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The flux-flow dynamics in a long Josephson junction is studied both analytically and numerically. A realistic
model of the junction is considered by taking into account a nonuniform current distribution, surface losses,
and self-pumping effects. An approximate analytical solution of the modified sine-Gordon equation is derived
in the form of a unidirectional dense fluxon train accompanied by two oppositely directed plasma waves. Next,
some macroscopic time-averaged quantities are calculated making possible to evaluate the current-voltage
characteristic of the junction. The results obtained by the present method are compared with direct numerical
simulations both for the current-voltage characteristics and for the loss factor modulated spatially due to the
self-pumping. The comparison shows very good agreement for typical junction parameters but indicates also
some limitations of the method.
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I. INTRODUCTION

In recent years the flux-flow �FF� dynamics in a long Jo-
sephson junction has attracted considerable attention in view
of possible applications in superconducting millimeter-wave
electronics.1–4 The FF mode appears in a junction immersed
in a sufficiently large external magnetic field and can be
described briefly as a unidirectional viscous flow of a dense
train of fluxons �magnetic-flux quanta�.

Recently, a considerable progress has been made in the
optimization of FF oscillators, which have been successfully
employed in superconducting millimeter-wave and
submillimeter-wave integrated receivers.4–9 However, in
view of new challenges following from prospective applica-
tions in the terahertz region, there is a need for more ad-
equate description of a real Josephson junction operating in
the FF mode. In particular, one should take into account
some additional factors which may affect the current-voltage
�I-V� characteristic of the junction and change its working
conditions.

In the majority of papers dealing with long Josephson
junctions �see, e.g., Refs. 10–16� a simplified version of the
sine-Gordon equation is considered, usually neglecting sur-
face losses and assuming uniform distribution of the bias
current density. Only recently, a few papers have been
published17–20 taking into account a nonuniform bias current
distribution and its influence on the junction behavior. More-
over, in Refs. 18 and 19 a realistic model of the FF oscillator
has been investigated both experimentally and numerically,
including general boundary conditions, nonuniform bias cur-
rent profile, surface losses as well as self-pumping effects21

related to additional tunneling of quasiparticles due to the
Josephson radiation.

The aim of the present paper is to present an analytical
approach to the modified sine-Gordon equation, which takes
into account �i� nonuniform current distribution, �ii� surface
losses, and �iii� spatial modulation of the loss factor resulting
from the self-pumping effect. Contrary to Ref. 19 we assume
standard open-circuit boundary conditions to make the influ-
ence of various effects more pronounced. Nevertheless, the
present analysis can be easily extended to include also more
general boundary conditions.

In the particular case of uniform current distribution, the
present method makes it possible to obtain fully analytical
closed-form expressions describing both the superconducting
phase within the junction and the I-V characteristic. Such a
solution can be regarded as the first-order approximation
which appears sufficiently accurate for some moderate junc-
tion parameters. However, in the general case, particularly
for very long and weakly damped junctions, such an analyti-
cal approximation is only the first step in an iterative proce-
dure, which has to be performed numerically. Thus, in spite
of analytical expressions describing the superconducting
phase within the junction, the present approach has been
named “semianalytical.”

The paper is organized as follows. In Sec. II we formulate
the problem, i.e., we present a generalized sine-Gordon equa-
tion subject to open-circuit boundary conditions at the junc-
tion ends. Approximate analytical solutions to the sine-
Gordon equation are discussed in Sec. III. We start with a
linearized �small-amplitude� solution and apply appropriate
boundary conditions. Next, some large-amplitude corrections
are introduced, we discuss also possible self-pumping effects
and their influence on the I-V characteristic. In Sec. IV ana-
lytical results are compared with direct numerical simula-
tions. In particular, we discuss the influence of surface losses
both for junctions of moderate length and for more realistic
structures, such as very long junctions with small damping
and strongly nonuniform current distribution. Section V con-
tains concluding remarks, we indicate also possible exten-
sions of the method by taking into account more general
boundary conditions.

II. FORMULATION OF THE PROBLEM

Figure 1 shows schematically the standard overlap geom-
etry of a long Josephson junction immersed in an external
magnetic field parallel to the barrier plane. For W�L �W and
L being the junction width and length, respectively� the
fluxon dynamics is usually described by the following modi-
fied sine-Gordon equation:10–14

�xx − �tt − ��t = sin � − � , �1�

where � denote the quantum phase difference across the bar-
rier, � is the loss factor, and � is the bias current density. The
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spatial coordinate x has been normalized to the Josephson
penetration depth �J and the time coordinate t to the inverse
plasma frequency �0

−1, where �J= �� /2	0edjc�1/2, �0
= �2ejc /�C�1/2, jc is the critical current density and C denotes
the junction capacitance per unit area.

However, to describe more adequately a real physical
situation, one can consider a more general form18,19

�xx − �tt − ��x��t + 
�xxt = sin � − ��x� , �2�

where 
 denotes the surface loss parameter and we assume
both � and � to be x dependent. Physically, 
 represents the
dissipation due to a flow of normal electrons along the bar-
rier while � is related to the tunneling of normal electrons
across the barrier. Moreover, absorption of the high-
frequency Josephson radiation by the junction gives rise to
an additional dc tunneling current �self-pumping effect�
which accounts for a spatial modulation of the loss factor
��x�.

For the overlap geometry one can neglect the self-fields
and assume simple open-circuit boundary conditions11

�x��L/2� + 
�xt��L/2� = h , �3�

where h=Hext / jc�J, Hext denotes the external magnetic field,
and for a long junction we assume L�1.

Following Refs. 13–16 and 20 we look for an approxi-
mate solution in a form of a dense fluxon train traveling on a
rotating background. Thus, a linearized solution of Eq. �2�
can be written as

� = �0 +  , �4�

where �0=��x�+�t is the background term �linear in time�
and  denotes a quasilinear term �usually small� representing
the motion of fluxons and plasma waves within the junction.

Substituting Eq. �4� into Eq. �2� we find

�xx + xx − tt − �� − �t + 
xxt = sin��0 + � − � . �5�

We are interested in a steady-state, time periodic solution,
thus the background frequency � should be equal to the
fundamental frequency of the oscillating term . Both ex-
perimental data and numerical simulations show that the out-
put signal of a real FF oscillator is nearly sinusoidal.1,22,23

Thus, it is reasonable to assume the time dependence of the
term  to be harmonic in �t, and neglect any higher harmon-
ics generated by the nonlinear term sin��0+�. Conse-
quently, Eq. �5� can be split into a time-independent part and
a part oscillating with frequency � while the boundary con-

ditions �Eq. �3�� can be written separately for ��x� and �x , t�

�x��L/2� = h , �6�

x��L/2� + 
xt��L/2� = 0. �7�

III. APPROXIMATE ANALYTICAL SOLUTION

The method for solving Eq. �5� with the boundary condi-
tions �6� and �7� is based on the approach suggested recently
�see Ref. 20 for details�. However, we consider here a more
general case with both surface losses and self-pumping effect
taken into account.

A. Time-independent equation

It can be easily shown that for  oscillating with fre-
quency �, the nonlinear term sin��0+� contributes also to
the time-independent part of Eq. �5�, and such a contribution
yields, in fact, the first-order approximation of the I-V char-
acteristic of the junction. Thus, the time-independent equa-
tion can be written as

�xx = ��x�� + S�x� − ��x� , �8�

where

S�x� = �sin��0 + ��T = �1/T��
0

T

sin��0 + �dt �9�

and T=2� /�.
Solving Eq. �8� for ��x� we find

� = �
−L/2

x ��
−L/2

�

������ + S��� − �����d�	d� + C1x + C2.

�10�

Without loss of generality C2 can be set to zero while
from the boundary condition �6� we find C1=h and

�0 = �0� +
1

L
�

−L/2

L/2

S�x�dx , �11�

where �0 and �0 denote the averaged current density and loss
factor, respectively,

�0 =
1

L
�

−L/2

L/2

��x�dx, �0 =
1

L
�

−L/2

L/2

��x�dx . �12�

It follows from the relation �4� that the time-averaged
value of �t, �being proportional to the constant voltage� is
equal to the frequency �. Thus, the expression �11� can be
regarded as the current-voltage �I-V� characteristic of the Jo-
sephson junction. One can see that the total current density
�0 consists of a linear �Ohmic� part and a nonlinear contri-
bution related to the Josephson current.

B. Time-dependent equation

For  sufficiently small we can write

sin��0 + � 
 sin �0 +  cos �0. �13�

FIG. 1. Standard overlap geometry of a long Josephson junction.
L is the junction length, W—its width, h denotes the external mag-
netic field, and I—the total bias current.
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Noting that the term  cos �0 gives no contribution of
frequency � and collecting all the time-dependent terms in
Eq. �5� we find

xx − tt − ��x�t + 
xxt 
 sin �0. �14�

Since all the terms in Eq. �14� oscillate with the same
frequency �, it is convenient to use a complex notation16,20

�x,t� = Im�̂�x�ei�t�, sin �0 = Im�ei��+�t�� , �15�

and rewrite Eq. �14� as an ordinary differential equation

�1 + i�
�̂xx + ��2 − i��x���̂ = ei� �16�

or

̂xx + �2̂ = ei�/P , �17�

where P=1+ i�
, �2= ��2− i��x��� / P.
The general approximate solution of Eq. �17� can be writ-

ten in a WKB-type form24

̂�x� =
1

2iP��
�eif�x�F−�x� − e−if�x�F+�x�� + A

eif�x�

��
+ B

e−if�x�

��
,

�18�

where

F��x� = �
−L/2

x ei������f����d�

��
, f�x� = �

−L/2

x

����d� . �19�

The term in square brackets in Eq. �18� corresponds to a
dense fluxon train moving unidirectionally along the junction
while the last two terms describe two plasma waves propa-
gating in opposite directions.

Using the complex formalism the boundary condition �7�
can be rewritten as

̂x��L/2� + i�
̂x��L/2� = 0 ⇒ ̂x��L/2� = 0. �20�

Thus, using Eqs. �18� and �20� one can determine the
integration constants A and B to be

A = B =
ei�0LF−�L/2� + e−i�0LF+�L/2�

4P sin �0L
, �21�

where

�0 =
1

L
�

−L/2

L/2

��x�dx . �22�

It should be mentioned here that the solutions for � and ̂
�Eqs. �10� and �18�, respectively� are not given explicitly but
rather form a system of coupled equations. Fortunately, this
system can be easily solved by a method of consecutive it-
erations. Indeed, starting with S�x�=0 one can solve Eq. �10�
for � and next solve Eq. �18� for ̂. Substituting � and ̂ into
Eq. �9� we obtain a new approximation for S�x� and conse-

quently new approximations for � and ̂.
It is clear from Eq. �11� that S�x�=0 corresponds simply

to the Ohmic line �0=�0� while consecutive iterations yield
a sequence of approximations for S�x� describing the time-

independent contribution from the Josephson current.
The rate of convergence of the iterative process depends

strongly on the junction parameters. As shown in the next
section, for moderate values of L, h, and �0, the first iteration
yields satisfactory results. However, for practical FF oscilla-
tors which are usually based on very long junctions, up to a
few thousands of iterations are needed to obtain a self-
consistent solution.

C. Analytical approximation

It is interesting that for the simplest but widely used
model of uniform bias current distribution ���x�=const�, all
the integrations can be performed analytically, leading to a
compact and fully analytical expression for the I-V charac-
teristic.

Indeed, assuming the small-amplitude limit �̂�1� and
ignoring self-pumping effects ���x�=const�, one can calcu-
late the first-order approximation for Eq. �11�. Following the
steps outlined above we find ��x�=hx and consequently

̂�x� = −
eihx

P�h2 − �2�
+

h sin��h + ��L/2�
P�h2 − �2�� sin �L

ei�x

+
h sin��h − ��L/2�

P�h2 − �2�� sin �L
e−i�x �23�

and

�0 = �0� + Im�−
1

2P�h2 − �2�
+

h2�cos �L − cos hL�
LP�h2 − �2�2� sin �L

	 ,

�24�

where P and � have been defined in Eq. �17�.
When the surface losses are neglected �
=0� the above

simple expression is reduced to the solution derived earlier.16

Moreover, it can be shown that for 
=0 the expression �24�
is also equivalent to apparently different solutions derived
independently in Refs. 17 and 25 in a form of infinite series
expansions.

D. Large-amplitude corrections

As follows from Eq. �11�, the evaluation of S�x� is crucial
for the determination of I-V characteristic. So far we have
assumed �1 and used an approximation �Eq. �13��. How-
ever, for  larger we should consider the exact relation

S�x� = �sin �0 cos �T + �cos �0 sin �T. �25�

Since  is an oscillatory function, one can use well-
known relations26 involving Bessel function. As shown in
Ref. 20, the leading terms for cos  and sin  are given by

cos  
 J0��̂��, sin  

2J1��̂��

�̂�
 , �26�

where J0 and J1 denote the Bessel functions of order 0 and 1,
respectively.

Using Eq. �26� we can find the time-independent contri-
bution S�x� to be20
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S�x� =
J1��̂��

�̂�
Im�̂e−i�� . �27�

Accordingly, the right-hand sides of Eqs. �14� and �16�
should be replaced by sin �0 cos  and J0��̂��ei�, respec-
tively.

E. Self-pumping effects

According to Refs. 18, 19, and 21, the total current den-
sity due to the quasiparticle tunneling is given by

�eff = 
−�

�

Jn
2�evac/����dc�vdc + n��/e� , �28�

where Jn is the Bessel functions of order n, �dc denotes the
unpumped I-V dependence, and the total voltage applied to
the junction can be separated into a constant �vdc� part and an
oscillatory part of amplitude vac and frequency �.

Using the Josephson relation27 vdc=�� /2e and coming
back to our dimensionless notation we find vdc=�, vac

= �̂��, and

�eff = 
−�

�

Jn
2��̂�/2��dc���1 + 2n�� . �29�

For small arguments z= �̂� /2�1 the infinite expansion
�Eq. �29�� can be truncated to include only quadratic terms in
z. Noting that �dc�−��=−�dc��� we find

�eff 
 �dc��� +
z2

4
��dc�3�� − 3�dc���� . �30�

As an unpumped I-V characteristic we can take the non-
linear resistive model19,28

�dc��� = �0��b
��/�g�n

���/�g�n + 1�
+ 1� , �31�

where n�1, �g denotes the normalized gap voltage and b
=Rj /Rn is the ratio of normal-state resistances below and
above �g.

For n→� the highly nonlinear continuous dependence
�Eq. �31�� tends to a simple discontinuous linear form

�dc = ��0�

�0��b + 1�� for
� � �g,

� � �g.
�32�

However, in order to obtain a more physical description of
the self-pumping effect, the nonlinear continuous model �Eq.
�31�� with n large but finite will be used in further calcula-
tions.

It is clear that �eff is x dependent due to the self-pumping

via ̂�x�, thus we can define an effective damping factor
�eff�x�=�eff�x� /� and compute it self-consistently by start-

ing with �eff=�0, calculating ̂, substituting into Eq. �29�,
evaluating a new approximation for �eff�x�, and so on. Such
an iterative procedure has been originally suggested in Ref.
19. However, to avoid possible instabilities we use here a

more general scheme, taking at each step a weighted average
w�eff

�new�+ �1−w��eff
�old� as a new approximation �0�w�1�.

IV. RESULTS AND DISCUSSION

In this section we compare analytical results derived
above with numerical simulations obtained by the finite-
difference implicit scheme.29 The I-V characteristic is given
by Eq. �11� while S�x� follows from the self-consistent solu-
tions of Eqs. �10� and �18�. To illustrate the influence of
surface losses we consider first the simplest case ��x�
=const, where the I-V dependence can be expressed in a
closed form �Eq. �24��.

Figure 2 shows the central part of the I-V characteristic
for a junction of moderate length L=5. The remaining pa-
rameters ��0=0.2, h=3� are similar to those assumed in
Ref. 17. Open circles denote the results of numerical simu-
lations for a discrete set of �0 points. The dashed line denotes
the analytical solution �Eq. �24�� while the solid line follows
from the self-consistent solutions �10� and �18� obtained by

consecutive iterations for � and ̂. Figure 2�a� shows the
case 
=0 �no surface losses� and in Fig. 2�b� we assume a
realistic value 
=0.01.30 Similar results for h=5 are pre-
sented in Figs. 3�a� and 3�b�.

One can see that the I-V dependence departs from the
Ohmic line �0=�0� in the region of �
h, forming the
main FF step modulated by a series of Fiske steps with volt-

FIG. 2. �Color online� Current-voltage characteristic calculated
analytically �solid line� and numerically �open circles� for ��x�
=const, L=5, h=3, and �0=0.2: �a� 
=0, �b� 
=0.01. The dashed
line shows the first-order approximation �Eq. �24��.
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age spacing ��
� /L. Analytical approximations are con-
tinuous and consist of a series of resonances while numerical
results show typical hysteretic behavior and we observe only
the segments of positive slope.

It is clear that the presence of even very small surface
losses changes significantly the I-V dependence. Generally,
the steps �resonances� become smaller and this effect is more
pronounced for larger values of the external field h. Such a
result can be easily explained if we recall that the main FF
step and accompanying Fiske steps are visible in the region
�
h and the surface loss factor enters the formalism via
P=1+ i�
. In other words, for higher external magnetic
field the influence of surface losses is stronger and the I-V
characteristic becomes more smooth. The influence of sur-
face losses is clearly visible in experimental results,18,19

where the Fiske steps gradually disappear as the external
magnetic field is getting stronger.

Comparing analytical and numerical results shown in
Figs. 2 and 3 one can see that the fully analytical solution
�dashed line� is fairly accurate. On the other hand, the self-
consistent solution �solid line� reproduces very accurately all
the details of the numerical solution.

As the next example, let us consider a more realistic case
of a very long junction with small damping. Following Ref.
19 we choose L=40, �0=0.033, 
=0.035, and a slightly
asymmetric current profile ��x� depicted in Fig. 4. The bias
electrode �x1�x�x2� is shorter than the total junction
length. Consequently, the current distribution is assumed
parabolic for x1�x�x2, and exponential in the unbiased
tails �x�x1 ,x�x2�.

Contrary to the previous example, now we cannot use the
analytical approximation �Eq. �24��. First, the current distri-

bution is x dependent, what means that ��x� departs from a
simple linear dependence ��x�=hx, and relevant integrals
cannot be calculated analytically. Second, it appears �even
for a uniform current profile� that the first-order approxima-
tion is not accurate enough for very long junctions, and con-
secutive iterations are necessary to obtain a self-consistent
solution.

Figure 5 shows the I-V characteristics calculated for junc-
tion parameters specified above and for three values of the
external magnetic field h=2.5, h=3, and h=3.5. Open sym-
bols �triangles, circles, and squares� correspond to numerical
simulations while the solid line represents a self-consistent
solution. One can see that the agreement between numerical
and analytical results is rather poor for h=2.5. To explain
this discrepancy we should recall the main assumption �see
Sec. II� that Eq. �5� can be separated into a time-independent
part and a part sinusoidal in �t while neglecting higher-order
harmonics. The Fourier analysis shows, however, that the
anharmonic contribution to �t� is rather large for h=2.5. For
example, for �0=0.3 we find the content of the second har-
monic to be about 35%. Physically, it means that the fluxon
train is not sufficiently dense for h=2.5 and its time depen-
dence although periodic is not strictly sinusoidal.

FIG. 3. �Color online� the same as in Fig. 2 but for h=5.

FIG. 4. Normalized bias current distribution similar to that as-
sumed in Ref. 19. L=40, x1=−9, and x2=5.5.

FIG. 5. �Color online� Current-voltage characteristic calculated
analytically �solid line� and numerically �open symbols� for three
values of the external magnetic field: h=2.5, h=3, and h=3.5. The
current profile is shown in Fig. 4 and the remaining junction param-
eters are L=40, �0=0.033, and 
=0.035.
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Contrary to the case h=2.5, for h=3 and h=3.5 we ob-
serve excellent agreement between numerical and analytical
data. Now the I-V characteristics are smooth and the Fiske
steps disappeared completely as a combined result of surface
losses and self-pumping effects. The Fourier analysis of �t�
shows now that the anharmonicity diminishes rather quickly
with increasing h and for h=3.5 we observe only about 10%
of the second harmonic.

Another interesting feature visible for h=3 and h=3.5 is
an additional step at �b=1.9. Such a step appears in experi-
mental results19,31 and can be attributed to the self-pumping
effect described in Sec. III E. As shown in Ref. 31, the po-
sition of the current step follows from a simple relation �b
=�g /3, where �g denotes the gap voltage. Assuming typical
junction parameters31 we find a normalized dimensionless
gap voltage �g=5.7, hence �b=1.9.

It should be noted that the slope of the self-pumping step
is much more sensitive to the choice of n in Eq. �31� than the
remaining part of the I-V characteristic. The curves shown in
Fig. 5 have been calculated using n=200 and such a choice
yields at least qualitative agreement with experimental
data.31 On the other hand, n=200 corresponds to the gap
smearing �Vg
0.14 mV which is a realistic value for Nb
junctions.

It is interesting that the value of �b can also be deduced
directly from Eq. �30�. Indeed, if ���g /3 then �dc�3��

3�dc��� and the quadratic term in Eq. �30� vanishes yield-
ing �eff=�eff /�
�0 independent of x. However, if � ap-
proaches �b=�g /3, then the term �dc�3�� grows rapidly
and the quadratic contribution in Eq. �30� cannot be ne-
glected. As a result, �eff=�eff /� becomes x dependent via

z= �̂� /2, moreover, an averaged value of �eff increases, giv-
ing rise to a rapid growth of the current density at �=�b
which is visible as a step in the I-V curve �see Fig. 5�.

Figure 6 shows the spatial distribution of �eff plotted for
�0=0.1 and �0=0.3. The junction parameters are assumed as
before, i.e., L=40, h=3.5, �0=0.033, and 
=0.035. Now the
dotted lines correspond to numerical simulations and the
solid lines denote self-consistent �analytical� solutions. One
can see that the agreement is excellent, the self-consistent
solution following closely all the details of the numerical
simulations, taken here as a reference.

It is clear that �eff generally grows with increasing value
of �0. For example, for �0=0.3 we obtain an averaged value
of �eff�x� about three times larger than the “unpumped” value
�0, in good agreement with numerical simulations reported
earlier.19 As noted in Ref. 19 such an effect together with
surface losses makes the I-V curve smooth, damping effec-
tively the Fiske steps.

V. CONCLUSIONS

In this paper a semianalytical approach has been sug-
gested, making possible to solve a modified sine-Gordon
equation �2� with both surface losses and self-pumping ef-
fects taken into account. The solution, as given by Eqs. �4�,
�10�, and �18�, consists of a rotating background and a uni-
directional fluxon train accompanied by two plasma waves
traveling in opposite directions with the velocity close to the
critical value � /�0
 �1. As mentioned in Sec. III A the
normalized frequency � is proportional to the constant volt-
age across the junction. Thus, having obtained an analytical
solution to Eq. �2� and assuming � as a known quantity one
can determine the constant bias current, making possible to
calculate the I-V characteristic �Eq. �11�� of the junction.

For the uniform current-density distribution ���x�
=const� it has been shown that the relevant expressions for

��x�, ̂�x�, and consequently the I-V dependence can be ob-
tained in a closed fully analytical form �Eq. �24��. As follows
from Figs. 2 and 3, such an approximation is fairly accurate
for moderate junction parameters. In general, however, prac-
tical FF oscillators are based on very long junctions with
strongly nonuniform current profile. In such a case an ana-
lytical approximation �Eq. �24�� appears insufficient and one
should look for a self-consistent solution of Eqs. �10� and
�18� which can be obtained by an iterative procedure.

As shown in Figs. 2, 3, 5, and 6, the self-consistent solu-
tions and numerical simulations are generally in very good
agreement. The only exception, where one can observe quali-
tative rather than quantitative agreement is the I-V curve
shown in Fig. 5 for h=2.5. As explained in the previous
section, the fluxon train is not dense enough for h=2.5 and
consequently the time-dependent part of the solution is peri-
odic but not strictly sinusoidal, violating the main assump-
tion of the present approach.

Finally, it should be mentioned that the method presented
here can easily be extended to include general, more realistic
boundary conditions discussed in Refs. 18, 19, and 22. In the
present paper, however, we intentionally assumed standard
open-circuit boundary conditions �Eq. �3��, where the plasma
waves could interfere after complete reflection at the bound-
aries, giving rise to clearly visible Fiske steps. This way, we
were able to separate the influence of surface losses and self-
pumping from that of boundary conditions, which �e.g., for a
resistive load� can also affect the I-V characteristic and make
the physical mechanism discussed here less clear.
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FIG. 6. �Color online� Spatial distribution of �eff�x� calculated
analytically �solid line� and numerically �dotted line� for h=3.5 and
two values of the averaged current density �0=0.1 and �0=0.3. The
remaining junction parameters are the same as in Fig. 5.
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