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Superconductivity in the repulsive Hubbard model: An asymptotically exact weak-coupling
solution
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We study the phase diagram of the Hubbard model in the limit where U, the onsite repulsive interaction, is
much smaller than the bandwidth. We present an asymptotically exact expression for 7., the superconducting
transition temperature, in terms of the correlation functions of the noninteracting system which is valid for
arbitrary densities so long as the interactions are sufficiently small. Our strategy for computing 7. involves first
integrating out all degrees of freedom having energy higher than an unphysical initial cutoff (). Then, the
renormalization group (RG) flows of the resulting effective action are computed and 7, is obtained by deter-
mining the scale below which the RG flows in the Cooper channel diverge. We prove that 7. is independent of
Q). Using this method, we find a variety of unconventional superconducting ground states in two- and three-
dimensional lattice systems, and present explicit results for 7. and pairing symmetries as a function of the

electron concentration.
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I. INTRODUCTION

The Hubbard model is widely studied as the paradigmatic
model of strongly correlated electrons.!> However, in more
than one dimension there is controversy concerning even the
basics of the phase diagram of the model. Most theoretical
work on the model has focused on intermediate to strong
interactions, U ~ W since this is the physically relevant range
of parameters for any of the intended applications of the
model to real solid-state systems. (Here, U is the repulsion
between two electrons on the same site and W is the band-
width in the limit U=0.) However, for such strong interac-
tions the only well-controlled solutions are numerical and the
application of detrimental quantum Monte Carlo methods?
and the density-matrix renormalization group* have been
limited by the fermion sign’ and two-dimensional entangle-
ment problems,® respectively.

Here, we study the limit of weak interactions, U/t—0,
where we compute the phase diagram and obtain expressions
for the critical temperatures which, assuming the validity of
certain assumptions discussed below, are asymptotically ex-
act. To be explicit, we consider the Hubbard model

H=Hy+ Uz CjTClei-lCi-T’
i

Hy=—1 2 [cl,cip+Hel-1" 2 [c],cip+Hel (1)
(ij)o (i.j).o

for a variety of lattice systems in two dimension (2D) and
three dimension (3D). Here, CZ(, creates an electron with spin
polarization ¢ on lattice site i, and {i,j) and (i,j) signify,
respectively, pairs of nearest-neighbor and next-nearest-
neighbor sites.

Since the Cooper instability is the only generic instability
of a Fermi liquid, except for certain fine tuned values of ¢'/¢
and the electron density n, the only ordered states that can be
stabilized by weak interactions are superconducting states.
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For repulsive interactions, W> U>0, the superconducting
transition temperature has an asymptotic expansion

T, ~ W exp{— a,(t/U)? — a,(t/U) — ap} X [1 + O(U/1)],

~Wexp{= 1/[pVesli 1 + OU/1)] (2)

where «,, are dimensionless functions of ¢'/¢, and n and p are
the density of states at the Fermi energy. The principal result
we report here is to give an explicit prescription for comput-
ing o, and a; as a function of the electron density, n, and the
“band structure.” On the basis of the present analysis, we
conclude that the resulting phase diagram is asymptotically
exact in the sense that

lin}){(U/t)zln[W/TC]} = a. 3)
U—

We will also explain why we are unable to give a prescrip-
tion for computing «,. In the process of computing «,, one
determines the symmetry of the superconducting ground
state (e.g., s wave, p wave, d wave, etc.) and the form of the
pair wave function.

There are, of course, special situations in which a variety
of different nonsuperconducting ordered phases occur. While
these situations are potentially significant in what they imply
about the behavior of the system at intermediate U, in the
small U limit they always involve a large degree of fine
tuning of parameters. The canonical example is the case of a
square lattice, in which the model with #'=0 has a nonge-
neric particle-hole symmetry which leads to perfect nesting
of the Fermi surface when the mean electron density per site
is n=1, where

n=N"2(cl ;0 )
jo

These special situations are thus, in some sense, not really a
part of the weak-coupling problem but rather a piece of the
strong correlation problem that persists to weak coupling. If
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one’s principal interest’!! is in extrapolating well-controlled

weak-coupling calculations to the range of strong interac-
tions, this degree of fine tuning of the band structure is a
small price to pay to gain access to phases which have broad
ranges of stability for intermediate to large U. However, if
we focus on the small U limit in its own right, then for any
fixed, nonzero value of t'/t no antiferromagnetic insulating
phase occurs.

An interesting interplay between various possible ordered
phases can also occur when the Fermi energy is coincident
with a van-Hove singularity.!>' While these singularities
occur for generic values of t'/t, the density must be fine
tuned in order for the singularity to lie sufficiently close to
the Fermi energy to matter. The study of the behavior of the
system in weak coupling tuned near a van-Hove singularity
has been explored by several authors,'’2? again as a route to
understanding strong-coupling phases and the interplay be-
tween phases in a regime of parameters in which perturbative
renormalization-group (RG) methods can be applied. How-
ever, again, as we are focusing on the physics of a system
with small U/t, we do not treat the interplay with nonsuper-
conducting orders.

The original idea of obtaining superconductivity from re-
pulsive interactions dates back to the pioneering work of
Kohn and Luttinger>® who derived an effective attractive in-
teraction from the Friedel oscillations of a 3D electron gas.
random-phase approximation calculations for a repulsive
Hubbard model found that near a spin-density-wave instabil-
ity there was an effective interaction which favored d-wave
superconductivity.>* The treatment of this problem from the
standpoint of the renormalization group was presented by
Zanchi and Schulz,'>'® and others.!”25-27 Furthermore, the
problem of competing instabilities of electronic systems has
extensively been studied via the numerical functional
renormalization-group (FRG) methods.'8?8-3% While these
works have made significant progress in our understanding
of superconductivity from repulsive interactions, we present
here an asymptotic analysis of the problem and show explic-
itly the way the final expressions for the superconducting
transition temperature are independent of the initial choice of
cutoff. Our analysis is based on the renormalization-group
framework established by Shankar®' and Polchinsky.*? In
Sec. VII, we present a more complete discussion of the rela-
tionship between the work presented here and previous
analyses of this problem.

This paper is organized as follows. In Sec. II, we present
the results of our perturbative RG treatment. Expressions for
the quantity «, are presented in the spin-singlet and triplet-
pairing channels. These results are then applied to a variety
of systems in Sec. III. Both lattice and continuum systems in
d=2 and d=3 are considered. In Sec. IV, we present the
overall strategy of our RG calculations. In Sec. V, we de-
scribe the technical aspects of the perturbative renormaliza-
tion of the effective interactions in the Cooper channel and
discuss the one-loop RG flows of the effective pairing vertex
in Sec. VI. In Sec. VII we discuss the relation of the present
work to previous closely related approaches, and we con-
clude, in Sec. VIII with a few remarks about future direc-
tions. There is an appendix with technical details. To sim-
plify our notation, we henceforth adopt units in which =1
and the volume of the unit cell v=1.
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II. RESULTS

Before discussing the derivation, we articulate the final
results of our analysis, i.e., we give an explicit method to
compute «a, exactly. (It is more complicated to compute «a;,
and since it is subdominant; we defer that part of the discus-
sion to the more technical portion of the paper.) The results
are expressed in terms of X(E), the static susceptibility of the
noninteracting system

d%q LA 612+q') - f( Gq')]

x(k) =- (5)
(2 7T)d [€1€+q - Eq]
evaluated in the limit 7— 0 and
d'q .
p= f dez) = lim (k) (6)
(277)11 ! ‘/;|~>0

the density of states at the Fermi energy Er. Here ¢; is the
band dispersion measured relative to the Fermi energy, Er,
and d=2 or 3 denotes the number of spatial dimensions. The
integrals run over the appropriate first Brillouin. In general, y
must be computed numerically but this is a straightforward
computation.

For simplicity, we shall restrict our attention in this paper
to systems which possess inversion symmetry and no spin-
orbit coupling. This enables us to classify the possible super-
conducting states as having either even or odd parity, the
former class consisting of spin singlet and the latter of spin
triplet states. Among the even parity spin-singlet supercon-
ducting states, the s-wave states are those which transform
trivially under a point-group operation of the crystal,
whereas the “d-wave” and higher angular-momentum chan-
nel gap functions transform according to a nontrivial repre-
sentation of the point group. The spin-triplet states include
p-wave and f-wave gap functions, all of which transform
according to a nontrivial representation of the point group.
Depending on the crystalline point group, the superconduct-
ing gap functions may transform as either a nondegenerate or
an n-fold degenerate irreducible representation of the point-
group operations. We will present expressions for «, for each
of these states; for any given band structure and electron
concentration, the physical low-temperature phase is that one
which produces the smallest value of a,.

In order to compute «,, we must solve, for each symmetry
class, the eigenvalue problem displayed below. In the spin-
singlet channel, the eigenvalue problem corresponds to the
integral equation

d‘?_s n (n)
f <8 =N,

SF kg7 sq

UF
UF(/g)

where ¢ is of order ¢/ U, k designates a vector on the unper-
turbed Fermi surface, Sp= [dp is the “area” of the Fermi
surface, vy(p) is the magnitude of the Fermi velocity at po-
sition p, and the norm of the Fermi velocity is defined ac-
cording to

g,=p0"

[x(k+ @) +c1] 7)

_Ur
UF(C?) '
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The only effect of c; is to penalize the trivial s-wave state
due to the bare on-site repulsive interaction. Eigenfunctions
with higher angular momentum, such as the d-wave states,
and appropriate “extended s-wave” states are unaffected by
it.33-33 In the spin-triplet channel, the eigenstates obey

aq 4 (n)
f S_Fglg’é,’b[’é = )\n‘ﬁ,’,;

v P v
8o =P —xk=@)\— )
: (k) vr(q)

Assuming that there is at least one negative eigenvalue
present in either Eq. (7) and (9), the quantity «, is obtained
by the relation

ay =N (UN)?, (10)

where A\, is the most negative eigenvalue. The zero-
temperature gap function is proportional to ¢

) o) .
Ayy(k) ~ T, ”F_( )ws(,)(lo. (11)
Ur

The computation of «; involves an analysis of less singular
scattering processes in perturbation theory and will be ad-
dressed in Sec. VI.

III. APPLICATION TO VARIOUS SYSTEMS

The expressions in Egs. (7) and (9) hold for the Hubbard
model and are independent of the microscopic details of the
electronic structure. In this section we determine the super-
conducting ground states for a variety of inversion and spin-
rotationally symmetric systems in d=2 and d=3.

There are two distinct effects of the band structure which
affect the asymptotic behavior of T.: first, the existence of a
superconducting instability from repulsive interactions at all
derives from the k-space structure of the effective interac-
tions, and these depend strongly on n and the details of the
band structure. Second, the dimensionless density of states at
the Fermi energy, pt, varies (in 2D especially) with distance
from a van-Hove point. To distinguish these two effects, in
the figures we re-express the leading-order asymptotics as

T, ~ exp{-[pVes] ™'}, (12)

where

Vesr(n) = [\|/p= (U [ap]™. (13)

We emphasize that these expressions are valid to leading
order in (U/t) and therefore hold true in the limit of weak
interactions.

A. Rotationally invariant systems in d=2 and 3

We begin by considering electrons in the continuum limit
with quadratic dispersion (which is achieved in a lattice sys-
tem in the limit n<<1)
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k2
€= E . (14)
In three dimensions
@ {k (2kp)*—q* | q+2kp }
X\q9)=p
F 4q q—2ky

2
:p[l—%<%> +} (15)
F

where p=mky/2m. For such a rotationally invariant system,
each eigenfunction can be classified according to its angular
momentum ¢, and the solutions are (2€+ 1)-fold degenerate.
The expansion of x(g) in powers of g/2kp is justified when
seeking the lowest angular-momentum pairing solutions and
it shall suffice to compare the s-wave and p-wave solutions
which require only the leading order expansion about ¢g=0.
The nondegenerate s-wave eigenfunction has a uniform gap
everywhere on the Fermi surface. From Eq. (7), it can easily
be seen that since the susceptibility is a positive-definite
quantity, a negative eigenvalue for an s-wave gap function
does not exist. However, the threefold degenerate p-wave
channel with, e.g., ¢,(6) «cos 6, does have a negative eigen-
value, as can be seen by applying Eq. (9)

’ o 2
_4&{1_1(% £ ') }a,(n'mwt(m.

477 2\ 2k

The solution is A=—p/16<<0. Thus, for a system with a qua-
dratic dispersion and a spherical Fermi surface, the ground
state is a p-wave superconductor to order U?. Physically, this
can be understood from the fact that the dominant spin fluc-
tuations are ferromagnetic. Indeed, such considerations have
been applied extensively to superfluid Helium-3.3637

For a two-dimensional rotationally invariant system with
quadratic dispersion

Revg’ = (2ks)” (2/@1 (16)

q

Note that the susceptibility is a constant for g <2ky. How-
ever, for a system with a circular Fermi surface, the furthest
apart any two points on the Fermi surface can be is 2kg.
Therefore, the pairing strengths correspond to the eigenval-
ues of a constant matrix. One sees immediately from this that
the s-wave solution has a positive eigenvalue N\=m/27+c;
and all higher angular momentum gap functions have zero
eigenvalues. Therefore, for such a rotationally invariant sys-
tem in two dimensions, superconductivity does not occur in
any channel to order U?. When higher-order terms in pertur-
bation theory are taken into account, it has been found that
the leading instability occurs in the p-wave channel.’®

m
X(4)=;{1—

B. Lattice systems: d=2

Various authors**~#? have studied the Hubbard model on
the 2D square lattice in the weak-coupling limit. Near half-
filling, nesting effects lead to d,2_,» pairing. In weak cou-
pling at low-doping, higher-order nonquadratic terms in the
quasiparticle dispersion® lead to d,, pairing for ¢'=0 and for
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FIG. 1. (Color online) Density of states as a function of electron
concentration on the square lattice for '=0 (solid line) and ¢’ =
—0.3 (dashed line).

t' <—t/4, the p-wave state is favored.*’ In higher-order per-
turbation theory,42 U? vertex corrections have been shown to
enhance the p wave over the d,, state. Here, we are inter-
ested in the behavior of the model as U/t approaches zero
while keeping the density of electrons fixed, and we have
studied the eigenvalue problems given in Egs. (7) and (9)
must be studied numerically. A finite number of points on the
Fermi surface form the basis for the matrices g*'. These in
turn are diagonalized and the pairing eigenvalues are deter-
mined for each electron concentration. For each of the sys-
tems considered below, we have found that a discretization
of the Fermi surface with 500-800 points is more than suf-
ficient to produce accurate results. Both spin and the lattice
point group symmetries are used to classify the resulting
eigenstates. For a tetragonal crystal (i.e., the point group Dy;,)
without spin-orbit coupling, there are four nondegenerate
spin singlet states, and a twofold degenerate triplet state

Agp~1 or (2 +y?),

A2g:l/,~ (-xz_yz)xy9
Blg:‘//N (xz_yz)’
BZg:wayv

E i~ {x.y}, (17)

where the left-hand side labels the irreducible representation
and the right-hand side lists the basis functions (with the
association x —sin k,, x*>— cos k,, etc.).

Figure 1 shows p as a function of electron concentration n
for a tight-binding model on a square lattice. Figure 2 shows
the pairing strengths for the 2D Hubbard model on a square
lattice with ¢'=0 as a function of n. (Particle-hole symmetry
assures that the phase diagram is invariant under n—2-n.)
We see clearly that near half-filling (n=1), the dominant
form of superconductivity has d,>_» symmetry. At about n
=0.6, we see that the favored configuration changes to d,,
pairing. Thus, there are two distinct superconducting ground
states that occur on a square lattice with a near-neighbor
hopping as a function of concentration for the particle-hole
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FIG. 2. (Color online) Pairing strengths for the 2D Hubbard
model at t'=0 as a function of electron concentration.

invariant system at t'=0: there is a d,2_,> ground state for
1>n>0.6, and a d,, ground state for n<<0.6. The results
shown in Fig. 2 are in qualitative agreement with the spin-
fluctuation exchange studies of the Hubbard model of Scala-
pino et al.>* Figure 3 shows the gap function for the d-wave
state at n=1.1. Notice that it has a shape that differs substan-
tially from the simple (cos k,—cos k,) form.

For ¢’ # 0, on the square lattice, the particle-hole symme-
try is destroyed and the van-Hove singularities occur away
from half-filling. Figure 4 shows the pairing strengths on the
square lattice at '=—-0.3 as a function of doping. Again, the
dominant configuration which occurs near the half-filled sys-
tem is d,2_,2 pairing. The van-Hove singularity occurs in this
system at n=n,,~0.72. In a narrow window of densities
near n,y, the d-wave order is suppressed and the p-wave
order dominates. Upon further decreasing the electron con-
centration away from the van-Hove singularity, the d,2_2
ground state again gives way to a p-wave superconducting
state at n=0.5. Qualitatively similar results have been found
for the square lattice 7,7 Hubbard model using functional
renormalization-group analysis for fillings close to the van-
Hove singularities.*?

It is worth examining the singular behavior near n,y (i.e.,
near the point w=4¢") in more detail. For the square lattice

_sziyz(GF)
x y
....cos(kp)—cos (kL)

0.25 0.75

0.5
GF/21t

FIG. 3. (Color online) The gap function A for the d,2_y» state
which occurs at '=0 and n=1.1. The pair field is plotted as a
function of 6 and the angular degree of freedom on the Fermi
surface relative to the x axis. The pair field obtained in the weak-
coupling analysis deviates significantly from a simple cos(26)
form, depicted here by the dotted line.
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FIG. 4. (Color online) Pairing strengths for the 2D Hubbard
model at t'=-0.3¢ as a function of electron density. The critical
density n, at which the van-Hove singularity occurs at the Fermi
level is shown.

with ¢’ # 0, the susceptibility at §=(0,0) diverges logarith-
mically as u— 4t'

(18)

) 1 ! t
—
X 27t | -4t

For a large momentum transfer, é=(’7T, ), the susceptibility
varies as

1

R ¢
x(Q) ~ Z—ﬂgtln

u—4ar

2t (19)

In

for |u—4t'|<t'. Thus, a finite ¢’ acts to suppress the nesting

of the Fermi surface (for the perfectly nested Fermi surface

at ' =0, x(Q) diverges much more strongly as In2|¢/ /). Tak-

ing the dominant scattering processes at momenta ¢=(0,0)

and QO=(m, ) into account, one finds that the effective

d-wave pairing strength near the van-Hove singularity is
2

roughly
t
Veff = (111 —_—
27t 21

where V|, is a subdominant contribution which arises from
the intermediate momentum transfers on the Fermi surface.
For t' <t, the d-wave pairing strength is enhanced as |u
—4t'|— 0. However, for t/2t' > e the d-wave pairing strength
decreases as the van-Hove singularity is approached. This
behavior is illustrated in Fig. 5. It reflects the fact that the
d-wave pairing is driven by an interaction which is stronger
at large momentum transfer. An interaction which is greater
at small momentum transfer suppresses the d-wave pairing.
Next we consider the nearest-neighbor tight-binding
model on the 2D triangular and honeycomb lattices. Figure 6
shows the basic electronic structure on these lattices. Both
lattice systems have the hexagonal point-group (Dg;,) Sym-
metry and therefore the same irreducible representations
characterize their gap functions. In the singlet (even parity)
channel, the following are the irreducible representations:

In

ar - 1) +Vy,  (20)

A~k + k.
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FIG. 5. (Color online) The effective interaction for ¢'=-0.3
(dashed and dashed-dotted lines) and for t' =—0.05 (solid line) as a
function of w—4¢'. For ' =-0.3, the dashed line represents the pair-
ing strength of the d,2_,> state whereas the dashed-dotted line cor-
responds to the pairing Strength of the p-wave state. While both are
depressed as the chemical potential crosses the van-Hove singular-
ity, the p-wave state obtains a larger pairing strength parametrically
close to the van-Hove point. For ' =—0.05, the nesting of the Fermi
surface remains nearly perfect and acts to enhance the pairing
strength of the d,2_» state. The p-wave pairing strength for ¢'=
—0.05 is not shown here since it is much lower than the d-wave
strength.

Er:p~{(k; = ;). (2k;k, )}

0.4
0.3
0.2

) \ 0.1
S| Witz 72\

-1 -05 0 0.5 1 0 0.5 1 15 2
k /n n

FIG. 6. (Color online) (Upper left) Energy contours of the tri-
angular lattice nearest-neighbor tight-binding model. The dashed
black line marks the zone boundary. Blue contours correspond to
the band bottom and red contours occur near the top of the band.
(Upper right) Density of states on the triangular lattice. When the
Fermi level is at the van-Hove point, the volume of the Fermi
surface is 3/4 of the zone. (Lower left) Energy contours of the
honeycomb lattice nearest-neighbor tight-binding model. Due to the
particle-hole symmetry, only the €>0 contours are shown. (Lower
right) Density of states of the honeycomb model. The van-Hove
singularities occur at a filling of 3/8 and 5/8.
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N
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FIG. 7. (Color online) The two distinct f-wave irreducible rep-
resentations on the triangular and honeycomb lattices. (Left) Bj,:
i~ ky(k;=3K7). (Right) By,: ¢y~ k,(k;—3k;). The By, gap function
is the dominant gap when there are two disconnected Fermi pockets
in the system, each centered around the zone corners. The B;, gap
function has the opposite sign on each pocket.

Aggith ~ ko, (k7 = 3K) (K; = 3K3). (21)

Note that the d-wave function is a two-dimensional represen-
tation (this is in fact the only two-dimensional representation
in the singlet channel for this system so long as we restrict
our superconductivity to be only in the basal plane). For the
triplet channel, we have

Elu:ww {kX’ky}9
By~ ky(k; - 3k3),

Byt~ k(s = 3k3). (22)

The p-wave gaps form a two-dimensional irreducible repre-
sentation. There are two distinct one-dimensional f-wave gap
functions that belong to the B;, and B,, representations and
are shown in Fig. 7.

Figures 8 and 9 show the pairing strengths for the trian-
gular and honeycomb lattices, respectively. For both systems
it is seen that the dominant pairing instabilities are either the
two-component d-wave representation or the nondegenerate
f-wave representation.

0.25
= yy*-3x)
0.2r = (P—yPoxy }
N:) 0.15¢
o
2 o1
0.05f
0

FIG. 8. (Color online) The dominant pairing strengths on the
triangular lattice as a function of electron concentration. The two-
component d-wave order parameter occurs in the hole-doped (i.e.,
x<0) system. But for electron doping (x>0) beyond the van-Hove
filling, the f-wave(2) gap develops the largest critical temperature.
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FIG. 9. (Color online) Pairing strengths for the honeycomb lat-
tice. The trends on the honeycomb lattice are some what reverse in
comparison to the triangular lattice. However this can be under-
stood from looking at the Fermi-energy contours. For a given sign
of t, the energy contours of honeycomb lattice for large electron
doping (i.e., top of the band) is similar to those of the triangular
lattice at large hole doping (i.e., bottom of the band) and vice-versa.

For the triangular lattice at modest electron concentration,
or the honeycomb lattice far away from half-filling, the
Fermi surface is hexagonal in shape and is simply connected.
In this regime, the dominant pairing configuration is d-wave
pairing that consists of a d,2_,> component degenerate with a
dyy component.** In our analysis, the magnitude of each of
the two d-wave gap functions and their relative phase cannot
be determined, since they are determined by nonlinear ef-
fects captured, for instance, in the Landau-Ginzburg theory.
However, it is reasonable to expect that in order to gain
condensation energy, the system will spontaneously break
time-reversal symmetry and form a d+id superconductor.

For the triangular lattice near the top of the band, and for
the honeycomb lattice close to half-filling, the Fermi surfaces
form disjoint pockets. In this concentration regime, we have
found for both systems that the triplet f-wave gap function is
the ground state. The f-wave state which is favored has its
lines of nodes along the lines connecting the zone center to
the midpoints of the zone edges (see Fig. 7). However, since
these lines of nodes never cross the Fermi surfaces which are
centered on the corners of the Brillouin zone, the f-wave
pairing produces a fully gapped state on the Fermi surface.
The gap changes sign between the two distinct Fermi sur-
faces. It has been argued in the past based on the spin-
fluctuation exchange mechanism that the strong magnetic ex-
citations associated with such disjoint, reasonably well-
nested Fermi pockets results in an effective pairing
interaction which is repulsive between the two pockets. Con-
sequently, a solution which encodes a sign change of the gap
among the two Fermi surfaces will naturally be favored.®
The transition between the f-wave and d-wave pairing states
occurs as the electron density is varied across the van-Hove
filling. We note, finally, that the f-wave solution has a sub-
stantially higher-transition temperature than the other super-
conducting gap functions found in these lattice systems.

C. Lattice systems: d=3

Next we consider three-dimensional lattice systems. In
particular, we shall consider the superconducting instabilities
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FIG. 10. (Color online) Density of states as a function of elec-
tron concentration for the diamond lattice (solid black curve), SC
(dashed-dotted curve), BCC (dashed curve), and FCC (blue dashed
curve) lattices. The FCC is a nonbipartite lattice and therefore, the
particle-hole symmetry is absent.

of the Hubbard model on the simple cubic (SC), body-
centered cubic (BCC), face-centered cubic (FCC), and dia-
mond lattices. We shall restrict our analysis to nearest-
neighbor tight-binding dispersion in each of these cases. All
of these lattices have the octahedral (O)) point-group sym-
metry which permits the following classification for the gap
functions:

Agp~1 or (2 +y2+7%),

Ayt~ (P =y = ) (P - 1),
Eg¢p~{22 == y) 3% - ),
Tyt~ fxy(® = y2),yz2(y* = 22),2x(2* = )},

ngll//"“ {xy,yz,zx} (23)

for the singlet gap functions and

Alu”zbw Xyz,
Tlu:ww {x’y$z}a

Tt~ {x(y? = 22),3(2 = x%),z(x* = y?)} (24)

for the triplet states. Figure 10 shows the density of states as
a function of electron concentration on each of these lattice
systems. With the exception of the BCC and FCC lattices,
the density of states remains finite across van-Hove singu-
larities in three-dimensional systems.

Figures 11 and 12 display the phase diagram on the SC
and BCC lattice respectively as a function of electron con-
centration. At low concentrations, the p-wave solution has
the highest 7, in both lattices whereas near half-filling, a
d-wave solution has the higher transition temperature. On the
SC lattice the E, d-wave configuration is found near half-
filling. This state is the three-dimensional analog of the d,2_,>
gap found on the square lattice near half-filling. Due to the
underlying symmetry of the cubic lattice, the d,>_> gap must
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FIG. 11. (Color online) Pairing strengths of the dominant pair-
ing configurations on the simple cubic lattice. For electron concen-
trations that are far from half-filling, the threefold degenerate
p-wave (T),) state occurs whereas closer to half-filling the doubly
degenerate d-wave state (E,) is found.

be degenerate with the d2_,» gap function. This degeneracy
in turn implies that below 7, the system on the cubic lattice
will spontaneously break time-reversal symmetry and form a
d+id gap function. On the BCC lattice (Fig. 12), the domi-
nant pairing configuration near half-filling is the triply de-
generate d-wave gap function (75,). At intermediate concen-
trations, the E, gap functions have the largest 7, and again at
low concentrations, the p-wave solution is favored. On the
FCC lattice (Fig. 13) the T,, f-wave gap is favored near the
top of the band. This f-wave state gives way to the E,
d-wave state below n=1.5, which in turn is replaced by the
T,, d-wave configuration below n=1.3. This triply degener-
ate d-wave gap function persists for a wide range of concen-
trations. Finally, at a concentration below n=0.1 we find the
p-wave state has the highest pairing strength. Finally, on the
diamond lattice (Fig. 14), the T,, gap occurs near half filling
when the semimetal is lightly doped. As the concentration is
increased, the ground state consists first of the E, and sub-
sequently the T,, superconducting states. Near the top and

0.08,
= {xy,yz,zx}
0.0d (P2 3721
’ == {x,y,z}

Al
) i
=004
©

0.02f

FIG. 12. (Color online) Pairing strengths for the dominant pair-
ing configurations on the BCC lattice. For electron concentrations
that are far from half-filling, the threefold degenerate p-wave (T7,)
state has the greatest strength. For intermediate concentrations, the
E, and T,, d-wave solutions are found to have the strongest
strengths.
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FIG. 13. (Color online) Pairing strengths for electrons on a FCC
lattice. As in the other 3D lattice systems, p-wave superconductivity
occurs for low electron concentrations. For intermediate concentra-
tions, the d-wave solutions have the largest pairing strengths. Near
the top of the band, the density of states diverges and a three-
component f-wave superconductor has the strongest pairing
strength.

bottom of the band, the p-wave solution has the largest pair-
ing strength.

IV. RG STRATEGY

At any given temperature, the thermodynamic properties
of the model can be computed perturbatively in powers of
U/t so long as U/t is small compared to a characteristic
T-dependent magnitude. (Indeed, we generally expect that
perturbation theory is convergent at finite temperature with a
finite radius of convergence. Dynamical properties of the
system often depend nonanalytically on the strength of the
interactions, even at elevated temperatures, but as long as we
stick to thermodynamic quantities, this issue should not
arise.) Alternatively, even at T=0, if we introduce an artifi-
cial low-energy cutoff, (), in the spectrum, low-order per-
turbation theory is reliable so long as > Qpy, where Qpr

0.12 T T
- {x2—y2,322—r2}
0.1 = {xy.yz,2x}
. — v

o 008 £ kP2 () 208 -yP))
-] P
S~
o«
@
>

FIG. 14. (Color online) Pairing strengths for electrons on a dia-
mond lattice. For low electron concentrations, the p-wave solution
has the largest pairing strength whereas near half-filling, the triply
degenerate f-wave gap has the greatest pairing strength. For inter-
mediate concentrations, both the doubly and triply degenerate
d-wave pairing states have the dominant pairing strengths.
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can be obtained by looking at the most divergent terms in
each order of perturbation theory, the familiar particle-
particle ladders

p|Ullog[WiQpr] =1,

Qpr=W exp[- 1/p(ER)|U|]. (25)

Qpris a physical energy scale in the problem—it is the high-
est energy at which the bare interactions begin to be signifi-
cantly renormalized by many-body effects.

With this in mind, we formulate the problem in terms of a
Grassman path integral, which we express in terms of the
normal modes of the quadratic piece of the action defined by
H,. As a first step, we integrate out all the modes with ener-
gies greater than a cutoff, (), chosen so that

Ut> Q> Qpr. (26)

Because y> QO py, the interactions in the resulting effective
action can be computed using straightforward perturbation
theory. Moreover, we are guaranteed that in dimensionless
units, all the effective interactions are still weak. Because
W> U?/t, the resulting effective action involves only modes
within a parametrically narrow window, of width ), about
the Fermi surface. In particular, this effective action is of
precisely the form assumed as the starting point for the per-
turbative RG analysis of the Fermi liquid.*’*? Specifically,
the dispersion can be linearized about the Fermi surface, the
effects of small irrelevant terms can be neglected, and the
beta function for the marginally relevant interactions can be
computed to one loop order.

The second step is to compute the RG flows starting from
the initial data obtained in the first perturbative step. These
flows describe how the effective couplings change as we
continue the process of integrating out high energy modes by
reducing the cutoff below (). These equations cease to be
accurately governed by the perturbative beta function when
one or more dimensionless interaction grows to be of order
1. However, the value of the cutoff, (0*, at this point defines
(up to a multiplicative constant of order 1), a characteristic
energy scale in the problem. Assuming that a one parameter
scaling theory describes the low-energy physics, then all
emergent energies in the problem, including T, the root-
mean-squared gap magnitude, A, etc., are all simply propor-
tional to )*. (Without knowing more explicitly the crossover
behavior from the Fermi liquid to the superconducting fixed
point, it is not possible to obtain a precise value for the
constants of order 1, and hence « in Eq. (2) cannot be com-
puted by the present methods.)

Note that () in this treatment is not a physical energy
scale but rather a calculational convenience. It is important
that the results should be independent of the value of (),. We
will see that by choosing Q,<U?/t, we make simple the
manipulations that ensure that our results are independent of
), at least to the desired order in powers of U/t. This high-
lights an important difference between the present analysis
and a conceptually similar treatment of the small U problem
considered by Zanchi and Schulz,' in which a two step RG
analysis of the Hubbard model was undertaken, but in which
the intermediate scale (which they call €,) is a physical
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U-independent measure of the proximity to a van-Hove
point. (We return to this comparison in Sec. VII, below.)

V. FIRST-STAGE RENORMALIZATION: PERTURBATIVE
RESULTS

The first step is to integrate out the states with energies
down to €}, and to compute the resulting effective interac-
tions perturbatively in powers of U. The important terms,
which will serve as inputs for the second-stage renormaliza-
tion, are the electron self-energy, 3.(k), and the two-particle
vertex, F‘w,(lz,ci), in the particle-particle channel i.e., the
scattering amplitude of a pair of particles with spin polariza-
tion o and ¢’ and momenta k and —k into a pair of particles
with the same spin polarization and momenta ¢ and —g. The
two-particle vertex can be decomposed into the singlet and
triplet channels, I'; and T",, respectively, where

S 1 S S
I'i(k,q) = E[Fu(kﬁ) + Fm(kﬁ)],

The electron self-energy and two-particle vertices are
S(k; Q) = UPS,(k: Q) + O(UP), (28)
. dqgd S .
SOF0) = | G +.w)G(d.0) = x(F: Q).
Q (2m)
(29)
y(k,G:Q0) = U+ 2 U'T"(k,G: ), (30)
n=2
I(k.G: Q) = 2 U'T"(k.G:0Q0). (31)
n=2

Tk, G:00) = x(k + §:00) + P(Qy). (32)
T2k, G:00) = - x(K - §:Qy). (33)
P00 = [ L2 G G- pm ). (4)

0= % (2m)d! p,w p,— ).

Here, G(k;w) is the single-particle Green’s function, [ q, Sig-
nifies the integral over all ¢ subject to the constraints |€;
> (), and |e,;+q-| >, and d is the number of spatial dimen-
sions. The first term in Eq. (32) is obtained from diagram
(2a) of Fig. 15 whereas the second term is obtained from
diagram (L,) in Fig. 16. The quantity in Eq. (33) is obtained
from diagram (2b) in Fig. 15. Below, we shall discuss the
higher-order terms, I'™ with n>2.

The particle-hole bubble, y, is regular in the limit (),
— 0 while the particle-particle bubble has the well-known
logarithmic divergence associated with the Cooper instability
but is otherwise regular

PHYSICAL REVIEW B 81, 224505 (2010)
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FIG. 15. Two particle irreducible diagrams to third order in U
which contribute to the effective interaction in the particle-particle
channel. The incoming set of electrons at the left of each diagram
have momentum & ,—12 and are scattered by the interaction to states
with momenta G,—§. The dashed line denotes the bare Hubbard
interaction and the solid lines correspond to the bare electron propa-
gators. The diagrams are constrained by the requirement that the
spin must be flipped across the dashed line.

x(k; Q) = x (k) + O(Qy),

P(Qg) = p log[A/Qp] + O(Q), (35)

where A is determined by the band structure over the entire
band. Since we will never need to keep terms higher order
than U*, and since, by assumption, (<< U?, the higher-order
terms in powers of ), can be neglected henceforth.

The higher-order vertex functions can likewise be evalu-
ated by keeping a nonzero value of (), where ever there is a
logarithmic divergence in the ,—0 limit but setting (),
=0 elsewhere. The expression in the singlet channel is

——r T,

~t Aot 1t
+

Iy = +
S LI N KNI H
(La) (Lb) (Le)

torgt gt et
+ I +:I +
} I e T

= -
(Le) 0 9

H

Iy

(Lm) (Ln)

FIG. 16. Diagrams to O(U*) which are used in determining the
effective interaction in the particle-particle channel. The upper set
of diagrams (L,-L;) show the contributions in the spin singlet chan-
nel whereas the lower set (L,,,L,) show the processes that contrib-
ute in the triplet channel.
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POk, G:020) = p* log2[A/Q] + [YD() + ¥

X(§)1p loglAIQ] + TPk, §) + O(Qy),
(36)

where if we define p to designate a vector on the (unper-
turbed) Fermi surface and Sy= [dp, equal to the “area” of
the Fermi surface

PIE) = f ;”’[v_(p)]x<k+p> (37)
F F

with vx(p) the magnitude of the Fermi velocity at position p
on the Fermi surface and the norm of the Fermi velocity
defined according to

1 dp<1> 38
UF fSFUF(Ia). (38)

The first term of Eq. (36) is obtained from diagram (L,) in
Fig. 16 whereas the terms proportional to log[A/{)] are de-
rived from diagrams (L,,L,) in Fig. 16 with the thick solid

line treated to second order in U. Finally, '® contains all the
nonsingular contributions in the limit {j— 0, which are de-
rived from the third-order two-particle-irreducible (2PI) dia-
grams [(3a)—(3f) in Fig. 15]. They can be expressed as
double momentum integrals over suitable products of quar-
tets of G’s, as shown in the appendix, but in the interest of
clarity, we do not display them here. In the triplet channel,
the third-order correction to the vertex is nonsingular and is
obtained from diagram (3g) of Fig. 15

T'V(k,: Q) = TP (k.§) + O(Qy). (39)

An explicit expression for this quantity is also derived in the
appendix.
Similarly, we can obtain an expression for ')

T9(k,g;Q0) = {p> 1og’[A/Qe] + [ + ¥V (k) + y“)
X(§)1p* 1og’[AIQ,] + [y D) + 4P

X(q)]p log[A/Qq] + ¥ (k,§)p log[A/Q]}
+TW(k,g) + 0(Qy), (40)
where
dpdp’ Uy
7(14)=f ror X(p+p ), (41)
SF UF(P)UF(

F_|:6)/ 7 »
YI(k) = JSF|:UF(.U):| Iy (k,p), (42)

YW(k,g) = f—x(kﬂv)[ @
UF

The first term in Eq. (40) is represented by the fourth-order
ladder diagram in (L,) of Fig. 16. The terms involving y(")
are obtained from dlagrams (Ly-L;), and those involving v, 3

are derived from diagrams (Lg,Lf) treating the thick solid

]X(f] +p).  (43)
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line to third order in U. Finally, f§4) is a nonsingular contri-
bution from the fourth-order 2PI diagrams, which are not
shown here Since we shall not make use of these terms, we
will not provide explicit expressions for them. In the triplet
channel, the fourth-order vertex consists of a single term

TW(k,G:Q0) = p log[A/Q0] YV (k,9) + O(Qp),  (44)

where

7(kq) = f L (k- p){ } Xp-4),  (45)
vi(p)

which is obtained from diagram (L,) of Fig. 16, treating the

thick solid line to second order in U.

VI. SECOND-STAGE RESULTS: RG ANALYSIS

The second stage of renormalization is carried out follow-
ing the standard Fermi-liquid RG procedure of Shankar®' and
Polchinski.?? Notice that the effective action generated after
the first stage of renormalization is precisely of the form
assumed as the starting point of this renormalization proce-
dure: the effective interactions are all small (so a perturbative
RG approach is justified) and the remaining states lie in a
narrow strip of width () about the Fermi surface so that the
spectrum can be linearized without loss of accuracy. Various
interactions (Fermi-liquid parameters) are marginal at the
noninteracting fixed point. These do not significantly affect
our principle results. The only couplings that renormalize are
those in the Cooper channel. These are governed by the one-
loop RG equations which we write in matrix form as

dg
2 46
0= 8*8 (46)
where € =1log[Q,/ Q]
dp
(g*h)iz= f <~ 8kl (47)
Sp

where g designates a dimensionless matrix

| Ty 2 (48)
v (k) vp(q)

Here, we have left implicit the dependence of both g and T’
on the spin indices.

In integrating these equations, we start with an initial
value of the interaction matrix, g°, which is the output of the
first stage of renormalization. Because g is a real symmetric
matrix, it is also Hermetian, and so can be diagonalized

2y= 2 MU ,(G), (49)

8k

where the eigenvalues, \,, are real and the eigenfunctions
form an orthonormal basis

f SR B = 8, (50)
F

As a result, each eigenvalue renormalizes independently
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d\
n )\2;
dt "

)\0

[ 51
1+\Y log[Qy/Q] 51

A, (Q)

To determine the physically important scale, )*, at which
the RG treatment breaks down, we must first identify the
smallest eigenvalue of g°, ), for which A\J=\? for all n
>(. Assuming that )\8 is negative, then

Q% = Q exp[- V/\]. (52)

Asymptotically, both 7, and the zero temperature gap scale,
A, are then equal to a (unknown) number of order 1 times
Q*. Under generic circumstances, we expect A, to be nonde-
generate, i.e., \g<<\;. The exception to this is the vicinity of
a zero-temperature phase transition between two supercon-
ducting states with different symmetries, where two eigen-
values cross. The properties of the infinitesimal neighbor-
hood of such critical points will not be investigated further in
this paper.

There is an apparent problem with Eq. (52), which is that
it has an explicit dependence on (). Since (), was intro-
duced as an unphysical calculational device, this dependence
must be spurious. Fortunately, there is also an implicit de-
pendence of 7\8 on (), which just cancels this explicit depen-
dence.

To see this most simply, first consider the case of the
negative U Hubbard model. In this case, the lowest eigen-
value is clearly in the spin-singlet channel and it can be
computed perturbatively in powers of U as

R k
@ =\ 2221+ 0wy,

Uf

No=pU + pU[P(Q) + p']+ O(UP), (53)
where
dkdé

p'=f Sﬂxw+qy (54)

F

The logarithmic dependence of P on () insures that when
the expression in Eq. (53) is inserted into Eq. (52), the result
is independent of (), at least to the stated order in powers of
U

T, ~ Q" =A exp[- (1/p|U)e""[1 + O(U)].  (55)

The same analysis can be carried through for the more
complicated case of the repulsive U Hubbard model. In this
case, however, since the leading contribution to )\8 is order
U?, the term responsible for canceling the (), dependence of
the prefactor is a logarithmically divergent fourth-order order
contribution to the “dressed” vertex. The dressed vertex is
represented by the thick solid line in diagram (L) or (L,,) of
Fig. 16. We shall consider the singlet and triplet channels
separately in what follows.

In order to see that )™ in the singlet channel does not
depend on (), it is helpful to discretize the points on the
Fermi surface, so that the matrix, I'; in Eq. (32), and hence
the matrix, g, in Eq. (48), as well, is a N X N matrix, where N
is the number of k points. (The continuum limit can easily be
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taken at the end of the calculation.) This N X N matrix can
then be partitioned into a 1 X1 block g, o which affects only
the trivial s-wave states and an (N—1) X (N—-1) block g,
containing the nontrivial superconducting states

A 85,0 /Z;
gs(ki,k-)=< : ) (56)
! 7—1 gs,]

Here, 7, is a 1 X (N—-1) matrix which connects the trivial
s-wave subspace with the orthogonal space of sign-changing
pair fields.

The lowest-order contributions to g;,*I';( comes from
diagrams (L,,L,) in Fig. 16 so I';;~O(U). On the other
hand, g, I, | ~O(U?). The diagrams which contribute to
’75(12,12) are shown in (L,) and (L;,) in Fig. 16. The interac-
tion vertex in these diagrams has the form of a product of
two terms, one of which consists of a bare (and therefore
momentum-independent) vertex operating on the incoming

momenta (k;), and the other of which is a dressed vertex

connected to the outgoing momenta (lgj). Therefore, these
terms, when viewed as a matrix, operate on a nontrivial sin-
glet pairing configuration and produce the trivial s-wave so-
lution. From Figs. 15 and 16, it is easy to see that 7
~O(U?). In a similar fashion, diagrams (Ly) and (L)) con-
tribute to T! which is just the Hermitian conjugate of 7. In
diagonalizing g, the off-diagonal matrix elements, 7;, can be
treated perturbatively. Indeed, it is clear that the leading ef-
fect of these terms on the eigenvalue problem is O(U?), and
so to the order we are working, they can be set to zero.
Within the nontrivial (N—1)-dimensional subspace, the
lowest-order term in perturbation theory which contribute to
I, is represented by the dressed vertex in diagram (L.) of
Fig. 16. To lowest order in U/t, this is the diagram in (2a),
which is UZX(/25+/QJ;QO), and when all of diagrams (2a)—(3g)
are taken into account, the nonsingular terms of o)

which produce f(f)(lg,-,lg-) in Eq. (3~6) will also contribute to

the vertex. We define the quantity I'; ; to be the piece of I, ;
which is nonsingular in the limit 05— 0

T, (ki k) = Uxlk; + kj) + U Tk k) + O(UY) - (57)

and correspondingly

~ DN — N1 DAy = R
Zs1(k,q) = pNogv (k)L 1 (k, @) NOF/V(G). (58)

The lowest-order term in perturbation theory for I' which
has singular (logarithmic) ), dependence is the same dia-
gram (L,) in Fig. 16 that gives the logarithm in Eq. (53);
however, this term is purely a contribution to I'y,. The
lowest-order singular term in I'; ; which has the singular €},
dependence derives from fourth-order diagram (L;) in Fig.
16. Thus, when all the diagrams are properly taken into ac-
count, we see that

gs,l=§s,l+g~s,l*g~s,l log[A/QO]"'O(US) (59)

Thus, if we express the results in terms of ):, the eigenvalues
of the nonsingular part of the interaction, g, ;, we find that
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FIG. 17. An arbitrary irreducible interaction vertex I'(k,§) in
the particle-particle channel is shown in (a). The spin indices are
suppressed for clarity. The flow of the most negative eigenvalue of
I" breaks down at a scale which is identified as the superconducting
transition temperature. For each such vertex, there belongs a corre-
sponding diagram of the form shown in (b), which produces the
logarithmic divergence ~log(A/€),) needed to remove the depen-
dence on the arbitrarily chosen initial cutoff ().

T, = A exp{— 1/|N,,[}[1 + O(U?)]. (60)

The logarithmic dependence on (), of the fourth-order con-
tribution to )\8 has just the requisite form to cancel the ex-
plicit dependence on ().

The eigenvalue obtained this way is valid to O(U?). How-
ever, to obtain the quantity «,, one only needs to consider
g1 to O(U?), which is obtained from the first term in Eq.
(57). Once the eigenvalue problem to this order has been
solved, the O(U?) correction, which we refer to as a, is
obtained by treating the contribution from the second term in
Eq. (57) to first order in perturbation theory.

It is similarly straightforward to show that 7. for a spin-
triplet ground state is independent of the initial cutoff ().
Again, the effective interaction in the triplet channel must
have nontrivial momentum dependence and only the dressed
vertex shown in Fig. 15 can contribute. The resulting expres-
sion in the triplet channel is directly analogous to Eq. (57)

I:t,l(lgislg‘) = Ux(k; - /;,') + U3f£3)(]2i,]€j) +O(UY).
(61)

The dependence of T, on the initial scale (), is eliminated by
diagram (L,) in Fig. 16 which possesses the required loga-
rithmic divergence ~log[A/(),]. After including both dia-
grams (L,,) and (L,) in Fig. 16, we find that the interaction
vertex in the triplet channel is

81=81— 81 *&1s log[A/Qo]+(’)(U5). (62)

Thus, as was found in the singlet channel, the final expres-
sion for 7, is independent of ().

The general feature in perturbation theory which acts to
eliminate the initial cut-off dependence of T, is shown in Fig.
17. In Fig. 17(a), an arbitrary irreducible interaction vertex I"
in the particle-particle channel is shown. For the negative U
Hubbard model, I' would correspond simply to the bare ver-
tex, and for the repulsive cases, I' is the appropriate irreduc-
ible vertex in either the singlet or triplet channel as discussed
above, and could be computed to an arbitrary order in per-
turbation theory. For each such T, there corresponds a dia-
gram of the form shown in Fig. 17(b) which acts to remove
the dependence on (). In this diagram, the internal legs
which separate each vertex I" produces the required logarith-
mic divergence factor P({),). Since this is true for an arbi-
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trary interaction vertex, the fact that the final expression for
T. is independent of the arbitrarily chosen initial scale (), is
true to all orders in perturbation theory for the interaction
vertex (we note in passing that self-energy corrections to the
internal propagator lines produces O(U?) corrections in the
Hubbard model and do not affect the general structure dis-
cussed here).

VII. RELATION TO PREVIOUS WORK

The present work is, in part, a recasting of old work in a
new framework, in terms of a more well-controlled
asymptotic analysis. Specifically, Kohn and Luttinger?} ob-
served that even for a repulsive bare interaction, the
momentum-dependent structure in the irreducible particle-
particle vertex can give rise to a Cooper instability in a suit-
able channel. For a short-range repulsive bare interaction, the
resulting pairing interaction is mediated by an S=1 particle-
hole channel which is the leading term of the Berk-Schrieffer
spin-fluctuation exchange interaction.*

An important piece of the physics of correlated materials
that is missing in the weak-coupling limit is associated with
“competing orders,” and the accompanying interplay be-
tween interactions in different “channels.” We stress that this
is not a failure of the method of solution but is something
that is an intrinsic feature of a weakly perturbed Fermi lig-
uid. In order to address this physics, various calculations
have been undertaken using the FRG method'”->3-?7 which is
in many ways similar in structure to the weak-coupling
analysis undertaken here. In this approach, a single set of
perturbative nonlinear flow equations are derived for the
coupling constants defined both near to and far from the
Fermi surface and then the resulting flows are analyzed nu-
merically starting from initial conditions corresponding, for
instance, to the Hubbard model with intermediate couplings,
U~3—4t. As stressed in Ref. 30, for these values, the effec-
tive interactions near the Fermi surface are typically large.
On an intuitive level, the advantage of the FRG approach is
that it does capture some physics of multiple intertwined
scattering processes in a physically compelling manner. On
the other hand, the perturbative methods used are formally
valid only in the asymptotic limit U/fr— 0. While, as far as
we know, there has been no published work analyzing the
FRG flows for the Hubbard model in this limit, were the
FRG calculations carried out in this limit they would ap-
proximate the leading order behavior derived in the present
paper using somewhat different methods.

Another feature of the weak-coupling limit is that the dy-
namics is set by the bare bandwidth. Thus, the bare suscep-
tibilities that enter the expression for the pairing interaction
are those of the unperturbed Fermi gas, in which the only
energy scale is the bandwidth. Again, a plausible extension
of the present results involves replacing one or more of these
susceptibilities with a dressed susceptibility or even with an
experimentally measured susceptibility. For example, near a
magnetically ordered phase, such a susceptibility would re-
flect the enhancement of the magnetic fluctuations for k

~Q, the antiferromagnetic ordering vector, and still more
importantly, the retardation effects implicit in the emergence
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of a new energy scale, “J,” associated with magnetic fluctua-
tions. From this perspective, the various approaches to a
“spin-fluctuation exchange” mechanism of superconductivity
appear as natural extrapolations of the present results to a
more strongly coupled regime. However, it is important to
stress that such procedures represent uncontrolled approxi-
mations. There may well be competing channels or possibly
a failure of the basic framework. One would like to have
numerical calculations to test the utility of such phenomeno-
logical approximations. There are several specific studies we
wish to discuss explicitly, as they have produced results
which are particularly close to those obtained here.

The two step RG approach of Schulz'> has already been
mentioned. In the case considered there, the role of (), was
played by a physical energy scale, defined as the energy scale
below which the singular structures due to the proximate
van-Hove singularity could be ignored, and above which the
system might as well be precisely tuned to the van-Hove
point. In particular, in that case, () (which they call €,) (Ref.
15) takes on a U-independent value which depends, instead,
on t, t', and the chemical potential, u. Strictly speaking,
unless the parameters are fine-tuned to be parametrically
close to the van-Hove point, this physics does not survive the
small U limit, as we have shown; our method includes, al-
ready, all effects of arbitrary band-structure both at and away
from the Fermi surface.

VIII. DISCUSSION AND FURTHER DIRECTIONS

The results we have obtained are asymptotically exact in
the limit U/t— 0, so long as the conventional RG treatment
of the Fermi liquid is valid. In this limit, 7. tends rapidly to
zero, so the present results cannot be directly associated with
a mechanism of “high-temperature superconductivity.”
Moreover, it is clear that in most materials of interest, the
interactions are moderate to strong so the results cannot be
said to have any direct relevance to these materials. How-
ever, some aspects of the results seem worth emphasizing
which, when extrapolated to stronger coupling (where con-
trolled calculations are not possible), may give insight into
mechanisms of high-temperature superconductivity in real
materials.

Most importantly, we have shown that repulsive interac-
tions combined with lattice induced band-structure effects
generically do result in a superconducting ground state with
nontrivial transformation properties with respect to the point-
group symmetries of the crystal.

(1) Where band-structure effects are weak, i.e., where the
Fermi surface is nearly circular or spherical, the dominant
superconducting instability is, generically, a two or threefold
degenerate spin-triplet p wave. The driving force for this is
more or less the same as originally envisaged by Kohn and
Luttinger. However, here if we compare 7, with fixed small
U/t at different band fillings, the values of 7. found in this
regime are small compared to the (still small) values ob-
tained where the Fermi surface is more structured. Since in
all the cases we studied, the p-wave state is a twofold or
threefold degenerate representation of the point group, and
the d vector is also arbitrary, there are many different pos-
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sible forms of ordered state possible in principle. However,
general considerations suggest that the generic ground state
will either break time-reversal symmetry, forming a “topo-
logical” p+ip superconductor [which corresponds to the A
phase of Helium-3 and presumably is the state that is ob-
served in Sr,RuQ, (Ref. 47)], or the system will spontane-
ously break the relative “spin-orbit” symmetry as is the case
in the B phase of Helium-3. The perturbation which lifts the
degeneracy between these two possibilities is the spin-orbit
coupling of the normal state. Thus, an interesting extension
of our work would be to incorporate the effects of spin-orbit
coupling into the present analysis.

(2) On the square or tetragonal lattice with n near 1,
higher values of T, are obtained in a spin singlet d-wave
channel. This is encouragingly similar to what is found in the
cuprate high-temperature superconductors.

(3) On the triangular, hexagonal, cubic, FCC, and BCC
lattices, there is a range of electron concentrations for which
the dominant superconducting state is a two or threefold de-
generate singlet d-wave state. General arguments suggest
that, in this case, the superconducting state will be a time-
reversal symmetry breaking d+id superconducting state.
While we do not know of a currently well-characterized ma-
terial in which such a superconducting state has been ob-
served, the state is analogous to the “anyon superconducting
state” originally proposed by Laughlin.*84°

(4) On both the triangular and hexagonal lattices, when
there is more than one electron or hole pocket, the supercon-
ducting ground state is a nondegenerate spin-triplet state, in
which there is a full gap everywhere on the Fermi surface,
but the gap changes sign in going from one pocket to the
other. This situation gives the highest transition temperatures
(for fixed small U/t) that we have found. Moreover, the sign
alternation on different pieces of the Fermi surface (although
not the triplet character) is reminiscent of the proposed gap
function symmetry in the Fe pnictides.

Conversely, it is interesting to study what aspects of the
physics of real materials are inconsistent with the behavior of
the Hubbard model at small U/t. Taking the cuprate high-
temperature superconductors as an example, there are several
features worth mentioning: (5) in the cuprates, T, is not very
small in comparison to the microscopic energy scales. In-
deed, it reaches values that are, within a factor of 2 two or 3,
equal to the strong-coupling dimensional analysis estimate
T,~|1-n|J. In weak coupling, by contrast, T, is an emergent
energy which is exponentially smaller than any of the micro-
scopic energies in the problem. (However, T, does extrapo-
late to a value of order ¢ in the limit pU~ 1, assuming that
the extrapolation remains valid even where the justification
for the result fails.) (6) In the cuprates, there is a clear break-
down of Fermi-liquid theory at temperatures above T, ex-
cept possibly in the case of the most overdoped materials.
Moreover, there is good evidence’* of substantial super-
conducting phase fluctuations persisting well above T.. In
weak coupling, there is an emergent exponentially small
crossover scale, ()pp, at which perturbation theory breaks
down, and where a corresponding breakdown of Fermi-
liquid theory is possible. However, because T, is exponen-
tially smaller than py, Fermi-liquid behavior applies in a
wide range of temperatures above T,—Qp>T>T.. BCS
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mean-field theory should, likewise, provide an extremely ac-
curate description of the superconducting transition. In par-
ticular, the characteristic energy scale for phase
fluctuations,” Ty=(n,/2m*) &>~ Ep(&/a)P2, is exponen-
tially larger than T, precluding any substantial role for phase
fluctuations. (Here n,/2m™ and &, are, respectively, the zero-
temperature superfluid stiffness and coherence length, and a
is a lattice constant.)

(7) Direct measurements of the gap function in the
cuprates®®7 suggest a gap function with the simple form,
Aj=[cos(k,)-cos(k,)], at least in optimally doped materials.
In real space, this form implies the pair field extends only to
nearest-neighbor sites. In contrast, the weak-coupling gap
function is more structured in k space, as shown in Fig. 3.
This reflects the nonlocal character of the induced pairing
interactions and is, we believe, a generic feature of weak
coupling.

(8) In the cuprates, superconductivity emerges from a
doped antiferromagnetic insulator with well-defined spin-
wave modes similar to those expected for a spin-1/2 Heisen-
berg antiferromagnet with exchange coupling J <1 (and pos-
sibly some higher-order exchange coupling representing®®
the fact that U~ 8¢ is not all that large). Moreover, there is
direct evidence from neutron scattering that spin-wavelike
collective excitations of the system with the same character-
istic energy scale’®® J persist into the superconducting
phase at energy scales larger than the gap, even when there is
no corresponding broken symmetry. In weak coupling, an
antiferromagnetic insulating state occurs only when two pa-
rameters are exponentially fine tuned, |¢'/#/< & and |(n—1)|
<&, where d~exp[-a\t/U]. A metallic antiferromagnetic
state (as well as various other more exotic ordered phases)
could occur with the fine tuning of only a single parameter,
|(n—n,;,)| < &, in the vicinity of a van-Hove singularity. How-
ever, outside of this exponentially narrow range of concen-
trations, there is no identifiable local antiferromagnetic order
present at weak coupling. Indeed, without some form of ex-
ponential fine tuning, “competing orders” is not a concept
that occurs in the weak-coupling limit.

There are many interesting directions in which the present
work can be generalized. (1) Most straightforwardly, it can
apply to the Hubbard model on lattice systems with other
band structures than those considered here. (2) It is clearly
also possible to extend the same sort of analysis to situations
in which there are more complicated interactions than the
Hubbard U, such as multiband models, where there are both
intraband and interband interactions, and even single-band
models with longer-range interactions, such as a nearest-
neighbor repulsion, V. Technically, these interactions compli-
cate the analysis in the sense that a large number of other
diagrams, involving the interaction between electrons of like
spin, enter the perturbative analysis. Moreover, there are a
variety of ways that the asymptotic analysis can be carried
out, which will clearly lead to different physics. For instance,
with interactions U and V, the analysis can be carried out as
U/t—0 with U/V held fixed, or with U/V~ (U/t)* where y
is an appropriate positive exponent. (3) Perhaps the most
interesting extension involves the fine tuning discussed
above, which may permit the study of various strong-
coupling phenomena in the weak-coupling limit. In particu-
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lar, the physics of competing orders can be explored by per-
forming an asymptotic analysis in the limit U/t—0 and n
— 1y, in such a way that |n—n,,|exp[a\1/U]— constant. We
expect that this will permit us to reproduce much of the
interesting physics obtained in various FRG calculations but
in a more controlled fashion. In order to study the interplay
between superconductivity and a Mott insulating (antiferro-
magnetic) phase, an even more complex analysis must be
performed, taking the limit U/t—0, n—1, and t'/t—0
in such a_way that |n—1lexp[a\1/U]—constant and
|¢"/tlexp[ a1/ U]— another constant.
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APPENDIX: PERTURBATION THEORY IN THE COOPER
CHANNEL

The perturbative corrections to the two-particle interac-
tion vertices in the particle-particle channel are shown in
Figs. 15 and 16. In these diagrams two particles with mo-
mentum k and —k are scattered to states with momenta g and
—4. In the singlet channel, the incoming and outgoing pair of
particles have the opposite spin whereas in the triplet chan-
nel, we require them to have the same spin. We first consider
the diagrams in the singlet channel.

The first-order contribution to the interaction give in dia-
gram (L,) of Fig. 16 is simply

r(L,)=1. (A1)

The first-order term is independent of momentum and affects
only the trivial s-wave pairing states. Next consider the
higher-order terms. Before proceeding, we introduce as a no-
tational convenience the following definition:
s = [ deodp
P

Q Q2m) ™t (a2)

where p is a Matsubara frequency. The second-order ladder
diagram shown in (L,) of Fig. 16 is

dp l - 2f(6,;)}

0, Qm? 2€;

T(Ly) =2 Go(p)Go(-p) =
r P
= p log[A/Qy] + O(Qy),

(A3)

where Gy(p) is the noninteracting Matsubara Green’s func-
tion
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Golp) = ——. (Ad)

ipy— €
Had we been interested in the negative U Hubbard model,
I'(L,) and I'y(L,) are the most important quantities and give
rise to the BCS instability in the trivial s-wave channel. Note
that I'(L;) eliminates the dependence on the initial cutoff (),
as discussed in Sec. VL

For unconventional superconductivity that derives from
repulsive interactions, we will need to consider higher-order
diagrams. The next set of diagrams which are most important
correspond to the set of diagrams in (L,) of Fig. 16. Of these
the second-order vertex shown in diagram (2a) corresponds
to

T,(2a) = X, Go(p)Golk +q +p) = x(k+§) + O(Qy).
P

(A5)
Adding the two second-order terms, we find the expression
in Eq. (32)
The most divergent third-order term is given by diagram
(L) in Fig. 16 which is simply

I,(L,) = [E Golp) G- p)}2 = P logZ[AIQ]. (A6)
p

The next most important contribution comes from the dia-
grams in (L,) and (L;) with the thick solid line treated to
second order [i.e., using diagram (2a)]. These produce

T'9(L,) = X Golg +p+p")Go(p")Go(p)Go(-p)

!

o
= | 2 x(G+P)Go(p)Go(= p)]+ O(Qy) | + T(L,)
,, (A7)
with
ST (L) = 2 [X(G + 3ipo) = x(G + $.0)]Go(p) Go(- p)
,, (A8)

and the integrals in oI'y(L,) are carried out with {),=0, since
this quantity is nonsingular, and x(p;ip,) is the frequency-
dependent susceptibility. In practice, this quantity will be
evaluated numerically. Upon summing over the Matsubara
frequencies and making use of the identity

d’p f dp Up
0, @m)° Srvp(p) Jig=a,

dep(e), (A9)

where € is the energy relative to the Fermi surface, it follows
that

TOL,) = ¥I(§)p loglA/Qe] + ST(L,).  (A10)

The remaining third-order terms are nonsingular and are ob-
tained from diagram (L_.) again, but this time, keeping only
third order contributions to the thick solid line, which are
obtained from diagrams (3a)—(3g). While diagram (3a) is
simply
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T,(3a) = 2 Go(p)Go(k + g + p)Go(p")Golk + g+') = X*(k

pp

+q) + 0(Q) (A11)

diagrams (3b) and (3c) which are

I,(36) =T(3¢) = 2, Go(p)Golg +p' = p)Go(p')Golk + g

pp

+p') (A12)
are not expressible in simple closed form due to the internal
frequency integration (but it is possible to obtain these quan-
tities to arbitrary precision in a numerical computation). Dia-
gram (3d) contributes

I(3d) = X*(k-§), (A13)

which is also nonsingular, and lastly, the diagram of the form
given in diagram (3e) contributes

T,(3¢) =~ 2 Go(p)Go(p + k= q)Go(p")Golp' =k =p).

pp

(A14)

Next, we consider the fourth-order terms. Again, the most
singular contribution comes from the ladder shown in (Lg) of
Fig. 16

[(L,) = p* log [A/Q] + O(Qy). (A15)

The next most important contributions to this order comes
from the diagrams in (L;,L;) with the thick solid line treated
again only to second order, namely, from diagram (2a). Dia-
grams (L;) and (L;) have the following contributions to lead-
ing logarithmic order:

I'y(L,) = 92 10g2[A/ O] 7(3)(]2),

(L) = p* log’[A/Q1¥V(4), (A16)

where again, we have neglected the frequency dependence of
the susceptibility (which does not produce a singular contri-
bution), and have made use of the identity in Eq. (A9). Note
that I"y(L;,) depends only on the incoming momenta whereas
I',(L;) depends only on the outgoing momenta. In this way, it
is easy to see that diagram (L;) has no momentum depen-
dence whatsoever

T(L)) = p* log’[A/Q] %", (A17)

The next leading terms are obtained again from the diagrams
(L,,Ly), except now, we require that the thick black lines in
these diagrams take the nonsingular third-order vertex which

is given by I f) described above

') = p log[A/Qe] (@) + O(Q)  (A18)

and a similar expression holds for F§4)(L,~). The final term
which is singular at fourth order is given by the diagram
(L), where the thick solid line is approximated by the
second-order contribution in diagram (2a). This contributes
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I(Ly) = 2 x(k+ P)Go(p)Go= p)X(F + )
P

= Up log[A/Q]yV(k.9) + O(Qp).  (A19)
The remainders of terms that occur to fourth order do not
make a singular contribution to the vertex. We shall not dis-
cuss them here.

Now, we consider the triplet channel which has consider-
ably fewer diagrams. The lowest-order contribution comes
from the second-order diagram in (2b)

I(2b) == x(k-G) + O(£y). (A20)
The third order correction to the vertex comes from diagram
(3g) which is

PHYSICAL REVIEW B 81, 224505 (2010)

T,(3g) == 2 Go(p)Golk — g+ p)Go(p")Golk + p +p')

pp

== 2, Go(p)Golk = g+ p)x(k + p) + O(Q).
p

(A21)

Lastly, the fourth-order term comes from diagram (L,,), treat-
ing the thick solid line to O(U?), i.e., using diagram (2b).
This produces

(L, = plog[A/Q ]y (k.9 + O(Qp).  (A22)

This contribution, although higher order, has an important
conceptual importance: it has the correct logarithmic depen-
dence on ), to remove the dependence of the final expres-
sion for 7, on the initial cutoff.
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