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A Dirac-type matrix equation governs surface excitations in a topological insulator in contact with an s-wave
superconductor. The order parameter can be homogenous or vortex valued. In the homogenous case a winding
number can be defined whose nonvanishing value signals topological effects. A vortex leads to a static,
isolated, zero-energy solution. Its mode function is real and has been called “Majorana.” Here we demonstrate
that the reality/Majorana feature is not confined to the zero-energy mode but characterizes the full quantum
field. In a four-component description a change in basis for the relevant matrices renders the Hamiltonian
imaginary and the full, space-time-dependent field is real, as is the case for the relativistic Majorana equation
in the Majorana matrix representation. More broadly, we show that the Majorana quantization procedure is
generic to superconductors, with or without the Dirac structure, and follows from the constraints of fermionic
statistics on the symmetries of Bogoliubov-de Gennes Hamiltonians. The Hamiltonian can always be brought
to an imaginary form, leading to equations of motion that are real with quantized real-field solutions. Also we
examine the Fock space realization of the zero-mode algebra for the Dirac-type systems. We show that a
two-dimensional representation is natural, in which fermion parity is preserved.

DOI: 10.1103/PhysRevB.81.224515 PACS number�s�: 74.20.�z

I. INTRODUCTION

Majorana bound states arise as zero-energy states in two-
dimensional �2D� systems involving superconductors in the
presence of vortices.1–4 These zero modes have attracted
much attention recently, in part, because of the possibility
that they can realize “half-qubits” within topological quan-
tum computing schemes.3 The basic idea is that two far away
Majorana bound states, real fermions, can be put together
into a complex fermion acting on a two-dimensional Hilbert
space spanned by the states �0� and �1�. Hence, two Majorana
fermions comprise one qubit, which is protected against the
environment if the vortices binding the Majorana fermions
are kept far away from each other.

The first example of a zero mode in a two-dimensional
superconductor was presented in Ref. 1. More recently it has
been stated that the proximity effect at the interface between
an s-wave superconductor and the surface of a topological
insulator can be described by a planar Dirac equation,4 pro-
viding a physical realization of the mathematical structure of
Ref. 1. Other examples of Majorana bound states arise in
systems with a nonrelativistic kinetic term and a p�

� px� ipy interaction with a vortex order parameter �i.e.,
p-wave superconductors�.2,3 These types of bound states
have been the subject of much recent interest.5–8 The focus
of the discussions of Majorana fermions in superconductors
have focused thus far on the zero modes.

However, Majorana’s original work9 was actually quite
more general and did not address a single mode but instead a
whole field. What he showed was that it was possible to
construct a representation of the Dirac equation that admits
purely real solutions. The particles that follow from his con-
struction are their own antiparticles and thus necessarily neu-
tral. What was striking about Majorana’s proposal was that
these particles were fermions—bosonic neutral particles rep-

resented by real fields are common, pions, and vector
bosons, such as photons, being simple examples �see Ref. 10
for a perspective on Majorana fermions�.

In this paper we look at three issues regarding the quan-
tization of Majorana fermions, beyond simply the zero
modes, in superconductors. First, we look specifically at the
case of Dirac-type systems describing s-wave-induced super-
conductivity on the surface of topological insulators. There,
we find that the entire � field of the superconductor model
�and not merely particular modes� obeys equations that are
analogous to the Majorana equations of particle physics. The
equations of motion for the fields can be brought to a real
form, and the fermionic solutions are real and therefore their
own antiparticles. Indeed, other than the fact that surface
states are 2D, the topological insulator-superconductor sys-
tem can be brought to the exactly same form that was dis-
cussed in Majorana’s original formulation of real relativistic
fermions.

Second, we note various topological features of the Dirac-
type model. We compute the Pontryagin index associated
with the k-space dispersion, and find it to be �1 /2, which is
an indication of the existence of zero modes in the presence
of vortices. We then present the Fock space-level structures
that accommodate an isolated, zero-energy state, which
arises in the presence of a vortex. In particular, we show that
fermion parity can be preserved, even with a single zero-
energy state. As we discussed above the Majorana zero
modes are usually thought of “half” qubits, as two of them
make up a complex fermion with a two-dimensional Hilbert
space. Here we ruffle this simple view by quantizing the
theory in the infinite plane in the presence of a single vortex.
A sole Majorana zero mode exists but a two-dimensional
Hilbert space remains. In a finite system, another zero mode
would appear at the edge, which is however absent in the
infinite plane.
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Third, we show that the Majorana quantization procedure
that we discuss for the Dirac-type equations describing
s-wave-induced superconductivity on the surface of topo-
logical insulators does extend, more broadly, to any super-
conductor. A description of Bogoliubov-de Gennes �BdG�
Hamiltonians using Majorana modes has been noted by Sent-
hil and Fisher11 for systems where spin-rotational symmetry
is broken �classes D and DIII of Ref. 12�. Here we show
rather generically that lack of spin-rotation symmetry is not a
necessity and thus classes C and CI of Ref. 12 also realize
Majorana fermions. All one actually needs is to have fermi-
ons and hence these results hold for any superconducting
system made of half-integer spin particles, regardless of the
size of the spin. What we show is that the constraints im-
posed by fermionic statistics on the symmetries of
Bogoliubov-de Gennes Hamiltonians always allow one to
bring the Hamiltonian in the Nambu representation to an
imaginary form. In turn, Schrödinger’s equation with this
imaginary Hamiltonian leads to a real equation of motion for
the fields, as in Majorana’s construction. The real-field solu-
tions in the constrained doubled Nambu space can then be
quantized as Majorana fields.

II. QUANTUM STRUCTURE OF THE
SUPERCONDUCTING MODEL

Let us start by analyzing the planar Dirac-type systems
realized on the surface of a topological insulator, placed in
proximity to an s-wave superconductor. The Hamiltonian
density for the model under discussion acts on two spatial
dimensions.1,4

H = �↑
�p−�↓ + �↓

�p+�↑ − ���↑
��↑ + �↓

��↓� + ��↑
��↓

� + ���↓�↑.

�1�

Here �↑,↓ are electron field amplitudes, p��−i�x��y ,� is
the chemical potential �which was omitted in the Ref. 1� and
��r� is the order parameter that is constant in the homog-
enous case or takes a vortex profile in the topologically in-
teresting case: ��r�=v�r�ei�, in circular coordinates. Equiva-
lently, in a two-component notation

H = �i
��� · p − ��ij� j +

1

2
��i

�i�ij
2 � j

� −
1

2
���ii�ij

2 � j . �2�

Now �= �
�↑
�↓

� and � comprises the two Pauli matrices
��1 ,�2�. The �2+1�-dimensional equations of motion for
Eqs. �1� and �2�

i�t�↑ = p−�↓ − ��↑ + ��↓
�,

i�t�↓ = p+�↑ − ��↓ − ��↑
� �3�

can be presented in two-component matrix notation.

i�t� = �� · p − ��� + �i�2��. �4�

When the chemical potential is absent, and � is constant, the
above system is a �2+1�-dimensional version of the
�3+1�-dimensional, two component Majorana equation,
which in �3+1�-dimensional space-time describes chargeless

spin 1/2 fermions with “Majorana mass” ���.13

A static solution to Eq. �3�, equivalently Eq. �4�, with a
vortex profile for �, can be readily found. It corresponds to a
zero-energy mode. With f and g real in the Ansatz

�↑ = f�r�exp�− i�/4 − V�r�� ,

�↓ = g�r�exp�i�� + �/4� − V�r�� ,

V��r� � v�r� . �5�

Equation �3� reduces to

�rg�� = �rf ,

f� = − �g . �6�

�Dash signifies r—differentiation�. Regular solutions are
Bessel functions

f�r� = NJ0��r� ,

g�r� = NJ1��r� �7�

with N as a real normalization constant.14

While the static, zero-energy mode is readily obtained
from Eq. �3�, for the finite-energy modes, we must take ac-
count of the fact that �↑ , �↓ mix with their complex conju-
gates. Therefore, one cannot separate the time dependence
with an energy phase. Correspondingly one cannot construct
a Hamiltonian energy eigenvalue problem, which is the usual
first step in the quantization procedure. Progress is achieved
by doublings the system with a four-component spinor.

	 =�
�↑

�↓

�↓
�

− �↑
�
	 = 
 �

i�2�� � . �8�

An extended Hamiltonian density H leads to equations for
	, which are just two copies of Eq. �3� or �4�.

H =
1

2
	�T
� · p − � �

�� − � · p + �
�	 �

1

2
	�Th	 . �9�

Here T denotes transposition. Because the last two compo-
nents of 	 are constrained by their relation to the first two,
	 satisfies the �pseudo-� reality constraint

C	� = 	 �10�

with C=C−1=C�=CT=C†�� 0 −i�2

i�2 0 �.
To proceed, one ignores the constraint in Eq. �10� on 	

and works with an unconstrained four-spinor 
= � �
� �. Time

can now be separated with the usual phase Ansatz and the
energy eigenvalue spectrum can be found.

h
 = i�t
, 
 = e−iEt
E,

h
E = E
E. �11�

These are the Bogoliubov-de Gennes equations for the super-
conductor problem. In the particle physics application, the
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unconstrained four-component equation is just the Dirac
equation describing charged spin 1/2 fermions. When the
�pseudo-� reality constraint is imposed, one is dealing with
the four-component version of the Majorana equation.13

Observe that h in Eq. �9� possesses the conjugation sym-
metry

C−1hC = − h�, �12�

which has the consequence that to each positive-energy
eigenmode there corresponds a negative-energy mode.

C
+E
� = 
−E. �13�

A quantum field may now be constructed by superposing
the energy eigenmodes 
E with appropriate creation and an-
nihilation quantum operators. It is here that we again en-
counter the Majorana construction: the unconstrained fer-
mion four-spinor 
 is like a “Dirac” fermion spinor,
governed by a Hamiltonian, which satisfies a conjugation
symmetry in Eq. �12� that leads to Eq. �13�. Then the spinor
	, which satisfies the �pseudo-� reality constraint in Eq. �10�,
is like a Majorana spinor, viz., a Dirac spinor obeying a
�pseudo-� reality condition.

With the eigenmodes one can construct a quantum field


̂. It can be an unconstrained Dirac field operator.


̂ = �
E�0

aEe−iEt
E + �
E0

b−E
† e−iEt
E

= �
E�0

aEe−iEt
E + �
E�0

bE
†eiEtC
E

� . �14�

Here the aE operator annihilates positive-energy excitations
�conduction band� and the bE

† operator creates negative-

energy excitations �valence band�. Since 
̂ is unconstrained,
a and b are independent operators. Their conventional anti-
commutators ensure that the unconstrained fields satisfy
Dirac anticommutation relations.

�
̂i�r�,
̂ j�r��� = 0, �15a�

�
̂i�r�,
̂ j
†�r��� = �ij��r − r�� . �15b�

For the superconductor/topological insulator system under

consideration 
→	 and the quantum field 	̂ satisfies the
constraint

Cij	̂ j
† = 	̂i. �16�

This is achieved by setting b=a in Eq. �14�.

	̂ = �
E�0

�aEe−iEt
E + aE
†eiEtC
E

�� . �17�

Owing to the constraint in Eq. �16� the anticommutators take
a Majorana form.

�	̂i�r�,	̂ j�r��� = Cij��r − r�� , �18a�

�	̂i�r�,	̂ j
†�r��� = �ij��r − r�� . �18b�

These also follow from Eq. �17� with aE , aE
† obeying con-

ventional anticommutators. We have ignored possible zero-

energy states; they will be discussed at length below.

In the final result in Eq. �17�, 	̂ retains the Majorana
feature of describing excitations that carry no charge. This is

true for the entire quantum field 	̂, not only for its zero-
energy modes �if any�, which are emphasized in the
condensed-matter literature. Explicitly we see this by exam-
ining the conserved current that is constructed with the un-
constrained Dirac field 
.

��,J� = 

i
�
i,
i

�� 0

0 − �
�

ij


 j� . �19�

When the above is evaluated on the constrained field 	, all
terms vanish. This is to be expected for a Majorana field
which carries no charge.

One may also consider a chiral current constructed with
the Dirac field 
.

��5,J5� = 

i
� I 0

0 − I
�

ij


 j,
i
�� 0

0 �
�

ij


 j� . �20�

But with nonvanishing � this is not conserved.

�

�t
�5 + � · J5 = − 2i
i

�
 0 �

− �� 0
�

ij


 j . �21�

These results persist when the constraint in Eq. �16� is im-
posed on 
→	.

��5,J5� ⇒ 2���T�,��T��� , �22�

�

�t
�5 + � · J5 ⇒ 2���T�2�� + 2���T�2� . �23�

Thus no conserved current is present in the superconductor
model in Eq. �1�.

The Majorana/reality properties are obscured by the rep-
resentation of the Dirac matrices employed in presenting the
4�4 Hamiltonian h in Eq. �9�. As written, the matrices in h
are given in the Weyl representation.

� = 
� 0

0 − �
� � = 
0 I

I 0
� �5 = 
 I 0

0 − I
� , �24�

h = � · p − ��5 + ��R − i��5�I. �25�

�R,I are the real and imaginary parts of the order parameter.
One may pass to the Majorana representation by conjugating
with the unitary matrix

V = 
Q− Q+

Q+ − Q−
�ei�/4, Q� �

1

2
�1 � �2� . �26�

Then h becomes

V−1hV = 
 − py px�
1 + i�I

px�
1 − i�I py

� + 
 ��2 − �R�2

− �R�2 − ��2 � .

�27�

This is manifestly imaginary and the conjugation matrix C in
Eq. �10� becomes the identity so that the �pseudo-� reality

constraint on 	̂ becomes a reality condition.17
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III. HOMOGENOUS ORDER PARAMETER

For constant �=mei�, we pass to momentum space with
an eik·r Ansatz in Eq. �11�. The energy eigenvalue is

E = � ��k � ��2 + m2 �28�

with no correlation among the signs. For fixed k there are
two ���� positive-energy solutions and two negative-energy
solutions. They become doubly degenerate at �=0. The de-
generacy occurs because at �=0, h commutes with S
= � 0 ei��3

e−i��3 0 � when the phase � of � is constant. The energy in
Eq. �28� is nonvanishing for all values of the parameters;
there is no zero-energy state.

The operators aE , aE
† and the eigenmodes 
E, which are

explicitly presented in Appendix A, are labeled by the mo-
mentum k and a further �+,−� variety describing the twofold
dependence on � of E����k���2+m2� �m�. The quantum

operator 	̂ is constructed as in Eq. �17�, which with nota-
tional changes �aE→an�k� ;
E→
n�k� ;n= �+,−�� reads ex-
plicitly

	̂�t,r� = �
n
� d2k

�2��2 �an�k�e−i�Ent−k·r�
n�k�

+ an
†�k�ei�Ent−k·r�C
n

��k�� �29�

with positive-energy eigenfunction 
n�k� carrying energy ei-
genvalue En. The conjugation condition in Eq. �13� now
states that C
n

��k� is a negative energy solution at �−k�.
Actually we can suppress the lower two components of


n�k� in Eq. �29�, because they repeat the information con-
tained in the upper two components, owing to the subsidiary
condition in Eq. �16�. In this way from the four-component
spinors recorded in Appendix A, we arrive at a mode expan-

sion for the electron field operators �̂↑,↓.

�̂ = 
�̂↑

�̂↓
� =� d2k

�2��2� 1
�2E+


a+�k�e−i�E+t−k·r� �

�E+ − k + �
�+ � − a+

†�k�ei�E+t−k·r��E+ − k + �e−i��− ��
+

1
�2E−


a−�k�e−i�E−t−k·r� �

�E− + k + �
�− � + a−

†�k�ei�E−t−k·r��E− + k + �e−i��+ ��� . �30�

Here �� � are the two-component eigenvectors of � · k̂ : �+�
� 1

�2
� 1

ei� � , �−�� 1
�2

� 1
−ei� �, where � arises as k̂

= �cos � , sin ��. One verifies that Eq. �30� satisfies Eq. �3�.
The Majorana character of this expression manifests itself

in that the particle annihilation operators a�, associated with
the positive energy eigenvalues E�, are partnered with their
Hermitian adjoint creation operators a�

† , which are associ-
ated with the negative-energy −E� modes. By contrast, for a
Dirac field the negative-energy modes are associated with the
antiparticle creation operators b�

† , which anticommute with
a� , a�

† . In other words, in the Majorana field operator in
Eq. �30� the antiparticle �hole� states are identified with the
particle states.

IV. TOPOLOGICAL NUMBERS

When � is absent and S commutes with h, we may
equivalently work with h��Sh, which possesses the same
eigenvectors as h, common with the eigenvectors of S. How-
ever, h� has the appealing form

h� = �ana �a = 1,2,3� . �31�

Here ni=ki�i=1,2� and n3 is �e−i��m, i.e., the constant
phase of � is removed so m is a real constant but of indefi-
nite sign. The matrices �a

�i = 
 0 − iei��ij� j

ie−i��ij� j 0
�, �3 = 
�3 0

0 �3 � �32�

satisfy the SU�2� algebra, as is explicitly recognized after a
further unitary transformation.

U−1�aU = 
�a 0

0 �a � , �33�

U � 
 P+ − ei�P−

e−i�P− P+
�, P� �

1

2
�I � �3� . �34�

When the Hamiltonian is of the form �31�, we can con-
sider the topological current in momentum space.20

K� =
1

8�
�����abcn̂

a��n̂b��n̂c�n̂ � n/�n�� �35�

and evaluate the topological number by integrating over two-
dimensional k space.

N =� d2kK0�k� =
1

8�
� d2k

m

�k2 + m2�3/2 =
m

2�m�
. �36�

The nonvanishing answer �1 /2, depending only on the sign
of m, is evidence that the model belongs to a topologically
nontrivial class. It is also a hint that topologically protected
zero modes exist in the presence of a vortex. �Although
vortex-based zero modes are also present for ��0, we do
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not know how to define a winding number in that case.�
We can understand the fractional value for N. The unit

vector

n̂a = �k cos �,k sin �,m�/�k2 + m2 �37�

maps R�2���S�2�� to S�2�. When k begins at k=0, n̂a is at the
north or south pole �0,0 , �1�. As k ranges to �, n̂a covers a
hemisphere �upper or lower� and ends at the equator of S�2�.
Thus only one half of S�2� is covered.

V. SINGLE-VORTEX ORDER PARAMETER

When � takes the vortex form, ��r�=v�r�ei�, Eq. �11�
possesses an isolated zero-energy mode

	0
v = 
 �0

v

i�2�0
v� � �38�

with �0
v determined by Eqs. �5� and �7�. Note that

C	0
v� = 	0

v. �39�

There are also continuum modes.

The operator field 	̂ is now given by an expansion such
as Eq. �17�, except there is an additional contribution due to
the zero mode controlled by the operator A.

	̂ � �
E�0

�aEe−iEt
E + aE
†eiEtC
E

�� + A�2	0
v. �40�

�The �2 factor will be explained later.� Due to Eqs. �16� and
�39�, A is Hermitian A=A†, anticommutes with �aE ,aE

†� and
obeys

�A,A� = 2A2 = 1. �41�

The question arises: how is A realized on states? Two
possibilities present themselves: two disconnected one-
dimensional representations or one two-dimensional repre-
sentation. In the first instance, we take the ground state to be
an eigenstate of A. The possible eigenvalues are �

1
�2

, so
there are two ground states, �0+� with eigenvalue + 1

�2
, and

�0−� with eigenvalue − 1
�2

. No local operator connects the two
and the two towers of states built upon them

aE
†aE�

† aE�
† . . . �0��

define two disconnected spaces of states. Moreover, one ob-
serves that A has a nonvanishing expectation value
�0��A�0��= �

1
�2

. Since A is a fermionic operator, fermion
parity is lost.21

In the second possibility, with a two-dimensional realiza-
tion, we suppose that the vacuum is doubly degenerate: call
one “bosonic” �b�, the other “fermionic” �f�, and A connects
the two

A�f� =
1
�2

�b� , �42�

A�b� =
1
�2

�f� . �43�

�Phase choice does not loose generality.�

Again there are two towers of states

aE
†aE�

† aE�
† . . . �f�, aE

†aE�
† aE�

† . . . �b�

but now A connects them. With this realization, fermion par-
ity is preserved when �b� and �f� are taken with opposite
fermion parity. Of course since A is Hermitian, it can be
diagonalized by the eigenstates.

�0+� =
1
�2

��b� + �f�� ,

�0−� =
1
�2

��b� − �f�� . �44�

This regains the two states of the two one-dimensional real-
izations. But the combination �b�� �f� violates fermion parity
as it superposes states with opposite fermion parity.

There does not seem to be a mathematical way to choose
between the two possibilities. But physical arguments favor
the fermion parity preserving realization. First of all, there is
no reason to abandon fermion parity; if possible it should be
preserved since it is a feature of the action. Also arguments
against combining states of opposite fermion parity may be
given: Since bosons and fermions transform differently un-
der 2�-spatial rotations; the �0�� states in Eq. �44� are not
rotationally covariant but transform into each other. �This
argument is completely convincing in a �3+1�-dimensional
theory. In �2+1� dimensions the anyon possibility clouds the
picture, and in �1+1� dimensions the argument cannot be
made, because spatial rotations do not occur.� Furthermore,
time inversion transformations work differently on bosons
and fermions: T2 is I for bosons and −I for spinning fermi-
ons. The superposed states in Eq. �44� are not invariant under
T2, rather they transform into each other. �This argument can
be made for �2+1� dimensional models, but in �1+1� dimen-
sions spin is absent so the fermion parity violating option
cannot be ruled out. Furthermore, the fermion-boson equiva-
lence of �1+1�-dimensional models obscures the status of
fermion-boson mixing. Indeed it is argued within supersym-
metry that fermion parity is lost in the presence of solitons in
�1+1� dimensions “due to boundary effects.”22�

�Any argument based on time inversion transformations
requires viewing the complex valued vortex configuration as
arising from the degrees of freedom of an enlarged model, in
which the vortex emerges from the dynamics of the extended
model �Abrikosov, Ginzburg, and Landau�. Otherwise, a vor-
tex background is not T invariant.�

In the next section we examine the vortex/antivortex
background and argue that the two-state, two-dimensional,
fermion parity preserving realization can be established. The
physical picture that emerges is that there are two towers of
states, one built on an “empty” zero-energy state �b�, the
other on the “filled” zero-energy state �f�, and the A operator,
which connects the two “vacua,” fills or empties the zero-
energy state.

VI. VORTEX/ANTIVORTEX ORDER PARAMETER

Insight on physical states in the presence of a vortex in a
superconductor adjoined to a topological insulator can be
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gotten by considering a vortex/antivortex background. The
zero-energy mode for an antivortex at the origin, ��r�
=v�r�e−i�, is given by

�↓ = NJ0��r�exp�i�/4 − V�r�� ,

�↑ = NJ1��r�exp�− i�� + �/4� − V�r�� . �45�

To simplify the discussion, we omit the chemical potential
and evaluate V�r���rdr�v�r�� with the asymptotic form of
v�r� →

r→�

m. Thus the zero-energy mode for the vortex be-

comes, approximately

�0
v � Ne−i�/4e−mr
1

0
� �46a�

while the antivortex at r=R, in the same approximation
leads to

�0
v̄ = Nei�/4e−m�r−R�
0

1
� . �46b�

The corresponding four spinors that solve Eq. �11� at zero
energy are

	0
v =�

Ne−i�/4e−mr

0

0

− Nei�/4e−mr
	 , �47a�

	0
v̄ =�

0

Nei�/4e−m�r−R�

Ne−i�/4e−m�r−R�

0
	 . �47b�

Consider now a configuration with a vortex at the origin
and an antivortex at R. No zero mode is present in the spec-
trum of h; rather there are two bound states, one with posi-
tive, exponentially small energy ��e−mR and the other with
equal magnitude, but opposite sign.

The former, called 
�
vv̄, consists of portions localized at

the origin �vortex� and at r=R �antivortex�. The latter is
given by 
−�

vv̄=C
�
vv̄� and has similar structure. Both contrib-

ute unambiguously to the expansion of the quantum field

operator 	̂, the former with an annihilation operator, the
latter with a creation operator.

	̂ � 	̂cont + a�e
−i�t
�

vv̄ + a�
†ei�tC
�

vv̄�. �48�

The first term on the right is the continuum contribution, as
in Eq. �40�. The Fock space spectrum is clear. There is a
vacuum state ��� annihilated by a�

a���� = 0. �49a�

A low-lying state is gotten by operating on ��� with a�
†.

a�
†��� = �f� , �49b�

a��f� = ��� , �49c�

a�
†�f� = 0. �49d�

The remaining states, created by aE
† can be built either on the

vacuum ��� :aE
†aE�

† aE�
† . . . ��� or on the low-lying state

�f� :a�
†��� :aE

†aE�
† aE�

† . . . �f�.
Now let us remove the antivortex by passing R to infinity.

Both 	��
vv̄ collapse to their zero-mode limit, 	��

vv̄ →
�→0

	0
v, and

the expansion in Eq. �42� becomes

	̂ = 	̂cont + 
a� + a�
†

�2
��2	0

v = 	̂cont + A�2	0
v. �50�

Moreover the action of A� 1
�2

�a�+a�
†�=A† may be read off

Eq. �49�. Renaming ��� as �b�, we find

�A,A� = 1,

A�b� =
1
�2

�f� ,

A�f� =
1
�2

�b� �51�

and two towers of states are built upon �b� and �f�.
In this way we justify the two-dimensional, fermion parity

preserving realization of the zero-mode algebra in a
superconducting/topological insulator system. �Note the oc-
currence of the factor �2 modifying 	0

v. This explains its
first appearance in Eq. �40�. This factor compensates in the
completeness sum for the loss of the antivortex wave func-
tion.�

Because no explicit solutions in a vortex/antivortex back-
ground are available, the argument in this section is qualita-
tive, without explicit formulas. However, one may consider a
one-dimensional example with Majorana fermions in the
presence of a kink and/or a kink antikink pair.21 In that
model one can solve equations explicitly and verify the be-
havior described here for the two-dimensional vortex case. In
this way one also establishes that even in one spatial dimen-
sion �in the absence of rotation and spin to enforce fermion
parity� the two-dimensional realization of the zero-mode al-
gebra is appropriate.

In Appendix B we present an approximate determination
of the low-energy eigenvalues in the presence of a vortex/
antivortex pair. The result supports the above qualitative ar-
gument: an exponentially small splitting of the zero-energy
mode is established. Also in the appendix, we study the two
vortex background, and find, within the same approximation
that no energy splitting occurs; rather two zero modes persist
as anticipated by index theorems.

VII. QUANTIZING MAJORANAS FERMIONS IN
GENERIC SUPERCONDUCTORS

In the preceding sections we showed that Majorana’s
quantization prescription of the Dirac equation directly ap-
plies to the full quantum field describing the proximity effect
of an s-wave superconductor to surface states of a topologi-
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cal insulator. Below we shall show that Majorana’s quantiza-
tion prescription of real neutral fermions is rather generic in
superconductors with or without Dirac-type dispersions. The
construction below is possible for any half-integer spin �fer-
mionic� particle. The reality conditions on the fermionic
fields follow from symmetries of the BdG Hamiltonian for
superconductors constructed in the Nambu basis.

Let us consider a system with fermionic degrees of free-
dom �r,n,s and �r,n,s

† , where r labels position, n the possible
flavors �bands, for instance�, and s the spin �half-integer�
along a chosen quantization axis. For simplicity, we shall
define an index ���r ,n ,s� that encodes all these degrees of
freedom. The Hamiltonian describing superconductivity in
such a system can be written as

H = �
�,�

��
†H���� +

1

2
��

†�����
† +

1

2
�����

� ��

= �
�,�

1

2
��

†H���� −
1

2
��H����

† +
1

2
��

†�����
† +

1

2
�����

� ��

= �
�,�

1

2
��

†H���� +
1

2
���− HT�����

† +
1

2
��

†�����
†

+
1

2
�����

† ��. �52�

Defining

	 = 
 �

�† � �53�

we can write

H =
1

2
	†
H �

�† − H� �	 � 	†h	 . �54�

That HT=H� follows from H=H†. Notice that �=−�T is
enforced because of fermionic statistics and consequently we
can also write

h =
1

2

 H �

− �� − H� � . �55�

Let us define

C = 
0 I

I 0
� �56�

so that C=CT=C�=C†=C−1. The operators 	 must satisfy
the constraint

Cab	b
† = 	a, �57�

where the index a��� , p� with p=� the Nambu grading
�	�,+=�� and 	�,−=��

†�. The fermionic commutation rela-
tions of the fields � , �† translate into

�	a,	b� = Cab and �	a,	b
†� = �ab. �58�

A. Conjugation symmetry

One can easily check that any BdG-type h as in Eq. �55�
possesses the following conjugation symmetry

− h� = C�hC . �59�

We stress that fermionic statistics underlies this result, as it is
the reason for the minus signs and the complex conjugation
in both terms in the second row of Eq. �55�.

It follows from this symmetry that positive and negative
eigenmodes of h are paired

h
E = E
E ⇒ h�C
E
�� = − E�C
E

�� �60�

or equivalently

C
+E
� = 
−E. �61�

B. Generic Majorana basis and its real equation of
motion

Consider a unitary transformation V, under which

h → h̃ = VhV†. �62�

It follows that

− h̃� = V��− h��V�† = V��C�hC�V�† = V�C�V†VhV†VCV�†

= �VCVT��h̃�VCVT� = C̃�h̃C̃ �63�

so the transformation law of C is

C → C̃ = VCVT. �64�

�Notice that C̃C̃�=VCVTV�C�V†= I so C̃−1= C̃� still.�
We will construct below a unitary matrix V such that C̃

= I. This basis is the appropriate Majorana representation for
the generic superconducting system of half-integer spin par-

ticles �for any number of flavors�. In this basis, one has h̃=

−h̃� so that h̃ is imaginary or equivalently ih̃ is real. It fol-
lows from Schrödinger’s equation that

��t + ih̃�	̃ = 0 �65�

so the equation of motion for the field is purely real and thus
admits purely real solutions. Notice that this path mirrors
Majorana’s formulation of the Dirac equation for spin 1/2
particles �he constructed a purely imaginary representation of
the Dirac matrices, obtaining an equation of motion that was
real�.

Notice that in this basis the commutation relations be-
come

�	̃a,	̃b� = C̃ab = �ab and �	̃a,	̃b
†� = �ab �66�

corresponding to real fermions

	̃a = 	̃a
†. �67�

C. Construction of V

The appropriate unitary transformation V which makes

C̃= I is constructed as follows. Because of fermionic statis-
tics, the time-reversal operator � squares to −1. One can
write �=TK, where K is complex conjugation and T=ei�Sy

,
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with Sy the y component of the angular-momentum operator
�in a representation such that Sy is a purely imaginary ma-
trix�. T is a real antisymmetric matrix �T=T� and TT=−T�
with T2=ei2�Sy

=−Ispin�flavor when spin is half-integer. For in-
stance, for spin 1/2 particles T= i�2.

Consider the following transformation:

V = 
Q− − iQ+

iQ+ − Q−
�ei�/4, Q� �

1

2
�1 � iT� �68�

�compare with Eq. �26�.� Notice that Q� are projectors
�Q�

2 =Q��, that Q�
† =Q�, and that Q+

2 +Q−
2 = Ispin�flavor and

Q+Q−=Q−Q+=0. Also notice that Q�
� =Q�

T =Q�. One can
then easily check that the above defined V is such that

C̃ = VCVT = I . �69�

VIII. SUMMARY

In this paper we studied mainly three issues regarding the
quantization of Majorana fermions in superconductors, fol-
lowing closely Majorana’s original definitions, and looked
beyond just the Majorana zero-energy modes that are bound
to topological defects such as vortices. We started by analyz-
ing the specific case of Dirac-type systems describing
s-wave-induced superconductivity on the surface of topo-
logical insulators. We showed that the entire � field of the
superconductor model �and not merely particular modes�
obeys equations that are analogous to the Majorana equa-
tions of particle physics.

We then analyzed the quantization of the theory in the
presence of vortices. We showed that fermion parity can be
preserved even with a single zero-energy state. This quanti-
zation scheme shows that one can obtain a two-dimensional
Hilbert in the presence of a single vortex in an infinite plane,
presenting a case where each Majorana fermions can be,
when present in odd numbers, more than half a qubit.

Finally, we showed that the Majorana quantization proce-
dure that we discussed for the Dirac-type equations describ-
ing s-wave-induced superconductivity on the surface of to-
pological insulators does extend, more broadly, to any
superconductor. The constraints imposed by fermionic statis-
tics on the symmetries of Bogoliubov-de Gennes Hamilto-
nians are sufficient to allow real-field solutions in the con-
strained doubled Nambu space that can then be quantized as
Majorana fields. This results follows simply from fermionic
statistics plus superconductivity, irrespectively of the pres-
ence or absence of any other symmetries in the problem,
such as spin-rotation invariance or time-reversal symmetry.
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APPENDIX A

We present the four-component, positive energy solutions
to Eq. �11�. The eigenvalues

E� = ��k � ��2 + ���2

are associated with the eigenvectors


+�k� =
1

�E+�
�

�E+ − k + �
�+ �

�E+ − k + ��+ �
	 ,


−�k� =
1

�E−�
�

�E− + k + �
�− �

�E− + k + ��− �
	 .

The negative-energy spinors are given by C
�
� �−k�. �� � are

defined in the text.

APPENDIX B

We study the low-lying energy levels of the Dirac-type
Hamiltonian h in Eq. �9� with � set to zero and � chosen
first in an approximate vortex/antivortex profile

�vv̄ = mei��r−R/2�e−i��r+R/2� �B1�

and then similarly with two vortices.

�vv = mei��r−R/2�ei��r+R/2� �B2�

Here � is the argument of the appropriate vector

ei��r� �
x + iy

r
= ei�,

ei���R� � �
�X + iY�

R
= � ei�

with x=r cos � , y=r sin � , X=R cos � , Y =R sin �. One
vertex is located at r�R /2, the antivortex or the second
vortex at r�−R /2.23

1. Vortex/antivortex

Near the vortex at r�R /2 the order parameter �vv̄ is
approximated by

�vv̄ → �v = mei��r−R/2�e−i��R� = mei��r−R/2�e−i�. �B3�

The zero mode in the presence of �v differs from Eq. �47a�
by a phase due to the additional phase ei� in �v. Also the
location is shifted by R /2.

�0
v =�

v

0

0

− v�
	, v �

m
��

e−i��/4+�/2�e−m�r−R/2�. �B4�

Similarly, with the order parameter near the antivortex at r
�−R /2 taken as
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�v̄v → �v̄ = mei��−R�e−i��r+R/2� = − mei�e−i��r+R/2�

�B5�

the zero mode solution replacing Eq. �47b� reads

�0
v̄ =�

0

v̄

v̄�

0
	, v̄ �

m
��

ei�3�/4+�/2�e−m�r+R/2�. �B6�

Next we evaluate the matrix element between �0
v and �0

v̄ of h
in Eq. �9�, with �=0 and order parameters as in Eq. �B1�. We
find that the diagonal matrix elements vanish �v�h�v�
= �v̄�h�v̄�=0. The energy shift �E, determined by the off-
diagonal elements of h, is

�E = � ��v̄�h�v�� , �B7�

�v̄�h�v� = �v�h�v̄�� =� d2r�v̄�p+v + v̄�vv̄
� v� − H.c. �B8�

The evaluation of the first integrand proceeds by recalling
that p+v=�v�r−R /2�v� and yields, after a shift of integra-
tion variable by R /2

� d2rv̄�p+v = − i
m3

�
�

0

�

rdre−mr�
−�

�

d�ei��−�� exp − m�r2

+ R2 + 2rR cos �� − ���1/2. �B9a�

A further shift of � by � leaves

� d2rv̄�p+v = − i
2m3

�
�

0

�

rdre−mr�
0

�

d� cos �e−mD,

D � �r2 + R2 + 2Rr cos � �B9b�

For the second integrand, a similar shift, first by R /2 and
then by � gives

� d2rv̄�vv̄
� v = i

2m3

�
�

0

�

rdre−mr�
0

�

d�
r + R cos �

D
e−mD.

�B10a�

We notice that the � integrand may also be presented as
− 1

m
�
�re−mD, thereby transforming Eq. �B10a� after an integra-

tion by parts into

� d2rv̄�vv̄
� v = i

2m2

�
�

0

�

dr�1 − rm�e−mr�
0

�

d�e−mD.

�B10b�

Thus we find that

�v̄�h�v� = i� ,

� = 4m2�
0

�

dre−mr 1

�
�

0

�

d��1 − rm�1 + cos ���e−mD

�B11�

and the energy is shifted from zero by ��.
Numerical integration of Eq. �B11� at large R yields a

result consistent with

� →
R→�

� 8

�
m�mR�1/2e−mR. �B12�

This may be derived analytically with the following argu-
ment. We replace the upper limit ��� of the r integral by R
and approximate D by R+r cos �. The � integral now leads
to modified Bessel functions I0 and I1, and we keep only
their large argument, exponential asymptote. The remaining r
integral yields Eq. �B12�.

2. Two vortices

The order parameter in Eq. �B2� describing two vortices
located at r� �R /2 reduces at r�R /2 to

�vv → �v+ = mei��r−R/2�ei��R� = mei��r−R/2�ei�

�B13a�

while the one at r�−R /2 becomes

�vv → �v− = mei��−R�ei��r+R/2� = − mei�ei��r+R/2�.

�B13b�

The corresponding zero modes differ by phases from the
vortex solution in Eq. �47a� or �B4� but they retain their
spinor structure.

�0
v+ =�

v+

0

0

− v+
�
	 ,

�0
v− =�

v−

0

0

− v−
�
	 . �B14�

The explicit expressions for v+ and v− are not needed be-
cause the above form of the spinors guarantees that all matrix
elements of h vanish. Thus, within our approximation, the
two-vortex background retains its two zero modes. This is to
be expected because asymptotically such a configuration is
indistinguishable from a double vortex

�vv→
r+�

mei��r�ei��r� = me2i� �B15�

and a double vortex possesses two zero modes.1
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