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With advances in fabrication technologies it is now possible to create precisely controlled geometries and
pinning landscapes for vortex matter in type-II superconductors. Here we use numerical simulations to examine
vortex states and dynamics in periodic funnel geometries where a drive is applied in the easy-flow direction.
We show that this system exhibits a number of different commensurability effects when the vortex configura-
tions match to both the periodicity of the array and the geometry of the funnels. The vortex configurations in
this system are generally different from those observed for single isolated triangular superconducting samples
due to the coupling of vortices in adjacent funnels. At certain matching fields, peaks in the critical current are
absent due to the particular vortex configurations that occur at these fields. We find that the overall depinning
force increases with increasing vortex density as a result of the enhanced vortex-vortex interactions caused by
a crowding effect at the funnel tips. When a system becomes less mobile as a result of increased particle
interactions, it is said to exhibit a jamming behavior. Under an applied drive we observe a series of elastic and
plastic vortex flow phases which produce pronounced features such as jumps or dips in the transport curves. In
all of the flow phases, only one vortex can pass through the funnel tip at a time due to the vortex-vortex
repulsion forces. As a consequence of this constraint, we observe the remarkable result that the sum of the
vortex velocities at a fixed drive remains nearly constant with increasing magnetic field B rather than increas-
ing linearly. This result is similar to the behavior of sand in an hourglass. We also show how noise fluctuations
can be used to distinguish the different flow phases. Our results should be readily generalizable to other

systems of particles flowing in periodic funnel geometries, such as colloids or Wigner crystals.
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I. INTRODUCTION

Advanced nanostructuring techniques permit the creation
of specific superconducting structures for controlling vortex
motion in type-II superconductors. Experiments and simula-
tions for square and triangular artificial pinning arrays dem-
onstrate that pronounced commensurability effects occur
when the number of vortices is an integer multiple of the
number of pinning sites, and that these effects can be ob-
served as peaks in the critical current.'"® Above the first
matching field, multiple vortices may occupy individual
pinning sites,> or only a portion of the vortices may be cap-
tured by the pinning sites with the remaining vortices located
in interstitial sites where they can still be pinned by the
repulsive interactions with vortices at the pinning sites.”3
Vortex matter in these periodic pinning arrays can also
exhibit a remarkably rich variety of distinct dynamical
phases originally predicted in simulations.”!° These include
one-dimensional flow of interstitial vortices between immo-
bile vortices in the pinning sites, disordered or turbulent
phases where the number of moving vortices fluctuates
strongly, and laminar states where the vortex flow can orga-
nize along the rows of pinning sites. The transitions between
these different states appear as specific features in the
voltage-current curves, including negative differential con-
ductivity where the number of moving vortices or the aver-
age vortex velocity decreases with increasing drive. In very
recent experiments, these dynamical phases were observed in
both low-temperature!! and high-temperature'?> supercon-
ductors with periodic pinning arrays. It is also possible to
create periodic pinning arrays that contain intrinsic asymme-
try, such as with asymmetric thickness modulation,'>!* fun-
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nel geometries,'>~!7 composite pinning sites,'® or arrays of

triangular traps.'®2? This asymmetry can produce a diode
effect when the depinning force is higher in one direction
and can give a ratchet effect in which a net dc vortex flow
occurs upon application of an ac drive.?> Reversals of the
ratchet flow from the easy asymmetry direction to the hard
asymmetry direction can occur as a function of magnetic
field and other parameters'*!3-20 due to various collective
interactions of the vortices. One of the earliest proposals for
a vortex ratchet involved a periodic asymmetric channel or
funnel,'” and such geometries have now been experimentally
fabricated.!®!7?* The first experiments on this system veri-
fied the existence of ratchet effects but also detected bound-
ary effects caused by the disordered injection of vortices at
the edge of the sample.'® The edge effect can be overcome
by using sample geometries where the vortices flow in annu-
lar asymmetric channels so that vortices need not enter or
exit the sample.!” Such a technique may also provide the
resolution required to investigate individual vortex motion
through the channels.?

In this work we study the dynamics of vortices in a peri-
odic asymmetric channel geometry or funnel array and show
that a variety of new types of vortex dynamics and behaviors
can arise, including a jamming effect and flow patterns that
are organized such that only one vortex at a time passes
through the funnel tip. Such a geometry could be realized by
etching the edge of a single superconducting strip into a
periodic funnel shape so that the vortices would flow in a
true single channel. Funnel geometries created with periodic
channels in two-dimensional superconducting samples
should also exhibit many of the same properties we observe;
however, in these systems vortices located between the
asymmetric channels could be important and under high
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drives could depin. The presence of vortices in the regions
between the channels can be deduced from the onset of
hysteresis in the critical current curves I.(H) at fields higher
than the fields at which many of the ratchet effects are
observed.!” Although our study focuses on interacting vorti-
ces in type-II superconductors, we expect that the same
dynamics will occur for other systems of repulsively inter-
acting particles in funnel geometries. These include charged
colloidal assemblies,?®>” magnetic colloids,?® charged metal-
lic dots,? and classical electron crystals.’® Additionally, in
recent experiments of ion flow through a single funnel, ef-
fects such as negative differential conductivity were
observed.?' Our results suggest that the same type of clog-
ging effect we observe could be occurring in these artificial
ion channels.

II. JAMMING AND CLOGGING IN VORTEX MATTER

An important feature that differentiates funnel geometries
from the other vortex ratchet geometries is that in the funnel
the vortices are forced to move through a narrow bottleneck.
At this constricted point, the repulsive vortex-vortex interac-
tions are very important and favor the organization of the
vortex flow into a pattern that permits only a single vortex to
pass through the bottleneck at a time. The bottleneck has
many features in common with granular hopper geometries
where grains flow through a funnel. In the granular case, it is
known that decreasing the width of the hopper aperture can
cause the flow of grains to be impeded or jammed.3>33 Sys-
tems that become immobile due to particle-particle interac-
tions are often referred to as jammed. The physics of jam-
ming has attracted growing interest as a way to understand
many types of loose particle assemblies such as grains, col-
loids, and emulsions in situations where these systems ex-
hibit a sudden onset of resistance to shear, with possible
connections to the glass transition.’*33 In a granular hopper
where grains flow through a thin funnel, the jamming effect
occurs when some grains block the motion of other grains.
The interaction between the grains is short ranged and has a
sharp cutoff. Vortices also experience a repulsive interaction;
however, it is significantly longer in range and smoother than
the interaction among grains. Understanding how systems
with intermediate range or longer range interactions can de-
velop a jammed state is an open question.

Generally, in a vortex system, increasing the effective
vortex-vortex interaction strength reduces the effectiveness
of the pinning and causes the depinning force to decrease. If
vortex matter can exhibit a jamming effect, the opposite be-
havior would occur and the system would become more im-
mobile with increasing vortex-vortex interaction strength.
We note that in the peak effect phenomenon, the effective
pinning force increases with increasing vortex density or
temperature. Many explanations of this effect involve the
reduction in the effective vortex-vortex interaction force with
increasing density or temperature due to changes in the pen-
etration depth or softening of the vortex lattice near H,, or T,
(Ref. 36) in order to match the normal expectation of in-
creased pinning force caused by decreased vortex interaction
strength. Superficially, however, the increased pinning force
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generated by increased vortex density resembles a jamming
effect. In simulations of vortex systems with more vortices
than pinning sites,’” gradually increasing the strength of the
vortex-vortex interactions initially increased the depinning
force since the vortices at the pinning sites blocked the free
vortices from moving, similar to a jamming effect. On the
other hand, when there are more pinning sites than vortices,
the depinning force monotonically decreases as the vortex-
vortex interaction strength increases.’® This shows that if
vortices are to exhibit jamming behavior, it must arise from
the collective interactions of the vortices rather than from
vortex-pin interactions alone. In our system we fix the bare
vortex-vortex interaction strength and study the appearance
of jamming and clogging effects due to density-induced
changes in the effective importance of the vortex-vortex in-
teractions.

III. SIMULATION TECHNIQUES

Following previous techniques for simulating vortices in
periodic pinning geometries, we employ Langevin dynamics
in a two-dimensional system.”!0:1415.18.2238 \e consider a
sample containing a single channel composed of N.=16 fun-
nels. Each funnel has a small aperture size of a=1.8\, a wide
aperture size of b=7.4\, and a length of L.=9\, where
lengths are measured in units of the London penetration
depth \. The funnels are aligned in the x direction and the
sample has periodic boundary conditions along the x direc-
tion only. A total of N, vortices are placed only inside the
funnel channel and the region outside the channel is empty.
The motion of the vortices is calculated by integrating the
following overdamped equation of motion:

AR, .

d_tl=—#]_VUUU(RU)—Fivau"'FD"'FiT- (1)
Here the damping constant is 7= ¢%d/ 27&py in a crystal
of thickness d, where ¢g=h/2e is the elementary flux
quantum, £ is the superconducting coherence length, and py
is the normal-state resistivity. The vortex-vortex force is re-
pulsive with a potential U,,(R;)=A,Ko(R;;/\), where A,
=¢§/27T,u0)\3, K is a modified Bessel function, R;; is the
position of vortex i(j), and R;=|R,~R;|. If a vortex ap-
proaches one of the channel walls sufficiently closely, it ex-
periences a wall force F,,;. The channel walls are con-
structed out of N;,=4N, repulsive elongated potential barriers
which are inverted versions of the potential wells employed
in Ref. 39. Each barrier has a central rectangular region
which repels vortices in the direction transverse to the long
direction of the rectangle, along with two half-parabolic cap
regions which repel vortices from the ends of the barrier. We
have F=(f,/r,) SN R O(r,~R;)OR)~ )R +R;O(r,
~R)O(L~RYR;]. Here Ry=|R~RI=[pl, Ri'=|(R,
-RY)) 'f’li,u , R{ is the position of the center point of barrier k,
r,=0.4\ is the barrier radius or half width, f,=15f; is the
barrier strength, /; is half the length of the central rectangular
region of barrier k, and f)"“ (f)]i) is a unit vector parallel
(perpendicular) to the axis of barrier k. The individual barri-
ers are connected together to form a pair of sawtooth shapes
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FIG. 1. The depinning force F. vs B/B, for vortices in a peri-
odic funnel array for driving in the +x, easy-flow direction. A series
of peaks appear at matching fields of B/By=4, 5, 7, 8, 11, 12, and
14. Weaker peaks occur at B/B =3, 10, and 13 while peaks are
absent at B/B =2, 6, and 9. Inset: a portion of the sample showing
the funnel array geometry.

as illustrated in the inset of Fig. 1. The barrier lengths are
2[;=2.8\ for the vertical walls and 21k=18)\/\"§ for the
slanted funnel walls. The central portion of the channel is
featureless and the vortices experience confining forces only
from the barrier walls and not from the channel itself. The
barriers are sufficiently strong that vortices can never cross
them under the conditions considered in this work.

The initial vortex positions are obtained by placing the
vortices evenly throughout the funnel and performing simu-
lated annealing. Temperature is modeled as Langevin kicks
F7 with the following properties: (F7())=0 and
(FiT(t)FjT(t’)>=277kBT5,~j5(t—t’), where kjp is the Boltzmann
constant. After the vortex positions are initialized, we apply
an external drive Fp=FpX representing the Lorentz force
from an applied current in the positive x or easy-flow direc-
tion and measure the average vortex velocity (V)
=N, lEﬁvvv,--)i. The drive is slowly increased in small incre-
ments with a fixed waiting time between each increment. The
waiting time is taken sufficiently long that the system always
reaches a steady-state velocity at each drive before we make
our measurements. The depinning force F, is defined as the
drive at which (V,)>0.001. In this work we examine only
the dynamics in the easy-flow direction and note that in gen-
eral F. is higher for driving in the hard or negative x direc-
tion so that a diode effect is possible, in agreement with
experiments.'®?* For driving in the hard direction, clogging-
type dynamics occur which will be explored elsewhere.*

In our system the penetration depth A is less than the
funnel size, so many of our results should carry over to typi-
cal colloidal systems with optical trap arrays. In the vortex
ratchet experiments of Ref. 17, the size of the triangular traps
is less than A so we are working in a different regime from
the experiment, although we expect that many of the same
effects can appear in both systems. Experiments with thicker
films or larger funnel length scales should also be possible
which would be much closer to the regime we consider.
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IV. COMMENSURATION EFFECTS IN THE EASY FLOW
DIRECTION

In Fig. 1 we plot the depinning force F. for driving in the
easy +x direction vs B/B,, where B, denotes the field at
which there is one vortex per funnel. In our geometry, F
=0 at B/B4=1.0 since each vortex can move unimpeded
through the bottleneck and then flow freely along the center
axis of the funnel. Figure 1 shows peaks in F,. at B/B,
=4.0, 5.0, 7.0, 8.0, 11.0, 12.0, and 14.0. Smaller peaks in F,
appear at B/ B 4=3.0, 10.0, and 13.0 while peaks are absent at
B/By=2.0, 6.0, and 9.0. The varying sizes and shapes of the
commensuration peaks are consistent with the existence of
distinct arrangements of singly quantized vortices within the
funnel plaquettes at different matching fields.

Commensurability effects in two-dimensional square or
triangular periodic pinning arrays can take two different
forms depending on whether multiple vortices are trapped at
each pinning site or whether interstitial vortices are present.
If multiple vortex pinning occurs, then the vortex configura-
tion at each matching field B/B,=n, with integer n, is the
same as the configuration at B/B4=1.0 but with n-quantized
vortices trapped at each pinning site. The result is a peak in
the critical current at every matching field.*! Similarly, the
vortex configurations at fractional fields such as B/B,=1/2
are repeated at all fields B/By=n+1/2.>% Such multiquanta
commensuration effects are very similar to the commensura-
tion effects observed in superconducting wire networks.*> If
the pinning sites can capture a maximum of one vortex, then
for fields above B/ B¢,=1, some vortices will be located in
the interstitial regions and the vortex lattice structures can be
different at each matching field.>* At matching fields where
the interstitial vortex structure is disordered, there is no peak
in the critical current.> The magnitude and shape of the com-
mensuration peaks show striking variations when different
types of vortex crystals form at different matching fields. For
example, in square pinning arrays, a square vortex lattice
forms at B/B +=2.0, a less stable dimer lattice with a smaller
critical current peak appears at B/B4=3.0, a very stable tri-
angular lattice with a strong critical current peak is present at
B/B4=4.0, and the partially disordered vortex structures at
B/B4=6.0 and 7.0 produce no peaks in the critical current.’

For the asymmetric funnel array, the quasi-one-
dimensional nature of the system might be expected to pro-
duce identical commensuration effects at each matching
field; however, it is possible for the vortices within each
funnel to distort in both the x and y directions in order to try
to form triangular ordering on a local scale, and thus the
response of the system differs at different matching fields.
Simulations and experiments on single mesoscopic triangular
superconducting samples have shown that the vortices can
form triangular or partially ordered configurations at magic
fillings such as B/B 4=3.0, 6.0, and 10.0.** At these matching
fields, we find weak or missing commensuration peaks in the
funnel geometry, as indicated in Fig. 1. The high symmetry
of these well-ordered states results in poor pinning of the
vortices in the easy-flow direction since it allows some vor-
tices to simultaneously align along the x axis of the channel
while closely approaching the narrow aperture of the funnel.
The alignment of the vortices produces an additional
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x-direction force on the vortex closest to the funnel tip, per-
mitting it to flow out of the funnel at a relatively low driving
force. In contrast, at commensurate fillings where the vorti-
ces adopt partially disordered configurations or have degen-
erate ground states, the critical current is high. This is likely
due to the lack of a well-defined easy shear direction for the
disordered vortices.

Figure 1 shows a vanishing critical current at low fields
which results when the vortices are able to sit along the
center of the funnel channel and can flow along the channel
unimpeded by the funnel geometry. The experiments of Ref.
17 revealed a finite critical depinning force at low fields.
Since the experimental channels are less than A wide, this
finite critical force could be the result of a bowing effect in
the center of the funnel channel that creates some effective
pinning even for very low fields. The edge barrier may also
be playing a role at low fields, and it is likely that some
intrinsic random pinning exists throughout the entire sample
which would create a finite F,. at all fields. If the intrinsic
pinning is weak, it should be possible to observe the com-
mensuration effects shown in Fig. 1. The intrinsic pinning
effects can be strongly suppressed near T, and in a later
section we show that the commensuration effects in Fig. 1
are robust at finite temperature. We also note that for colloi-
dal particles in an optical funnel trap array, such intrinsic
pinning effects would not be present.

At incommensurate fields n<B/B,<n+1, due to the dis-
creteness of the vortices the funnels are occupied by a mix-
ture of n and n+ 1 vortices. The depinning force is reduced at
these fields as a result of the asymmetric repulsive force
experienced by a vortex at the boundary between two funnels
of different occupancy. Figure 1 indicates that peaks or en-
hancements of the depinning force can arise at nonmatching
fields such as at B/B¢:3.5 and B/B¢:5.75; however, unlike
the matching peaks, these nonmatching peaks are not robust
against thermal fluctuations.

In Figs. 2(a)-2(f) we illustrate the vortex configurations at
zero applied drive for B/B4=2.0, 3.0, 4.0, 5.0, 6.0, and 7.0.
For B/B 4=2.0, Fig. 2(a) shows that each funnel captures two
vortices which form a dimer state. All of the dimers are
aligned in the same direction with one vortex in each dimer
located at the upper left corner of the funnel and the other
vortex located along the lower wall. We note that this is not
the same configuration that would arise for a single isolated
triangular superconductor, where the two vortices would
maximize their spacing by sitting with one vortex at the tip
of the triangle and the other vortex in the center of the op-
posing triangle wall. Interactions between vortices in adja-
cent funnels in our system would make such an arrangement
energetically unfavorable since the vortex at the tip of the
triangle would be too close to the leftmost vortex in the
adjacent funnel. The tilted dimer configuration in Fig. 2(a)
minimizes the vortex-vortex interactions both within a single
funnel and in adjacent funnels.

The vortex dimer state in Fig. 2(a) is twofold degenerate;
in the other possible orientation, a vortex is located at the
lower left corner of each funnel. In an infinitely long system
at finite temperature or in the presence of quenched disorder,
it is possible that domain-wall excitations could form where
the dimer orientation flips from one ground state to the other.
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FIG. 2. (Color online) Vortex positions (dots) and funnel geom-
etry (lines) in a small portion of the sample at different fields with
no applied drive. (a) At B/B4=2.0, an aligned dimer state forms.
(b) At B/B4=3.0, a triangular state forms with the triangle orienta-
tion alternating in every other funnel. (c) B/B,=4.0. (d) B/B,
=5.0. (e) At B/B4=6.0, a triangular structure forms that fits well
with the triangular funnel geometry and that matches the vortex
configuration found in an individual mesoscopic triangular super-
conductor. This field also corresponds to a missing commensuration
peak in Fig. 1. (f) B/B,4=1.0.

In this case, it may be possible to map the dimer state to a
one-dimensional Ising model which is known to have a long-
range ordered ground state only at 7=0.0. The mapping of
effective dimer and trimer states of particles in periodic sub-
strates to Ising and other spin models has been proposed
previously for colloids on two-dimensional periodic
substrates** and vortices in honeycomb pinning arrays.*> For
B/B4=3.0, Fig. 2(b) shows that the three vortices in each
funnel form a triangle with one vortex located in the corner
of the funnel. The orientation of the triangle alternates in
every other plaquette from having the upper funnel corner
occupied by a vortex to having the lower funnel corner oc-
cupied by a vortex. This ground state has similarities to a
one-dimensional antiferromagnetic ordering.

For B/B4=4.0, shown in Fig. 2(c), both corners of each
funnel are occupied by vortices and the ground state is non-
degenerate. This is the first filling at which a pronounced
peak in F,. emerges, as seen in Fig. 1. The ground state at
B/B4=5.0, illustrated in Fig. 2(d), is very similar to the con-
figuration at B/ B ,=4.0 with the addition of one vortex in the
center of the channel near the tip of the funnel while at
B/B4=6.0, shown in Fig. 2(e), there are two vortices in the
center of the channel. At B/B,=7.0, Fig. 2(f) indicates that
the configuration changes from states with four vortices
along the walls and the remaining vortices in the center of
the channel to a state with six vortices lining the walls and
only one vortex in the center of the channel. Figure 1 indi-
cates that there is a pronounced peak in F, at B/B,=7.0 but
not at B/B=6.0. The vortex configurations at B/B;=2.0,
3.0, 4.0, 5.0, and 7.0 differ from the configurations found in
isolated mesoscopic triangular superconductors;* however,
the configuration at B/B4=6.0 is almost the same as that in
an isolated triangle since the vortices can form an almost
perfect triangular ordering within the funnel at this field.
Since the accommodation of the triangular ordering to the
boundaries is so energetically favorable, it overcomes the
energy cost of placing two vortices close together near the
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FIG. 3. (Color online) Vortex positions (dots) and funnel geom-
etry (lines) in a small portion of the sample at different fields with
no applied drive. (a) B/B,;=8.0. (b) B/B,4=9.0, where there is a
missing peak in F.. (c) B/By=10.0. (d) B/B,=11.0. (¢) B/By
=12.0. (f) B/B4=13.0.

funnel aperture with one vortex shifted slightly in the posi-
tive x direction. Since this vortex experiences an extra force
from the other vortices, the effective pinning potential at the
tip of the funnel for this vortex is depressed, lowering F .. At
B/B 4=17.0 this condition no longer holds since the extra vor-
tex that had been near the funnel tip shifts to a new location
along the wall, where it no longer exerts an extra force on the
vortex at the center of the channel.

In Fig. 3(a), the ordered vortex configuration at B/B,
=8.0 has four vortices on the upper wall of each funnel and
three vortices on the bottom wall, along with one vortex in
the center of the channel near the wide end of the funnel.
This configuration has a twofold-degenerate ground state
since either the upper or the lower funnel wall could be oc-
cupied with the four vortices. At B/B4=9.0, Fig. 3(b) shows
that there are now four vortices lining both the top and bot-
tom funnel walls. The vortices on one wall are slightly more
compressed than the vortices on the other wall so that the
vortices near the funnel tip are not aligned in the y direction.
The wall with the stronger compression alternates from top
to bottom in adjacent funnels. Figure 1 indicates that there is
no peak in F, at B/B;=9.0. The relatively low depinning
threshold at this field is a result of the close proximity of a
vortex near each funnel tip to the vortex in the center of the
channel combined with the asymmetry of the vortex com-
pression along the walls; the extra force experienced by the
channel vortex from the less compressed wall of the funnel
causes it to depin more readily. At B/B =10, shown in Fig.
3(c), two vortices occupy the center of the channel and the
remaining eight vortices line the upper and lower funnel
walls in a symmetric configuration. In Fig. 3(d) we plot the
configurations at B/By=11.0, where four vortices line each
funnel wall and a triangular vortex structure forms near the
wide end of the funnel. At B/B ,=12, Fig. 3(e) shows that an
asymmetric configuration of five vortices on one funnel wall
and four vortices on the other forms along with a skewed
triangle of vortices in the open portion of the channel. At
B/By4=13, the symmetric configuration illustrated in Fig.
3(f) forms with five vortices along each funnel wall and a
triangle of vortices in the center of the channel.
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FIG. 4. (Color online) The average distance to the closest neigh-
bor (dyin) at Fp=F . vs B/B . The line indicates a fit to 1/B.

Jamming and bottleneck effects due to vortex-vortex
interactions

Figure 1 shows that the depinning force tends to increase
overall with increasing B. This is the result of a crowding
effect that makes it more difficult for the vortex structure to
distort in order to permit individual vortices to pass through
the bottleneck. We can show that the crowding is geometri-
cally induced by measuring the average closest neighbor dis-
tance (d;,) for the vortex configuration at the depinning
force Fp=F,. To determine {d,;,), we solve the all-nearest-
neighbors problem with a simple algorithm. The distance
from each vortex i to its closest neighbor at R’ is d' .
=|R,—R} |. Then, (dy;,)=N,'SNd’ . = The value of (d,;,) at
the depinning threshold has a convincing 1/B form, as
shown in Fig. 4. As expected in a system where the pinning
originates from vortex-vortex interaction forces, at a given
field B a vortex can depin when the driving force pushes it
closer to its neighboring vortex than the average spacing
between vortices. As B increases, the average vortex spacing
should drop as 1/B, consistent with the behavior of (d,,;,).
The critical force curve shown in Fig. 1 is very far from
being a smooth function of B, unlike {d,,;,), and this simply
indicates that the particular geometric arrangements of the
vortices at different fields may make it easier or more diffi-
cult for two vortices to approach each other closely enough
to depin.

For the most commonly studied types of pinning, such as
random pinning or arrays of individual pinning sites, when
the number of vortices exceeds the number of pins, the de-
pinning force tends to decrease with increasing B due to the
relative increase in the strength of the vortex-vortex interac-
tions compared to the pinning energy. In this case, as the
vortex lattice becomes stiffer, some vortices are forced to
shift out of the pinning sites and occupy interstitial regions.
In other words, a stiff vortex lattice cannot adjust to the
pinning site configuration as well as a soft vortex lattice can.
One proposed mechanism for the peak effect observed in
superconductors with random pinning is a softening of the
vortex lattice due either to thermal fluctuations or to changes
in A which increase the effectiveness of the pinning. In the
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funnel geometry we consider here, depinning does not re-
quire the vortices to overcome the pinning strength of indi-
vidual pinning sites. Instead, the vortices depin once they are
able to overcome the vortex-vortex interactions blocking the
passage of individual vortices through the funnel tips.

A system that becomes less mobile due to increased inter-
actions among the particles is said to be jammed.3+3346:47
Studies on systems with short-range interactions where a
single probe particle is pushed through a collection of other
particles in the absence of pinning have shown that the probe
particle motion at a finite and constant driving force F, be-
comes slower for increasing particle density, and at a critical
density the probe particle becomes stuck or jammed.?6-3>48 In
this jammed state, a critical driving force F. must be applied
to unjam the probe particle and this critical force monotoni-
cally increases with increasing density.*® The critical force is
analogous to the depinning force needed to move the vortices
through the funnels in our system, which also shifts to higher
values as the vortex density increases. There are many simi-
larities between Fig. 1 and the behavior of jamming in col-
loidal systems. At very low densities, the critical depinning
force drops to zero since the vortices are so far apart that
they interact only extremely weakly. Previous studies of
probe particles in systems with longer range particle-particle
interactions found that a finite depinning force, similar to a
jamming effect, exists even at low densities and increases
monotonically with particle density.*’ A key ingredient for
jamming in our system is that a portion of the vortices must
remain immobile. The vortices lining the walls of the funnel
are held in place due to the strength of the repulsive vortex-
vortex interactions; when one of these vortices moves toward
the tip of the funnel, it experiences a barrier due to the com-
pression of the vortices at the funnel tip, providing a finite
depinning force. Vortices away from the funnel walls are also
pinned by means of this compressive repulsion. If the funnel
walls did not converge, but instead remained a fixed distance
apart, the depinning force would be absent. In experiments
and simulations on straight channels where there are vortices
both inside and outside the channels, the vortices outside of
the channel are strongly pinned and create a periodic poten-
tial modulation for the vortices within the channel which
allow the channel vortices to be pinned.”® For the funnel
geometry we consider, additional immobile vortices outside
of the channel are not needed to create an effective periodic
pinning potential. In ratchet channel geometries!'® there are
strongly pinned vortices outside of the channels; however,
we do not expect the presence of such vortices to qualita-
tively affect the results we report here. For colloids moving
through an asymmetric optical trap array, it would be pos-
sible to remove all colloids outside of the channel so that
particles are present only inside the ratchet channel.

To quantify the greater difficulty with which vortices flow
at higher vortex densities, we examine the average normal-
ized vortex velocity (V,) versus B/B,, for different values of
the driving force Fp. In Fig. 1 the initial depinning force F,
was determined by the initial onset of vortex flow; however,
the normalized velocity can be taken at any value of F, and
in Fig. 5 we plot (V) versus B/ B for F,=0.03, 0.025, 0.02,
0.015, 0.01, and 0.005. In all cases, (V,) decreases with in-
creasing B/ B expect for some small oscillations caused by
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FIG. 5. The average velocity (V,) vs B/B, at F=0.03, 0.025,
0.02, 0.015, 0.01, and 0.005 (from top to bottom).

commensuration effects. At Fp=0.005, (V,)=0 for those
fields at which F.>Fp. The reason that the overall flow
velocity decreases for increasing B is that the flow patterns
organize in such a way that only one vortex at a time is able
to pass through the funnel tip, as will be shown later. This is
a result of the very large energy cost that would be associated
with the passage of two or more vortices through the tip
simultaneously. The single passage constraint causes the flow
rate of vortices through the system to be roughly constant for
fixed Fp, such that for a number of moving vortices N,,, we
find N, (V)B. For fixed N,,, we obtain (V) 1/B, which is
approximately the behavior shown in Fig. 5. The results in
Figs. 1 and 5 show that jamming phenomena can be realized
in superconducting systems or other systems of particles
with intermediate to long-range interactions. Further, since
stronger pinning is often a desirable feature for many appli-
cations of superconductors, some of the concepts from stud-
ies of jammed systems could be employed to increase the
effective pinning strength in a device.

V. DYNAMIC PHASES UP TO B/B ;,=8.0

We next examine the different vortex dynamical phases
that can arise in the funnel geometry. In Fig. 6 we plot (V)
versus F, for B/B¢,:2.0, 2.25, 2.5, and 2.75. The depinning
force increases with increasing B/ B, over this field range, as
was seen in Fig. 1, and above depinning (V,) for a particular
value of Fj, decreases as more vortices are added to the
system, as was shown in Fig. 5.

In Fig. 7 we plot the vortex trajectories at fixed Fp
=0.01 for B/B4=2.0, 2.25, 2.5, 2.75, 3.0, and 3.25. The flow
is ordered at B/B 4=2.0 and B/B 4=3.0 in Figs. 7(a) and 7(e).
The vortices move in fixed trajectories and continuously
maintain the same neighbors, indicating that all of the vorti-
ces are moving. For B/B¢=2.25, 2.5, and 2.75 in Figs.
7(b)-7(d), the trajectories become increasingly disordered
and the vortices no longer keep the same neighbors over
time, indicative of plastic flow. The disordered nature of the
flow permits the vortices to explore larger regions of phase
space, including regimes in which some of the vortices move
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FIG. 6. (Color online) The vortex velocity (V,) vs Fp for
B/By=2.0, 2.25, 2.5, and 2.75 (from top to bottom). Here the av-
erage velocity decreases with increasing B.

much more slowly than others or become temporarily
pinned.

Figure 7(f) indicates that at B/B4=3.25, the vortex trajec-
tories are more disordered than at B/B4=3.0. In Fig. 8 we
plot (V,) vs Fp, for B/B4=3.0, 3.25, 3.5, and 3.75, which
show the same trend observed at and above the second
matching field. The value of (V,) at a fixed F, above the
depinning threshold decreases with increasing B/B, and the
vortex flow becomes partially disordered at the incommen-
surate fields.

For B/B 4> 4.0, the transport becomes more complicated
and transitions between distinct dynamical phases begin to
occur. The moving phases for B/B,>4.0 are generally char-
acterized as plastic since a portion of the vortices can remain
immobile. We find both ordered plastic motion, where the
trajectories of the mobile vortices follow a fixed path, and
disordered plastic flow phases where the vortex motion is
more chaotic and the vortices follow many different paths. In
Figs. 9(a)-9(d) we plot (V,) versus F), for B/B4=4.0, 4.25,
4.5, and 4.75. At B/B,=4.0, Fig. 9(a) indicates that there is
a single well-defined depinning transition where the vortices
flow elastically, as illustrated in Fig. 10(a). For B/B;,=4.25,
the value of F, is depressed as seen in Fig. 9(b). Here there

===
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FIG. 7. (Color online) The vortex positions (dots), funnel geom-
etry (heavy lines), and vortex trajectories (light lines) in a small
portion of the sample at F,=0.01 for B/B,=(a) 2.0, (b) 2.25, (c)
2.5, (d) 2.75, (e) 3.0, and (f) 3.25. Here the flow at the commensu-
rate fields is highly ordered.
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FIG. 8. (Color online) (V,) vs Fp, for B/B4=3.0, 3.25, 3.5, and
3.75 (from top right to bottom right), showing the same trends as in
Fig. 5.

are no sharp jumps in the transport curve and the vortex
motion resembles that observed at B/B ;,=4.0 but with some
additional fluctuations in the vortex trajectories.

At B/B,=4.5, a two-step depinning process occurs as
shown in Fig. 9(c). Initially, only one ordered channel of
moving vortices forms along one of the funnel walls while
the remaining vortices are immobile. This is illustrated in
Fig. 10(b) for a simulation in which the vortices along the
upper funnel wall depinned first; depending upon the initial
random fluctuations, it is also possible for the vortices along
the lower wall to depin first. The remaining vortices depin
near F,=0.008, where a cusp feature appears in (V,). At the
cusp, the average vortex velocity decreases with increasing
Fp, creating a region of negative differential conductivity
where d(V,)/dF;<0.0. The negative differential conductiv-
ity at B/B4=4.5 is not as pronounced as that observed in
simulations and experiments with square pinning arrays;”'"
however, we find that the type of negative differential con-
ductivity illustrated in Fig. 9(c) is a common feature at a
number of the higher order incommensurate fillings we have

0.01

<V >

0.005

0.01

<V >

0.005

| I | I | " I | I | I
0O 0.005 0.01 0.015 0 0.005 0.01 0.015 0.02
F F

FIG. 9. (Color online) (V,) vs Fp, for (a) B/B4=4.0. (b) B/By
=4.25. (c) B/By=4.5 showing a two-step depinning process with a
cusp near Fp=0.008 where (V,) decreases with increasing Fp. (d)
B/B4=4.75 showing some small steplike features.
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FIG. 10. (Color online) Vortex portions (dots), funnel geometry
(heavy lines), and vortex trajectories (light lines) in a small portion
of the sample. (a) B/B4=4.0 at F;;=0.01 where an ordered flow
occurs. (b) The initial ordered flow at B/B4=4.5 and F;,=0.008,
below the cusp in (V,) in Fig. 9(c), where only the vortices along
the top wall are moving. (c) The disordered flow for B/B,=4.5 at
Fp=0.017, above the cusp in (V,) in Fig. 9(c), where all of the
vortices are moving. (d) The high drive phase at F=0.0275 for
B/By=4.5. (¢) The initial disordered flow at F;,=0.008 for B/B
=4.75. (f) The flow at Fp=0.01 for B/B4=4.75, below the step in
(V) which occurs near F,=0.012 in Fig. 9(d). For drives above the
step in (V) at this field, the vortex flow resembles the flow shown
in panel (a).

examined in the funnel geometry. In contrast, for the square
pinning array the negative differential conductivity occurs
only near the first matching field. This indicates that it may
actually be easier to observe negative differential conductiv-
ity in a funnel geometry than in a square pinning array.
Above the cusp at F,=0.008, Fig. 9(c) shows that (V)
smoothly increases with increasing Fp,.

In Fig. 10(b) we show that the vortex flow below the cusp
in (V,) at B/B4=4.5 and F,=0.008 is ordered with only a
single channel of vortex flow. Figure 10(c) indicates that for
the same field at F,=0.017, above the cusp in (V,), the vor-
tices flow in disordered paths, each of which predominantly
runs along either the upper or lower funnel wall. The transi-
tion from only a single flowing channel to effectively two
flowing channels of vortices at the second depinning transi-
tion associated with the cusp in (V,) causes a drop in the
mobility of the vortices due to the competition between the
two channels for passing a vortex through the bottleneck of
the funnel. Only a single vortex can fit through the bottle-
neck at a time but vortices in the upper and lower flowing
channels do not arrive at the bottleneck at synchronized
times due to the unequal distribution of vortices between the
two effective channels which causes the two channels to flow
at different average speeds. As a result, a vortex in one chan-
nel may reach the bottleneck too soon while a vortex from
the other channel is still moving through the bottleneck, forc-
ing the vortices in the first channel to move more slowly
until the vortex in the second channel has exited the bottle-
neck and freed it for passage of a vortex in the first channel.
As Fp increases, the difference in flow speed for the two
unequally populated channels of moving vortices decreases
until it is small enough that the flow of the two channels
becomes synchronized on average and a much more orderly
passage of vortices through the bottleneck occurs, alternating
between the two channels. In this case, the disordered trajec-
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FIG. 11. (Color online) (V,) vs Fp for (a) B/By=5.0. (b)
BIB4=5.25. (¢) B/B4=5.5. (d) B/B,=5.75.

tories become smoother, as shown for F,=0.0275 in Fig.
10(d).

For B/By=4.75, Fig. 9(d) shows that there are several
small steps in the (V,) versus F, curve which correspond to
changes in the flow. In Fig. 10(e), the initial flow for this
field at Fp=0.008 is partially disordered. By Fp=0.01,
shown in Fig. 10(f), a transition to a more ordered flow state
has occurred where there are two possible paths for vortices
to follow in the lower channel. At higher drives, one of these
two lower paths closes, corresponding to the jump in (V)
near Fp=0.012 and the flow at higher drives resembles that
shown in Fig. 10(a).

At B/B4=5.0 there is a single depinning transition, as
illustrated in the plot of (V,) versus F, in Fig. 11(a). Right at
the depinning transition, the vortices undergo a structural
transition which is highlighted in Fig. 12. The vortex con-
figuration for drives well below depinning consists of four
vortices arranged symmetrically along the funnel walls with
a fifth vortex in the center of the channel near the funnel tip,
as shown in Fig. 12(a). At the onset of depinning, illustrated

o] S
B

FIG. 12. (Color online) The structural transition that occurs in
the single stage depinning transition at B/By=5.0 shown in a small
portion of the sample. Dots: vortex positions; heavy lines: funnel
geometry; and light lines: vortex trajectories. (a) Right before de-
pinning, at Fp=0.006, there are four vortices lining the walls and
one vortex located in the center of the channel near the funnel tip.
(b) The first rearrangement just below F,=0.0075 occurs when the
center vortices move through the aperture in the positive x direction
and pass into the adjacent funnels. (c) At depinning, which occurs at
Fp=0.0075, these center vortices move against the funnel walls in
an alternating pattern associated with a transient flow. (d) Above
depinning at Fp=0.012, the vortices flow strictly along the funnel
walls.
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FIG. 13. (Color online) The vortex positions (dots), funnel ge-
ometry (heavy lines), and vortex trajectories (light lines) in a small
portion of the sample. (a) The initial flow at F,=0.006 for B/B
=5.25. (b) The initial depinning at F,=0.012 for B/B;=5.75. (c)
The trajectories in the fluctuating phase for F=0.019 at B/B
=5.75. (d) The high drive ordered phase at F,=0.032 for B/B
=5.75.

in Fig. 12(b) just below F,=0.0075, the vortices at the fun-
nel tips move in the positive x direction and shift into the
adjacent funnel. At depinning, which occurs at F,=0.0075,
Fig. 12(c) indicates the rearrangement that occurs when the
center vortices move against one of the funnel walls in an
alternating pattern. Above depinning, as shown in Fig. 12(d)
for Fp=0.012, the vortices flow strictly along the funnel
walls in two channels that never mix.

At B/By=5.25,5.5, and 5.75, shown in Figs. 11(b)-11(d),
respectively, there can be multiple dynamical transitions be-
tween ordered and disordered flow phases. At B/By=5.25,
the flow at large Fp is very similar to that shown for B/B,
=5.0 in Fig. 12(d); however, the flow initiates at a much
lower drive and takes the form of an ordered winding chan-
nel in which about 40% of the vortices are moving, as shown
in Fig. 13(a). As the vortices in the winding channel move
through the system, the vortices pinned along the funnel
walls undergo an oscillatory motion which is most easily
seen in Fig. 13(a) for the pinned vortex near the center of
each long funnel wall. This oscillation is a response to the
passage of an individual vortex through the flowing channel;
the pinned vortex shifts in the positive x direction as the
moving vortex approaches and shifts back again after the
moving vortex has passed. The vortices at the corners of the
funnel undergo little to no shift. In Fig. 11(d) at B/B,
=5.75 the transitions between different dynamical phases are
associated with changes in the fluctuations of the velocity
signal. At this filling, the sharp depinning transition takes the
system into the ordered braiding flow phase illustrated in
Fig. 13(b), a state with low levels of velocity fluctuations. A
transition to a highly fluctuating phase occurs near Fp
=0.15 and corresponds to the onset of the disordered flow
phase illustrated in Fig. 13(c). For higher drives, a transition
to an ordered phase occurs near F=0.0225 when the trajec-
tories become partially ordered. A velocity jump near Fp
=0.025 marks the transition to the completely ordered flow
phase shown in Fig. 13(d).

At B/B;=6.0, where a commensuration peak in F, was
missing in Fig. 1, the velocity-force curve shows a single
depinning transition into a random flow phase, as shown in
Fig. 14(a). No sharp transitions between different phases ap-
pear; however, the general form of the vortex flow changes
gradually as F, increases. Figure 15(a) shows an initial shift
in vortex positions occurring at a drive just below the depin-
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FIG. 14. (Color online) (V,) vs Fp for (a) B/B,;=6.0. (b)
BIB4=6.75.

ning transition. The vortex at the tip of the leftmost funnel
has pushed the vortex at the base of the adjacent funnel into
a position along the lower wall in a pattern that repeats every
two funnel plaquettes, indicating that the vortices in the cen-
ter of the channel were not well pinned, resulting in lack of a
peak in F, at this field. Just above depinning, shown at Fp,
=0.008 in Fig. 15(b), a disordered flow occurs in which the
two vortices at the corners of each funnel do not participate.
Although the flow is disordered, there are clearly defined
regions inside the funnels which the vortices completely
avoid, as shown by the lack of trajectories passing through
large areas of the funnels. As F, is further increased, the
trajectories become increasingly disordered and the vortices
in the corners of the funnels begin to take part in the motion,
as shown in Figs. 15(c) and 15(d).

More clearly defined transitions between ordered and dis-
ordered flow states occur at B/B¢=6.25, 6.5, and 6.75, as
illustrated in Fig. 14(b) for B/B4=6.75. The transitions are
characterized by cusp structures in (V,) associated with nega-
tive differential conductivity. Figure 15(e) shows the initial
ordered flow at F,=0.028 for B/B4=6.75, below a pro-
nounced cusp in (V,). Here the two vortices in the corners of
each funnel remain immobile so that the flow is actually
plastic. These vortices become mobile at the transition to the
disordered phase, illustrated at F,,=0.028 in Fig. 15(e). A
similar set of dynamics appears at B/B;=6.25 and B/B,

FIG. 15. (Color online) The vortex positions (dots), funnel ge-
ometry (heavy lines), and vortex trajectories (light lines) in a small
portion of the sample. (a) The initial motion at F=0.006 for
B/By=6.0. (b) The flow above depinning at F,=0.008 for B/B
=6.0. (c) The flow at F;,=0.019 for B/B4=6.0. (d) The flow at
Fp=0.028 for B/B;=6.0. (e) The ordered vortex flow at Fp
=0.025 for B/B4=6.75, below the cusp in (V,) vs F, seen in Fig.
14(b). (f) The disordered flow at F,=0.028 for B/B,=6.75, just
after the cusp in (V,).
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FIG. 16. (Color online) (V,) vs Fp, for (a) B/B4=7.0 and (b)
B/B4=1.75, where three distinct moving phases appear.

=6.5. For driving forces higher than those we have exam-
ined, it is possible that further dynamical transitions could
occur at which different ordered phases arise.

Depinning at B/B,=7.0 occurs in a single step, as illus-
trated in Fig. 16(a) where we plot (V,) versus Fp. At this
field, Fig. 1 indicates that there is a peak in F,.. Above de-
pinning, the vortices flow in the ordered pattern shown in
Fig. 17(a), where two vortices remain pinned in the corners
of each funnel. For drives F,>0.3 higher than those we
consider here, a transition to a disordered flow state may
occur once the drive is large enough to cause the two immo-
bile vortices to depin. At B/B=7.25,7.5, and 7.75, multiple
steps occur in the velocity-force curves, as illustrated in Fig.
16(b) for B/B,=7.75. Each step is associated with a distinct
type of ordered flow. At low drives, we find the braided flow
shown in Fig. 17(b) at F;,=0.008. Above the first low step in
(V,) near Fp=0.01, an alternating braided flow occurs in
which every other plaquette contains two possible flow paths
along the lower funnel wall, as illustrated in Fig. 17(c) at
Fp=0.011. Above the second larger step in (V,) near Fp
=0.012, the completely ordered flow phase shown in Fig.
17(d) at F,=0.021 occurs.

VI. DYNAMICS AT HIGHER FIELDS B/B 4,=8

For higher fields B/B;=8.0 we observe the same trends
found for fields just below B/B;=8.0. The integer matching
fields typically display a single ordered flow phase while at
the incommensurate fields, multiple flow phases occur with
ordered-ordered or ordered-disordered flow transitions. An-
other trend is that as the field increases, the number of im-
mobile vortices appearing in the ordered flow phases in-

a X b X
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FIG. 17. (Color online) The vortex positions (dots), funnel ge-
ometry (heavy lines), and vortex trajectories (light lines) in a small
portion of the sample. (a) The vortex flow state at Fp=0.014 for
B/B4=17.0. (b) The braided flow phase at F,=0.008 for B/B

=7.75. (c) The second flow phase at F,=0.011 for B/B=17.75. (d)
The third flow phase at F,=0.021 for B/B,4=7.75.
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FIG. 18. (Color online) (V,) vs Fp for (a) B/B,;=8.0, (b)
B/B4=8.25, (c) B/B4=8.5, and (d) B/B,=8.75.

creases. In Fig. 18 we plot (V,) versus F, for B/B,=8.0,
8.25, 8.5, and 8.75, where the trend outlined above can be
seen. There is a single depinning step in Fig. 18(a) at
B/B,=8.0 into the ordered flow phase shown in Fig. 19(a) at
Fp=0.014 where two vortices remain pinned at the corners
of each funnel. Figure 19(b) shows the disordered flow at the
higher drive F,=0.017 for B/B ,=38.5. At this field, there is a
transition near F=0.025 to an ordered phase with vortex
trajectories that are very similar to those shown in Fig. 19(a)
for B/B4=8.0. The initial flow at B/B;=8.75 is partially
ordered with four immobile vortices in each funnel plaquette,
as shown at F,=0.008 in Fig. 19(c). At higher drives for this
field, the flow becomes disordered but only two of the im-
mobile vortices begin to move, leaving two vortices immo-
bile in the corners of each funnel, as shown in Fig. 19(d) for
Fp=0.025.

We find a distinctive integer matching field at which there
is not merely a single dynamic flow phase state. This field,
B/B4=9.0, also fails to produce a depinning peak as shown
in Fig. 1. We plot (V,) versus F), for B/B4=9.0 in Fig. 20(a),
which indicates that there are three distinct moving phases.
All three phases involve braided vortex flows but the details
of the braiding and the number of vortices participating in
the flow varies as a function of drive, as shown in Fig. 21
where the three different braided flows are illustrated. The

c) X ) X

FIG. 19. (Color online) The vortex positions (dots), funnel ge-
ometry (heavy lines), and vortex trajectories (light lines) in a small
portion of the sample. (a) The ordered flow phase at F,=0.014 for
B/B4=8.0. (b) The disordered flow at F,=0.017 for B/B 4=8.5. (c)
The initial partially ordered flow phase at Fp=0.008 for B/B,
=8.75. (d) The disordered flow phase with two immobile vortices in
the corners of each funnel at F,=0.025 for B/B4=38.75.
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FIG. 20. (Color online) (V,) vs Fp, for (a) B/B4=9.0 and (b)
BIB4=9.75.

suppression of the depinning peak at B/B,=9.0 is related to
the suppression of the peak at B/B;=6.0. At each of these
fields, the system exhibits an instability in which the number
of vortices present in the center of the channel for zero ap-
plied drive is different than the number of vortices that can
be stabilized along the center of the channel just above de-
pinning. At B/B =6, in each funnel plaquette there are two
vortices positioned along the center line of the channel at
zero drive but under finite drive one of these vortices moves
against the funnel wall, leaving only one vortex in the center
of the channel. This transition can be seen by comparing Fig.
2(e) with Figs. 15(a) and 15(b). At this filling, there is only a
small energy difference between placing two vortices at the
center of the channel and placing only one vortex at the
center of the channel with the other vortex against the funnel
wall. This produces an instability which contributes to the
disordered flow we find at B/B,=6. An opposite transition
occurs for B/B,=9. As seen in Figs. 3(b) and 21(a), there is
only one vortex per plaquette in the center of the channel at
zero applied drive but above depinning a second vortex
moves into the center of the channel and is stabilized there.
The existence of this change in the occupancy of the center
of the channel at depinning from one to two or two to one is
associated with the suppression of commensuration peaks in
the critical depinning force at the fields B/B,=6 and B/B,
=9 seen in Fig. 1.

A series of flow transitions also occurs at B/B,=9.75 in
Fig. 20(b), corresponding to the dynamical flows illustrated
in Figs. 22(a)-22(c). In the initial flow phase at low drives,
Fig. 22(a) indicates that only a portion of the vortices are
moving in a path that passes through the bottom half of each
funnel, forming a single flowing channel. At higher drives a
transition to the symmetric flow state illustrated in Fig. 22(b)
occurs. At still higher drives, an intermediate disordered
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FIG. 21. (Color online) The vortex positions (dots), funnel ge-
ometry (heavy lines), and vortex trajectories (light lines) in a small
portion of the sample at B/B4=9.0 showing braided flows. (a) First

flow regime shown at Fp=0.01. (b) Second flow regime shown at
Fp=0.014. (c) Third flow regime shown at F,=0.023.
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FIG. 22. (Color online) The vortex positions (dots), funnel ge-
ometry (heavy lines), and vortex trajectories (light lines) in a small
portion of the sample. (a) The initial motion at Fp=0.008 for
B/By=9.75. (b) The second flow phase at F;,=0.012 for B/B,
=9.75. (c) The higher drive ordered flow phase at F;,=0.028 for
B/B4=9.75. (d) The flow at F,=0.017 for B/B4=11.0. (e) A com-
plex partially ordered flow pattern at F,=0.017 for B/B,=11.25.
(f) A higher drive ordered alternating flow pattern at F,=0.025 for
B/By4=11.75.

phase appears before the flow reorders into the state shown
for F;,=0.028 in Fig. 22(c), where there are two immobile
vortices on the bottom half of each funnel and one immobile
vortex on the top half of the funnel, with flow occurring
through two well-defined channels.

At higher fields, similar dynamical regimes occur and
larger numbers of vortices can become immobile along the
funnel walls, such as at B/B4=10 where there is a single-
step depinning transition into a state with four immobile vor-
tices in each funnel. It is also possible for vortices to be
immobilized in the center of the channel rather than along
the funnel walls, as illustrated for B/B4=11.0 in Fig. 22(d).
At this field, a single-step depinning transition occurs into
the state shown where a total of three vortices are immobi-
lized: two in the corners of the funnel and one right in the
funnel center. As B/B,; increases, additional partially ordered
phases occur with increasingly intricate flow patterns such as
the one shown in Fig. 22(e) at B/B4=11.25. We also find
phases with asymmetric flow where the asymmetry alternates
from one funnel to the next, such as the state illustrated in
Fig. 22(f) for B/B 4=11.75. Here the leftmost funnel contains
two flowing channels of vortices interacting with the upper
funnel wall and one channel interacting with the lower fun-
nel wall while in the middle funnel this flow pattern is re-
versed.

We expect the trends described above to continue for
higher matching fields. Eventually, however, there may be a
crossover to a state where the vortex lattice constant is
smaller than the width of the funnel aperture, at which point
it would be possible to move two vortices through the funnel
tip at the same time without much of an additional energy
cost. In this case, the average velocity might sharply increase
since the flow in the aperture would transition from one di-
mensional to quasi-two-dimensional, and it may be possible
that further oscillations in the average velocity would arise at
even higher fields as larger groups of vortices could pass
through the aperture simultaneously for increasing magnetic
field values.
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FIG. 23. (Color online) The power spectrum S(v) versus fre-
quency v in inverse simulation time steps. Lower curve: the ordered
phase at F;=0.02 for B/B;=5.0, where a series of peaks occurs
due to the periodic velocity signal of the vortices. Upper curve: the
disordered flow phase at Fp=0.02 for B/B4=6.0, where a broad-
band noise signal arises with a 1/1%° form. The same types of
spectra appear for ordered and disordered flow phases at other
fields.

VII. NOISE MEASUREMENT AND TEMPERATURE
EFFECTS

With current experimental noise measurement techniques,
it should be possible to characterize the difference between
ordered and disordered flow phases. The vortex velocities we
measure in our simulations are proportional to the experi-
mentally measured vortex voltage signal, which can be ana-
lyzed using the power spectrum defined as

1 2
’=f V(t)e‘izWV’dt
V2w

In Fig. 23 we plot S(v) for B/B4=5.0 at F,=0.02 in a re-
gime of ordered flow. We find narrow-band noise peaks at
the characteristic frequencies of the ordered oscillatory mo-
tion of the vortices. Also plotted in Fig. 23 is S(v) for
B/B4=6.0 at F,=0.02, where the vortex flow is disordered.
Here the power spectrum has a broad band or 1/f* noise
characteristic with a@=2.5. In general, for other values of
B/ B, the ordered phases produce narrow-band spectra while
the disordered phases produce broad band noise signals. The
appearance of the narrow-band noise in the ordered phase
implies that phase locking phenomena could be induced by
adding an ac drive component to the dc driving force. When
the frequency of the ac drive matches the intrinsic or higher
harmonic frequencies of the moving vortices in the ordered
phase, a series of steps should appear in the velocity-force
curves.

We next consider the effect of temperature. In periodic
pinning arrays, the most pronounced matching field peaks
observed in experiments occur at temperatures near 7. This
has been attributed to the thermal suppression of the intrinsic
pinning in the sample that competes with the periodic pin-
ning. Another factor that could play a role is that the vacan-
cies or interstitials present in the vortex lattice away from

S(v) = (2)
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commensurate fields can be relatively mobile under thermal
activation, and so increasing the temperature could depress
the depinning force to a larger degree at incommensurate
fields than at commensurate fields where vacancies or inter-
stitials are not present. We find that for a temperature of T
=0.1, which is well below the melting temperature of the
vortex lattice, the depinning force peaks at the commensurate
fields are robust while the depinning force at the incommen-
surate fields is depressed. The peaks in F. that appear at
B/By=4.5 and B/B,=5.5 for T=0 are absent at 7=0.1, in-
dicating that for finite temperatures, pronounced peaks are
only observable at the matching fields whereas submatching
field peaks are less robust. The general trend of increasing F.
with increasing B/B,, also remains robust at finite tempera-
ture.

VIII. DISCUSSION

Although our work is focused on a superconducting vor-
tex system, we expect our results to be general for other
systems of particles with repulsive interactions. For example,
in colloidal systems where the volume density is sufficiently
low that steric contact of the colloidal particles does not oc-
cur, many of the same results should still apply. One aspect
of the vortex system that we do not take into account is the
possibility of multiquanta vortex formation under certain
conditions. In static systems, the formation of giant vortices
has been observed in cases where the giant vortices produce
a higher symmetry of the vortex configuration, such as in
quasiperiodic pinning arrays.’' It is possible that dynamical
multiquanta vortices could form in a funnel geometry. For
example, if two vortices are forced into close proximity near
the funnel tip, they could merge to form a two-quantum vor-
tex which would then pass through the funnel tip. The for-
mation of such dynamical multiquanta vortices could pro-
duce interesting signatures in the transport curves. The
experimental system closest to the system studied here is
periodic asymmetric channel geometries'® where small oscil-
lations in the critical current due to commensuration effects
were observed. Since these commensuration effects were
very weak, it is possible that they were due to edge effects.
More recent experiments with geometries that avoid the ef-
fect of edges have now revealed much more prominent com-
mensuration effects,!” indicating that some of the phases we
observe may be occurring in this system.

IX. SUMMARY

In summary, we have used numerical simulations to ex-
amine the vortex configurations and dynamics in a periodic
funnel array. The vortex configurations we observe are gen-
erally different from those found for a single isolated trian-
gular sample due to the coupling between vortices in adja-
cent funnels. As a function of field we find a series of
depinning threshold peaks at the matching fields where the
vortex configurations are ordered. In some cases, matching
peaks are missing due to the fact that the vortex configura-
tion contains pairs of vortices that are located close together
near the funnel apertures. We also observe a general increase
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in the depinning threshold with increasing vortex density,
which is opposite from the normal trend for vortices in two-
dimensional pinning arrays where the vortices are directly
trapped by pinning sites. In the funnel geometry, the pinning
is a result of the repulsive vortex-vortex interaction forces,
and as the vortex density increases it becomes more difficult
for the vortices to overcome these repulsive forces and flow
through the funnel tip. We also find a rich variety of dynami-
cal phases, including ordered elastic and ordered plastic
phases where the vortices follow fixed trajectories and disor-
dered phases where vortices mix chaotically. The phases
generally organize in such a way that only one vortex passes
through the tip of the funnel at a time. Due to this constraint,
the average velocity of an individual vortex decreases with
increasing field such that the sum of the velocities of all of
the vortices at fixed drive remains close to constant for in-
creasing field rather than increasing with increasing field.
This behavior is similar to the response of grains in an hour-
glass. Transitions between the different dynamical phases ap-
pear as jumps or cusps in the velocity-force curves, and there

PHYSICAL REVIEW B 81, 224516 (2010)

are even regimes where the average vortex motion decreases
with increasing drive, producing a negative differential con-
ductivity. At higher fields, moving states can form in which a
single vortex remains immobile at the center of a funnel
while other vortices flow around it. In general, ordered flow
phases occur at the matching fields while at nonmatching
fields the flow is disordered for at least some regime of driv-
ing forces. The ordered phases are associated with sharp
narrow-band or washboard velocity noise signals while the
disordered phases have 1/f“ velocity noise spectra. Our re-
sults should also be generalizable to other systems of repul-
sively interacting particles moving through a funnel geom-
etry, such as colloids or Wigner crystals.
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