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Low-dimensional excitons are normally modeled as electron-hole pairs confined to a restricted volume. In
certain cases, however, confinement to a restricted surface is a more appropriate model. These cases include
one-dimensional carbon nanotubes but also various zero-dimensional structures such as small oxidized Si
nanoparticles and spherical core/well/shell quantum dots. Wannier excitons confined to spherical surface quan-
tum wells of finite and zero thicknesses are analyzed using numerical, analytical, and variational methods. The
results are applied to known zero-dimensional structures supporting surface-confined excitons.
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Excitons play an important role in the optical properties
of semiconductor nanostructures.1,2 Primarily, quantum con-
finement leads to increased electron-hole overlap, thereby
enhancing the exciton binding energy to values comparable
to or above room-temperature thermal energies. For perfect
confinement in a quantum well �two-dimensional limit�, the
binding energy of the lowest Wannier exciton measured in
effective Rydbergs Ry� increases to E=−4Ry�, which is pre-
cisely a factor of four larger than the bulk value.3 For quasi-
one-dimensional quantum wires and zero-dimensional quan-
tum dots the effect may be even more pronounced.4,5 Such
low-dimensional excitons may be modeled as interacting
electrons and holes confined to a restricted volume in space
by means of barriers formed by band offsets between differ-
ent materials. In certain cases, however, a picture of electron-
hole pairs confined to the surface of a nanostructure is more
appropriate. The classical example is that of a carbon nano-
tube, for which excitons are confined to a cylindrical
surface.6,7

Surface-confined excitons exist in zero-dimensional nano-
structures as well. Hence, these states can be viewed as in-
teracting electron-hole pairs living on the surface of a sphere.
Physical realizations of such structures include oxidized Si
and Ge nanodots,8,9 spherical core/well/shell nanoparticles10

and, to some extent, C60 and other fullerenes. The confine-
ment mechanism differs among these cases. For Si nanodots,
band gap lowering by partial oxidation11 is believed to be
responsible.8 In CdS/CdSe/CdS core/well/shell structures,
band offsets between CdS and CdSe lead to confinement in a
spherical quantum well. Finally, electrons and holes are con-
fined to the carbon atom �-orbital network in fullerenes
similarly to the case of carbon nanotubes. In the present
work, a simple description of excitons confined to spherical
surfaces is formulated and analyzed. The model is restricted
to Wannier-type excitons in that we adopt the effective-mass
approximation, treat the Coulomb interaction in the Hartree
approximation and ignore exchange effects. We consider
both �i� perfect confinement in an infinitely thin radial quan-
tum wells as well as �ii� confinement by a radial potential of
finite width. The simplicity of the first case is appealing from
a conceptional point of view. Moreover, a cylindrical model
based on similar assumptions is known to successfully repro-
duce the measured structure dependence of exciton reso-
nances in carbon nanotubes12 and agrees with the scaling
behavior found in the highly advanced Bethe-Salpeter
approach.13 Finally, the limit of perfect radial confinement

with vanishing well thickness can be compared to recent
work on the problem of two electrons on a spherical
surface.14–16 We will demonstrate that analytical solutions for
higher �positive-energy� exciton states can be found for cer-
tain nanoparticle radii using the recursive method of Ref. 16.
In addition, a highly accurate variational estimate can be
given for the ground state. The general theory is applied to
the physical realizations mentioned above in order to provide
estimates of binding energies of surface excitons in various
spherical nanostructures. We stress, however, that accuracy
of the model is not expected to compete with advanced ab
initio results. Rather, the strength lies is its conceptual sim-
plicity and greatly reduced computational cost. The analyti-
cal solutions found below are valuable additions to the very
short list1,2 of exactly solvable exciton models. Finally, the
present model could be extended to multiparticle complexes
with only a modest computational demand.

The geometry used to describe exciton states is sketched
in the inset of Fig. 1. The radius R is the average between
inner and outer radii of the spherical quantum well and d is
the width of the well. The angular separation between elec-
tron and hole is � and the distance u is therefore
u=R�2�1−cos ��. In reality, electrons and holes are smeared
out in the radial range between R−d /2 and R+d /2. Thus, the
effective Coulomb interaction is reduced from the simple u−1

point-particle behavior, in particular, for small angular sepa-
ration. To model the effective Coulomb attraction we assume
that the thickness d of the spherical quantum well is much
smaller than the radius R. In this case, the radial parts of
electron and hole wave functions can be approximately re-
garded as “frozen” in the lowest radial eigenstate. This ap-
proximation amounts to ignoring the influence of Coulomb
forces on the radial motion. If these radial eigenstates are
denoted �e�r� and �h�r� for electrons and holes, respectively,
it follows that the effective interaction between the particles
is −2Vef f with

Vef f��� = �
0

� �
0

� ��e�re��2��h�rh��2

�re
2 + rh

2 − 2rerh cos �
re

2rh
2dredrh. �1�

Only l=0 radial states pertaining to vanishing single-particle
angular momentum are considered. Moreover, we assume
that the radial confinement resembles a parabolic well and,
thereby, that the radial eigenstates can be approximated by
identical Gaussians �e�r�=�h�r�=N exp�−�r−R�2 /d2�,
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where N is a normalization constant. If polar coordinates re
=� cos � and rh=� sin � are introduced the integral above
reduces to

Vef f��� = �
0

�/2 F���

�1 − sin 2� cos �
d� , �2�

where

F��� = N4�
0

�

exp�− �2�2 + 4R2 − 4�R�cos � + sin ���/d2	

��4d� 
� 2

�

4

d
e2R2/d2�sin 2�−1�. �3�

Using elementary integrals17 and introducing the parameter
z=R2�sec �−1� /2d2=u2 / �4d2−2u2d2 /R2� allows us to ex-
press the final result in the compact form

Vef f�u� =
1

u
�2z

�
ezK0�z� . �4�

Hence, the factor �2z /�ezK0�z� is a measure of the deviation
from simple u−1 behavior. Strictly speaking, Eq. �4� acquires
a small imaginary part whenever z	0 that should obviously
be excluded in actual calculations. Hence, only the real part
of Vef f is retained if z	0. From the asymptotic behaviors of
the Bessel function K0 it is readily shown that for fixed dis-
tance u the limiting behavior for a thin quantum well is
limd→0 Vef f�u�=u−1 as required and similarly for u
d ,R
�with Euler’s constant �=0.57721. . .�

Vef f�u� 
 −

� + 2 ln� u

d�8
�

d�2�
, �5�

so that the divergence is logarithmic and independent of R
for small electron-hole separations.

In analogy with the two-electron problem,14–16 the Wan-
nier equation for the exciton wave function � describes the

relative motion of the electron-hole pair in terms of the polar
angle � and an azimuth angle �. If u is substituted for �, the
equation reduces to the form


 u2

4R2 − 1�d2�

du2 + 
 3u

4R2 −
1

u
�d�

du
−

4R2

u2�4R2 − u2�
d2�

d�2

− 2Vef f�u�� = E� . �6�

In this expression, all energies and distances are measured in
units of effective Rydbergs Ry� and Bohr radii aB

� , respec-
tively. Hence, the dependence on material parameters such as
dielectric screening 
 and effective reduced electron-hole
pair mass � �in units of the free-electron mass� enters
via these quantities �aB

� =0.529 Å·
 /� and
Ry�=13.6 eV·� /
2� and must be considered when convert-
ing into physical units as detailed below. It is clear that the
azimuthal dependence is of the simple form ��eim� with the
angular momentum m an integer. Also, for numerical pur-
poses, it is advantageous to introduce the scaled distance
x=u /2R, x� �0,1�. If we therefore write the wave function
in the form �=eim�xm�1−x2�m/2��x� it can be shown that the
one-dimensional Wannier equation for � reads as

�x2 − 1�
d2�

dx2 + 
�3 + 4m�x −
1 + 2m

x
�d�

dx
− 2�ef f�x��

= �
 − 4m�m + 1��� , �7�

where 
=4R2E is the scaled energy and the scaled potential
is

�ef f�x� =
4R

��2��1 − 2x2�
exp� x2

�2�1 − 2x2�
�K0� x2

�2�1 − 2x2�
�
�8�

with �=d /R. In Fig. 1, the effective potential is shown for
some illustrative examples ranging from perfect radial con-
finement ��=0� to weak confinement ��=0.4�. The reduced
effective interaction as radial confinement is weakened is
clearly seen. Also, the logarithmic singularity can be per-
ceived for cases of finite well thickness.

We solve Eq. �7� using a Jacobi polynomial basis15 with
basis functions of the form �p�x�=�2�p+1�Pp

�1,0��1−2x�
with p a non-negative integer. These functions are orthonor-
mal, i.e., �0

1�p�x��q�x�xdx=�pq. The kinetic-energy matrix
elements can be evaluated analytically whereas the matrix
elements of Eq. �8� must be computed numerically. A method
based on Gaussian quadrature with 1000 sample points is
applied for this purpose. In addition, only the 25 lowest basis
functions are included in the expansion. Note that for m�0
the problem is not Hermetian. Results for the S-exciton �m
=0� binding energy E as a function of radius R are illustrated
in Fig. 2. In each curve, d /R is fixed at a constant value so
that the well thickness d constitutes a constant fraction of R.
For d /R=0, the asymptotic result for large spheres is
E=−4Ry� in agreement with the result for excitons in two-
dimensional quantum wells.3 For d /R�0, the binding en-
ergy keeps increasing toward zero with radius as the radial
confinement of the exciton becomes gradually weaker. For
large d, the approximation of a frozen radial wave function is

FIG. 1. �Color online� Effective Coulomb interaction for differ-
ent thicknesses of the confining quantum well. The geometrical pa-
rameters for an electron-hole pair confined to the well are shown in
the inset.
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clearly inaccurate and, as a consequence, the large R limit
differs from the exact limit E=−1Ry� found for a homog-
enous three-dimensional semiconductor. For R	0.5aB

� , a
substantial enhancement of the binding energy is observed
regardless of the value of �.

In the case of perfect radial confinement, i.e., Vef f�u�
=u−1, analytical solutions for the “unbound” states, that is,
states with E�0 can be found for special values of the radius
following the recursive approach of Loos and Gill.16 Their
work was applied to two electrons on a �hyper�spherical sur-
face. Adopting the recursive approach to the electron-hole
pair problem and writing ��x�=�kskx

k with starting condi-
tion s1=−4Rs0 / �1+2m� leads to the expression

sk+2 =
− 4Rsk+1 + �k�k + 4m + 2� + 4m�m + 1� − 4R2E�sk

�k + 2��k + 2m + 2�
. �9�

The polynomial series for ��x� terminates at a finite power xp

provided sp+1=sp+2=0. This condition provides a set of equa-
tions that can be solved simultaneously if E as well as R are
both regarded as unknowns. For S excitons, the lowest radius
for which such a solution is found is R=�3 /4 with, corre-
spondingly, E=4.

As the recursive method only applies to states with posi-
tive energy, it obviously cannot provide the lowest, ground-
state, solution. However, a simple variational approach with
an exponential ansatz for the wave function yields highly
accurate results. Hence, writing ��x��exp�−�x� it is readily
demonstrated that the expectation value for the S-exciton en-
ergy is

E =
3 + 6� + 4�2 + 16�R + e2��2�2 − 16�R − 3�

8R2�e2� − 1 − 2��
. �10�

Similar, but slightly more complicated expressions can be
found for nonzero values of m. Minimizing with respect to �
immediately provides the energy as well as the wave func-
tion. In Fig. 3, numerical solutions for S-type and P-type
excitons �m=0 or 1, respectively� based on expansion in the
Jacobi basis are compared to exact recursive solutions as
well as the variational estimate of the lowest state. The

agreement between different methods is clearly excellent in
all cases and, in fact, deviations cannot be discerned on the
scale of the figure. The agreement between numerical and
exact solutions testifies to the high accuracy of the basis
expansion. Similarly, the agreement between numerical and
variational methods implies a high degree of accuracy of the
exponential ansatz.

Next, we turn to applications of the present theory. Spe-
cifically, we need to determine Ry� and aB

� for relevant
spherical nanostructures, in addition to the geometric param-
eters R and d. As mentioned above, the candidates include �i�
oxidized Si nanoparticles, �ii� spherical CdS�core�/
CdSe�well�/CdS�shell� structures, and �iii� C60 molecules.
We recall that R, as defined here, includes half the well thick-
ness. In case �i�, the mean radius for which excitons are
confined in the surface well is R
3.5 nm.8 In addition, the
well thickness is approximated by the lattice constant
d
0.8 nm of luminescent low-gap SiO.18 For lack of a bet-
ter value, we estimate the effective exciton Bohr radius of
the interfacial layer by the Si value aB

� 
4.9 nm �Ref. 19�
and, moreover, assume that screening can be described by
the average between Si and SiO2 dielectric constants of 11.9
and 3.9, respectively, so that the resulting value is 7.9. These
parameters correspond to an exciton Rydberg of 18.5 meV.
For a two-monolayer CdSe well layer, case �ii� yields
R
2.2 nm and d
0.7 nm.10 Furthermore, for CdSe
Ry�
15 meV,20 which corresponds to aB

� 
5.2 nm assum-
ing a dielectric constant of 9.3. The case �iii� of C60 is obvi-
ously more delicate and it is doubtful if the present �solid-
state� theory applies to such molecular species. Nevertheless,

FIG. 2. �Color online� S-exciton binding energies vs radius for
spherical quantum wells of varying thickness. As the radius de-
creases, a large enhancement of the binding energy is observed.

FIG. 3. �Color online� Binding energies for ideal radial confine-
ment d=0 for S-type �upper panel� and P-type �lower panel� exci-
tons. Numerical solutions �solid lines� are compared to analytical
values �green squares� and variational estimates �magenta circles�.
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the successful application of similar theories to carbon
nanotubes6,12 indicates that, at least, rough agreement with
experiments can be expected. The molecular radius defined
as the distance between center and carbon nuclei is 0.35 nm
and d can be estimated as roughly two �atomic� Bohr radii or
0.1 nm. The quasiparticle electronic energy gap of nearly
isolated C60 is about 2.75 eV �Ref. 21� and modeling the
molecule as a “graphene sphere” a band gap of this magni-
tude corresponds to an effective electron-hole pair mass of
�0.12 in units of the free-electron mass.22 Also, the short-
range graphene dielectric constant of 4.5 �Ref. 23� may be
applied for crystalline C60 indicating that Ry�
81 meV and
aB

� 
2.0 nm. The geometric parameters of all structures are
summarized in Table I along with the applied values of Ry�

and aB
� . The table also includes computed S-exciton binding

energies in Ry� as well as millielectron volt. Notably, all
S-exciton binding energies are above room-temperature ther-
mal energies implying stability without sample cooling.
Moreover, the energies clearly increase dramatically with de-
creasing particle size as expected from Figs. 2 and 3 even
though differences in material parameters are taken into ac-
count. The finding that surface excitons are stable at room
temperature in Si /SiO /SiO2 and CdS/CdSe/CdS structures
agrees with measurements of the temperature-dependent

luminescence.8,10 The computed values of the exciton bind-
ing energies cannot be directly compared to experiments,
however. For C60, the calculated binding energy of
−875 meV is in practically perfect agreement with the
highly advanced Bethe-Salpeter plus GW calculation for
semi-isolated molecules by Tiago and Reboredo.21 At an ex-
panded lattice parameter of 14.8 Å for crystalline C60, these
authors find electronic and optical energy gaps of 2.75 eV
and 1.85 eV, respectively, and thus an energy difference of
−0.9 eV. The level of agreement is obviously partly fortu-
itous given the severe simplifications of the present theory
and the uncertainty of the applied parameters. Nevertheless,
it is gratifying that such a simple theoretical framework ap-
pears to have a wide applicability. We note that the binding
energy for truly isolated C60 in vacuum is substantially
larger24 but the present solid-state model is clearly not suit-
able for such systems lacking bulk screening.

In summary, a simple model for excitons confined to a
quantum well on a spherical surface has been developed. It
provides estimates of binding energies and wave functions
with greatly reduced computational cost compared to
ab initio methods but naturally also with reduced reliability.
Wells of finite thickness are allowed for through an effective
electron-hole Coulomb interaction. Exciton binding energies
are investigated numerically in the general case. The model
simplifies substantially in the case of perfect radial confine-
ment and here numerical results are shown to compare favor-
ably with analytical solutions found for special nanoparticle
radii as well as variational estimates. Finally, the theory is
applied to a few semiconductor and molecular candidate
structures and in all cases stable surface-confined excitons at
room temperature are predicted in agreement with
experiments.
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