instead of Dy, since
all the modes of Dy, can be generalized from the modes of
Cy, using Dy,=C4, ® C,. There are three types of modes in
Fig. 1(a): first, A, which is the electric dipole mode along the
principal axis (i.e., the z axis in this case); second, the two
degenerated modes of irrep E which correspond to the elec-
tric dipole modes in the x-y plane; third A,, B, and B,,
which correspond to the magnetic dipole mode and electric
quadrupole modes.

We can directly determine whether the modes in Fig. 1(a)
are bright or not with the help of the selection rules. Mode A,
is bright because the z component of the electric field is a
base of the unit irrep A;. In the case of the two degenerated
modes of irrep E, either the x or the y component carries
both the unit irrep A; and Bj; therefore these modes are
bright. We would like to emphasize that these two degener-
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FIG. 1. (a) The possible symmetric modes of Cy, in the x-y
plane, the arrows show the electric field vectors. (b) The dipole
moments of the LSPR modes as a function of the permittivity (cor-
responding to the eigenvalues) for a 2.5 nm thick square flake
which dimensions 20X 20 nm?. Dipole moment spectra for per-
turbed structures with (c) a 2 X2 nm? corner removed and (d) a 2
nm shorter side in y direction. The electric field distributions of the
dominant modes appearing in the spectra (b)—(d) are shown in the
corresponding insets; the direction and intensity of the electric
fields are denoted by the orientation and length of the arrows.

ated E modes would be dark in the case of a scalar field (e.g.,
in the case of Schrodinger’s equation), and they are bright
here because the electric field is vectorial. The modes A,, B,
and B, on the other hand, do not have any components which
carry a representation containing the unit irrep A; and are
therefore dark.

We numerically solved the eigenmodes of this square
flake by discretizing it into small cubes. The amplitude of the
dipole moment P, associated with the nth eigenmode was
then calculated and plotted as the function of ¢, (i.e., 1/s,
+1), Fig. 1(b). Three dominant modes are clearly visible in
this figure: the three dipolar modes corresponding to the
three different spatial dimensions. Comparing the field dis-
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tributions of these three dominant modes with the modes
depicted in Fig. 1(a), we observe that they correspond to the
A; mode and doubly degenerated modes of E, respectively.
Although the two degenerated modes of E in Fig. 1(b) appear
different from the sketch in Fig. 1(a), they can be expressed
as a linear combination of the two degenerated modes.

In quantum mechanics, it is well known that degenerated
modes split when the symmetry of the system is broken and
the profiles of the new modes depend on the symmetry of the
new structure. To demonstrate this effect, we lower the sym-
metry of the square flake structure in two different ways: first
by removing a corner and second by shortening one side; the
symmetry axes then become the diagonal through the broken
corner and the new middle lines along the x and y axes.
Hence, new modes of the structure are oriented along or
perpendicular to the new symmetry axes, as shown in Figs.
1(c) and 1(d).

This mode splitting can also be explained by the pertur-
bation theory. In Fig. 1(c), because the volume of the re-
moved corner is much smaller than the total volume of the
original square flake, the new system can be described as
E=E, +-(G+G")E, where [G'E](r)=—/ medr' Go(r,r')
E(r’)k%. If sV is the first order of correction of the eigen-
value s associated with d degenerated eigenmodes {E,,/
=1,2...d}, we have

G, - s8] =0. (5)

In the case of the two dipole modes of the square flake, Eq.
(5) has two different real roots. In other words, the degener-
ated level splits.

One interesting phenomenon in Fig. 1(c) is that the am-
plitude of the mode shift is linked with the local field inten-
sity at the removed corner. The mode which originally has
small field intensity at the corner is almost unchanged, while
the other mode which presents strong local electric field in-
tensity at the perturbed zone is clearly shifted. This implies
that the perturbation induced resonance shift depends on the
local field intensity of the resonance mode. Actually, this
effect has been observed in closed packed plasmonic dimmer
structures and is important for designing ultrasensitive
LSPR-based sensors.!6-18

In addition to mode splitting, breaking the structure sym-
metry may turn on a dark mode, which appears as new mode
in Fig. 1(c). As previously mentioned, whether a mode of a
symmetric structure is dark or not depends on whether the
eigenmode contains the base of the corresponding unit irrep.
When the symmetry of the structure is lowered, the eigen-
mode might no longer be the base of the symmetry transfor-
mations and consequently the integrals in Eq. (4) do not
vanish anymore.

The previous discussion is based on the assumption that
the external field is constant inside the nanostructure. This
assumption however becomes inappropriate when E,,(r) in
Eq. (3) is zero or small enough to be comparable with the
variation of E,,, in the structure. In this case, the spatial
dispersion of E,,, must be considered and the selection rules
are determined by (E,|E,,,) instead of E,. The full selection
rules become: if the ith component of E,, respectively, E,,,,
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FIG. 2. (a) Field intensity profile of an azimuthally polarized
donut shape beam. This type of beam can be generated by using a
composited \/2 waveplate (b). (c) Excitation strength as a function
of the permittivity of the different eigenmodes of the same square
flake as in Fig. 1(a) for the donut shape beam illumination. The
insets in (c) show the electric field distributions of the two dominant
modes.

transform as the representations I',;, respectively, I',,;
(i=1, 2, or 3), then (E, |E,,,) vanishes unless there is a I, ;
®T,,,; transforming as the unit irrep of the system. Note that
when the external field is homogeneous, I',,, is the unit irrep
and the selection rules are solely determined by I',, as was
deduced previously.

To illustrate the influence of the external field, we con-
sider an azimuthally polarized donut shape beam, Fig. 2(a).
This type of beam can be created by using the composite
waveplate depicted in Fig. 2(b).!” The field distribution E,,,
inside the square particle carries the irrep A,, which corre-
spond to the A, mode in Fig. 1(a). Figure 2(c) shows the
modes obtained by simulation. The three orthogonal domi-
nant dipole modes in Fig. 1(b) vanish because the direct
product of I', ; and T",, ; does not contain any unit irrep com-
ponent. On the contrary, the dark modes carrying irrep A,
can be excited by the donut shape beam-see the mode pro-
files in Fig. 2(c)—because the product FA2g®FA2g=FA1g is
the unit irrep. ‘

Another important case in which the approximation of a
homogenous external field is invalid is the near-field illumi-
nation, which can produce very large field gradients. Here,
we consider the field generated by a dipole source as an
example. When an oscillating dipole is nearly touching the
structure, the gradient of the electric field diverges and be-
comes strong enough to lighten all the dark modes, as shown
in Fig. 3(a). This phenomenon has been utilized to excite the
antisymmetric mode in order to create a unidirectional beam
with an optical antenna by Kall and his colleague.” This type
of excitation of dark-modes only happens when the dipole
source is close to the structure. When the dipole-sample dis-
tance increases, the gradient of the electric field drops dra-
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FIG. 3. Excitation spectrum of the nanometer-sized square flake
for a dipolar illumination. The spectra are calculated for a dipole-
sample distance of (a) 1 nm and (b) 100 nm.

matically and is not large enough to excite the dark modes.

In the above discussion, we have seen that the excitation
of LSPRs strongly depends on the spatial distribution of the
external electric field which indeed changes strongly from
one experiment to the other. Especially in the case of single
particle measurements, a tightly focused beam or a near-field
scanning optical microscope are often used; the correspond-
ing external field may vary extremely rapidly in space and
cause unexpected results. This has however largely been ig-
nored. Actually, Mojarad et al. have pointed out that, even in
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a case as simple as a spherical nanoparticle, a tightly focused
beam and a plane wave generate different results.”” In fact,
we can even go one step further and selectively excite a dark
mode by choosing the proper symmetry of the external
fields, as demonstrated in Fig. 2.

To summarize, we have established a general framework
to describe how localized surface plasmon modes interact
with an external electric field. By implementing the group
theory upon the electric vector field E, the selection rules of
LSPRs under different illumination conditions have been ob-
tained and further demonstrated for the case of a model
square flake. The influence of symmetry breaking on the
splitting of degenerated modes and the switching of dark
modes has been discussed. These results emphasize the fact
that the selection rules for a vector field are different from
the case of a scalar field, because a symmetry operator acts
on both the position vector and the field vector. All the se-
lection rules are essentially induced by the geometry of the
structure. Finally, this work not only points out that measure-
ments of LSPRs may result in very different results with
different external fields, but also provides a strategy to selec-
tively excite specific LSPRs of plasmonic structures.
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