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We examine the effect of classical magnetic fluctuations on the phase diagram of paramagnetically-limited
two-dimensional superconductors under a Zeeman magnetic field. We derive the free energy expansion in
powers of the superconducting order parameter and analyze the character of the normal-superconducting
transition. While the transition is of the second order for all temperatures in the absence of magnetic fluctua-
tions, we find that proximity to magnetism drives both the transition into the uniform state and that into the
modulated Fulde-Ferrell-Larkin-Ovchinnikov state to first order at intermediate temperatures. We compute the
thermodynamic signatures of the normal-superconducting transition along the upper critical field.

DOI: 10.1103/PhysRevB.81.224501 PACS number�s�: 74.25.Ha, 74.70.Tx, 74.25.Bt

I. INTRODUCTION

Since the discovery of the Meissner effect, there has been
ongoing study into the interplay of superconductivity with
magnetic fields. In type II superconductors, supercurrents,
which arise from the coupling of the Cooper-pair momenta
to the vector potential of the magnetic field, cause the system
to return to the normal �N� state at the orbital-limited upper
critical field Hc2,orb. If, however, the dominant coupling of
spin-singlet superconducting �SC� electrons to the field is via
the Zeeman effect, the transition occurs at the Pauli-limited
field HP where the condensation energy equals the gain in
energy due to spin polarization of the two electrons in a
Cooper pair. In addition, in pure systems in the vicinity of
this field, the superconducting state can exhibit spatial modu-
lation of the type predicted by Fulde and Ferrell, and Larkin
and Ovchinnikov �FFLO� at low temperature and high mag-
netic fields.1,2

No clear examples of FFLO superconductivity have been
found; however, early experiments3–6 on the layered,7 heavy-
fermion superconductor CeCoIn5, tentatively identified the
low-temperature, high-field �LTHF� superconducting phase
as a possible realization of the FFLO state. The heavy mass
and large value of the ratio between the estimated orbital
critical field and the Pauli-limiting field �2Hc2,orb /HP�3.5,8

suggest strong paramagnetic limiting. It was also proposed
that the unusual field dependence of the vortex lattice form
factor of CeCoIn5 is due to Pauli-limiting effects.9,10

Some experimental features of the transition into the
LTHF phase are not fit by the established theories of
Pauli limiting. For example, it has been established
experimentally3 that the transition from the N to SC state in
CeCoIn5 is first order into low-field state �T�TFFLO�, and
remains first order at low temperatures up to T0�TFFLO. This
is in sharp contrast to the conventional theory in two dimen-
sions �2D� that finds a second-order N-SC transition along
the entire critical field line Bc�T�,11,12 and motivates our cur-
rent study.

Under purely Zeeman field, B, when the electron spins
couple to the field but the orbital coupling to the vector po-
tential is irrelevant, at low temperatures the N-SC transition
is into an inhomogeneous state.1,2 In most cases the ampli-
tude modulated state, ��r�=�0 sin�Qx� �LO state�, is favored
over the purely phase-modulated FF state, ��r�=�0eiQx. In

the conventional analysis for isotropic, s-wave, supercon-
ductors the FFLO transition is second order in 2D and first
order in three dimensions �3D�.11,13–15 In superconductors
with nodes, such as d-wave CeCoIn5,7,16–18 the FFLO transi-
tion is second order in both 2D �Ref. 12� and 3D �Ref. 19�.
The transition to a combined vortex and LO state is also
expected to be second order.20

Theoretically, under several conditions the transition from
the normal to the SC state may become first order. For purely
Zeeman coupling this can happen �a� due to strong Fermi-
liquid enhancement of the magnetic susceptibility11,12 or �b�
due to impurity scattering in the resonant limit.21 In the pres-
ence of both paramagnetic and orbital effects it was argued
in Refs. 22 and 23 that the transition may also become first
order in an intermediate temperature range.

In this paper we show that in systems with enhanced mag-
netic susceptibility �as compared to the dimensionless Pauli
susceptibility for typical metals �P�10−6�, such as some
heavy fermion materials, first-order N-SC transitions under
purely Zeeman magnetic field may naturally emerge over a
part of the phase diagram. Importantly, the transition is first
order both for the uniform and for the FFLO state over part
of the temperature range. We consider the critical field Bc�T�
and discuss how the magnetic fluctuations affect the order
and thermodynamics of the transition.

The rationale for inclusion of such fluctuations is as fol-
lows. Experiments convincingly show that CeCoIn5 is in
proximity to a magnetically ordered state.5,24–35 In CeCoIn5,
the f-electron spins are not fully Kondo screened by the on-
set of the superconducting order7,25 and the entropy of the
remaining spin fluctuations is released at the superconduct-
ing transition.3,7 The specific heat jump upon entering the
superconducting state at Tc in zero field is �C /�Tc�4.5
�where � is the Sommerfeld coefficient�, more than three
times the s-wave BCS value of 1.43.7 Guided by this obser-
vation, Kos et al.36 considered a Ginzburg-Landau model of
competition between thermal �Gaussian� magnetic fluctua-
tions and superconductivity, and were able to explain the
large specific heat jump at Tc�B=0�.

We employ similar methods, with more microscopic con-
siderations, to include an applied magnetic field. To simplify
our analysis, we consider only the Zeeman coupling since it
is largely responsible for the salient features in the phase
diagram �e.g., the first-order transition�. We explain our re-
sults in context of experiment for CeCoIn5 and emphasize
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that our approach is generally applicable to Pauli-limited
systems with thermal magnetic fluctuations.

The rest of the paper is organized as follows. In Sec. II we
review the physics of superconductivity in the paramagnetic
limit and our methodology of determining the transition line.
In Sec. III we extend the formalism to account for the mag-
netic fluctuations and use this method to obtain the results
presented and discussed in Sec. IV. We conclude by placing
our results in the context of experiment and theory on Pauli-
limited superconducting systems.

II. SUPERCONDUCTIVITY IN THE PARAMAGNETIC
LIMIT

A. Model and approach

In the paramagnetic limit the second-order transition into
the uniform superconducting state, ��r�=�0, becomes first
order below a characteristic temperature TP�0.56Tc0, where
Tc0 is the transition temperature in zero field.37 At T=0 su-
perconductivity is destroyed when the energy of the polar-
ized normal state equals the superconducting condensation
energy �the Clogston38-Chandrasekhar39 limit�. This occurs
at the Pauli field HP=� / ��2��, where �=g�B /2 is the elec-
tron magnetic moment, �B is the Bohr magneton, and g is
the conduction electron g-factor. Superconductivity is de-
stroyed when the energy of the spin-polarized unpaired state
becomes lower than that of the singlet state due to the Zee-
man field. An alternative to this uniform superconductivity
is the pairing of the electrons with opposite spins and the
same energies, which now have momenta differing by
Q��B / ��vF�, where vF is the Fermi velocity. The finite
center-of-mass momentum of the Cooper pairs leads to a
spatial modulation of the order parameter1,2 and allows su-
perconductivity to survive at fields above the Clogston-
Chandrasekhar limit.

The exact structure of the modulated state in s-wave sys-
tems is still not well established. Generally the amplitude-
modulated LO state is lower in energy than the FF state.13 In
the absence of spin-orbit coupling, the direction of Q in real
space can be chosen arbitrarily, and a superposition of plane-
wave modulations along different directions may yield yet
lower energy.40,41 In systems with unconventional, such as
d-wave,12,19,42,43 gap symmetry the modulation is preferen-
tially along either the nodal or antinodal orientation, depend-
ing on both the temperature and the purity of the sample,12,21

with the LO state always more advantageous.
Analysis of the FFLO states is often carried out within the

Ginzburg-Landau theory, expanding the free energy of the
superconducting state in both the amplitude and the gradient
of the order parameter.13 Such an expansion is justified in the
immediate vicinity of TP but its region of validity is very
narrow. The modulation wave vector increases rapidly along
Tc�B��TP and becomes comparable to the inverse of the SC
coherence length, �0

−1= ��vF /2	Tc0�−1, rendering the gradi-
ent expansion invalid. Previously we reported the results of a
brief analysis of the N-SC transition for a superconductor
with magnetic fluctuations under Zeeman field using such a
gradient expansion.44 The results were suggestive of the on-
set of the first-order transition near TP. The limitations of the

gradient expansion prevented us from reaching detailed con-
clusions and motivated our present work. Below we expand
the free energy only in powers of the order parameter and
retain the full wave-vector dependence of the expansion co-
efficients, thus removing the deficiencies of the gradient ex-
pansion and presenting a theory valid down to low tempera-
tures. This allows us to analyze the details of the phase
diagram not accessible with the gradient expansion.

We begin with the mean-field Hamiltonian

H = 	
k,


�k,
ck,

† ck,
 +

1


�
	q

�q
2

− 	
q,k

Y�k̂���qck+q,+
† c−k,−

† + H.c.� , �1�

where 
=
 denotes the orientation of the electron with the
spin along/opposite to the field direction, �k is the band en-
ergy measured with respect to the chemical potential, and
�k,
=�k+
�B. In Eq. �1�, 
�
 is the strength of the pairing

interaction, Y�k̂� is a normalized basis function that trans-
forms according to an irreducible representation of the crys-

tal point group and describes the gap symmetry, and k̂ de-
notes position on the Fermi surface �FS�.

We assume, for simplicity, a separable pairing interaction,

so that the spin-singlet order parameter is ��k ,q�=Y�k̂��q,
with the amplitude �q self-consistently determined from

�q = − 
�
	
k

Y�k̂��ck+q,+c−k,−� , �2�

where �¯ � indicates thermal average. Uniform supercon-
ducting states have the single nonvanishing Fourier compo-
nent with q=0 while modulated states correspond to one or
more components with q�0. Since Eq. �2� has to minimize
the free energy, it determines, at the mean-field level, the
Landau expansion of the free energy density FL in powers of
�q,

FL = 	

qi�

�̃qi

�qi


2 + 	

qi�

�̃q1,. . .,q4
�q1

�q2

� �q3
�q4

� �q1+q3,q2+q4

+ 	

qi�

�̃q1,. . .,q6
�q1

�q2

� �q3
�q4

� �q5
�q6

� �q1+q3+q5,q2+q4+q6
.

�3�

The coefficients of this expansion are combinations of the
normal-state Green’s functions as described in Appendix A.
The summation over 
qi� in Eq. �3� includes all possible
combinations of the allowed Fourier components of ��r�:
qi=0 for a uniform gap amplitude, single mode qi=Q for the
FF modulation, and qi� 
Q ,−Q� for the LO phase. In the
following we restrict ourselves to the comparison of the free
energies of these three phases, finding the one most energeti-
cally favorable and the corresponding wave vector Q.

Based on the observation of the quasi-two-dimensional
Fermi surface in the 115 family,45–48 we use a model of a
2D circular Fermi surface. We use the azimuthal angle, �,
to parameterize the position on the Fermi surface, and

we choose Y�k̂��Y���=1 and Y���=�2cos 2� for s- and
d-wave gaps, respectively.

BEAIRD, VORONTSOV, AND VEKHTER PHYSICAL REVIEW B 81, 224501 �2010�

224501-2



We determine the phase transition line Bc�T� by finding, at
a given temperature, T, the highest Bc of the three phases we
compare. In each phase we find Bc�T�=max�Bc�T ,q�� by un-
restricted maximization with respect to the modulation wave
vector. We introduce the dimensionless energy density,
f =FL /NFTc0

2 , where NF is the 2D normal-state density of
states at the Fermi level. We also introduce the dimensionless
amplitude �0=�0 /Tc0, where �0 is the SC gap amplitude and
Tc0 is the mean-field transition temperature at B=0 in the
absence of magnetic fluctuations. We set kB=�=1 through-
out the paper. The reduced temperature and magnetic field
are given by t=T /Tc0 and b=�B / �2	Tc0�, respectively.

B. Uniform superconducting state

For the uniform state, �q=�0�q,0, we find

fu�T,B� = �u
�0
2 + �u
�0
4 + �u
�0
6 �4�

with the coefficients determined from Eqs. �A8�–�A10�,

�u = ln�t� + Re���1

2
+ i

b

t
�� − ��1

2
� , �5a�

�u = −
1

8

�
Y���
4�FS

�2	t�2 Re���2��1

2
+ i

b

t
�� , �5b�

�u =
1

192

�
Y���
6�FS

�2	t�4 Re���4��1

2
+ i

b

t
�� . �5c�

Here ����n�� is the digamma �nth order polygamma� func-
tion and �¯ �FS=�d� / �2	�. For the s- and d-wave symme-
tries of the gap, Eq. �A12�, our coefficients agree with those
in Refs. 13 and 19.

C. FF state

For the spatially-inhomogeneous superconducting state,
the coefficients in Eq. �3�, depend on the direction of modu-
lation. Since the modulation wave vector Q��0

−1�kF, for
two particles at locations � and 	+� on the Fermi surface,
there is an energy mismatch vF ·Q=vFQ cos��−�Q�, where
�Q is the modulation direction with respect to the crystalline
a axis. This energy mismatch enters in Eq. �A8� with qi=Q.

Recall that the polygamma functions in Eq. �5� originate
from the summation over Matsubara frequencies and that
their argument is determined by the energy mismatch of the
particles in the Green’s functions in Eqs. �A8�–�A10�. Con-
sequently, the coefficients of the free energy expansion in the
FF state are given by the same polygamma functions as for
the uniform case, Eq. �5� but with the arguments reflecting
the energy difference �B+vF ·Q. Hence in the expansion
fFF�T ,B�=�FF
�0
2+�FF
�0
4+�FF
�0
6, we find

�FF = ln�t� − ��1

2
� + Re�
Y���
2��1

2
+ i

b + q̄

t
��

FS
, �6�

where q̄=q cos��−�q� and q=�0Q /2. Similarly, �FF and �FF
are given by expressions identical to Eqs. �5b� and �5c� under
the replacement b→b+ q̄ and averaging both the digamma

functions and the basis functions Y��� together over the
Fermi surface.

It follows that for any anisotropic superconductor the di-
rection of the modulation and the shape of the gap cannot be
separated. For a two-dimensional d-wave superconductor
that we consider, the modulation along the nodal/antinodal
direction is preferred in a pure material above/below
T�0.06Tc0,12,40,49 although as the impurity scattering is in-
creased modulation along a node becomes favorable even for
T�0.06Tc0.21 Therefore, below we focus on the modulation
along the gap nodes.

D. LO state

For the LO state, the quadratic component in Eq. �3� in-
cludes two terms identical to Eq. �6� but summed over
q= 
Q with �
Q=�0 /2. Both terms for LO are identical
when averaged over the Fermi surface, hence �LO=�FF /2.
Thus the second-order transition line, Bc, determined from
�=0, is identical for both the FF and LO phases. The relative
stability of the FF and LO phases is determined by compar-
ing the quartic coefficients �FF and �LO at the transition with
the smaller of the two corresponding to the thermodynami-
cally stable SC state because fSC− fN=−�2 / �2��.

The quartic coefficient, �LO, is obtained by summing the
six terms in Eq. �A9� with qi� 
Q ,−Q�, subject to the con-
straint �q1+q3,q2+q4

. This yields

�LO = t Re�	
n=0

�


Y���
4
�̄n,b�3�̄n,b

2 − q̄2�
128	2�q̄2 + �̄n,b

2 �3�
FS

, �7�

where �̄n,b= t�n+ 1
2 �+ ib. Twenty distinct terms contribute to

the sixth-order Landau coefficient which becomes

�LO = − t Re�	
n=0

�


Y���
6

�
�̄n,b�q̄6 − 33�̄n,b

2 q̄4 + 35�̄n,b
4 q̄2 + 5�̄n,b

6 �
2048	4�q̄2 + �̄n,b

2 �5�9q̄2 + �̄n,b
2 � �

FS

. �8�

We can obtain the gradient expansion of the free energy
by expanding Eqs. �6�–�8� in powers of q with the corre-
sponding Y���. The resulting Ginzburg-Landau expansion
coefficients are identical to those obtained for s- and d-wave
SC in Refs. 13 and 19, respectively. Below, however, we
retain the full q dependence of the expansion coefficients to
examine the transition line at low T where Q�� 0

−1 and the
gradient expansions13,19,44 fail.

E. Determination of Bc(T)

For each phase, with the free energy density written as

f = ��t,b,q�
�0
2 + ��t,b,q�
�0
4 + ��t,b,q�
�0
6, �9�

we determine the critical field Bc�T� and the optimal modu-
lating wave vector q0. We allow for possible second- and
first-order transitions, and compare the results to determine
the order of the physical transition.

The second-order transition field at fixed t is the maximal
value of bc �with respect to q� for which ��t ,bc ,q�=0 and

PAULI-LIMITED SUPERCONDUCTIVITY WITH… PHYSICAL REVIEW B 81, 224501 �2010�

224501-3



��t ,bc ,q0��0. The corresponding optimal q0 determines
whether the transition is into a uniform �q0=0� or modulated
state. In the vicinity of the transition line,


�0
2 = −
��t,bc,q0�
2��t,bc,q0�

�
���tc − t�

2��tc,bc,q0�
, �10�

where ��=���t ,bc ,q0� /�t 
t=tc
. With this value we can com-

pute the free energy difference between the normal and the
superconducting states and therefore determine the thermo-
dynamic properties such as the specific heat jump at the tran-
sition, see below.

In the region where ��0, the first-order transition occurs
once the minimum in the free energy shifts discontinuously
to �0�0 before the quadratic coefficient � changes sign.50

This happens along the line defined by

�2�t,bc,q� − 4��t,bc,q���t,bc,q� = 0, �11�

where the new minimum first appears at


�0
2 = −
�

2�
. �12�

We locate the first-order transition at a given t by unre-
stricted maximization, with respect to q, of the field bc that
satisfies Eq. �11�.

At each temperature, we locate the maximal field
bc�q�=bc�q0� for which the coefficient ��t ,bc ,q0�=0. If we
find ��t ,bc ,q0��0, the transition is second order. If
��t ,bc ,q0��0, we maximize bc for Eq. �11�, checking that �
remains negative and that the free energy remains bounded
from below. The latter condition requires ��t ,bc ,q0��0,
which is satisfied throughout the region of the first-order
transition if the full q dependence of � is kept, see Eq. �8�.
This in contrast to this coefficient’s changing sign in the
gradient expansion, see Fig. 6 below. The first- and second-
order transition lines meet at a critical point t�, where
��t� ,bc ,q0�=0. For d-wave gap, we compare the critical
fields for nodal and antinodal orientations of the modulation
wave vector Q and verify that modulation along gap nodes is
preferred above T�0.06Tc0.

As shown in Fig. 1 for LO modulation, the quartic coef-
ficient remains positive and the transition is second order on
both sides of tP. For comparison, we also plot the results
obtained from the expansion of Eq. �9� in small q=�0Q /2,

f = ��0 + �2q2 + �4q4�
�0
2 + ��0 + �2q2�
�0
4 + �0
�0
6,

where the coefficients are found by expanding Eqs. �A8� and
�A9�, and only even powers of q appear since the system is
isotropic. Since each subsequent term in the expansion con-
tributes an extra qG


0 in the Matsubara
summation of Eqs. �A8� and �A9�, we have �n��n−2

�Re���n�� 1
2 + i b

t �� for n�2. Consequently �2 and �0 change
sign at exactly the same temperature, tP=TP /Tc0, and the
modulated state with q0

2=−�2 / �2�4� emerges at lower T via a
second-order transition described by

f = ��0 −
�2

2

4�4
�
�0
2 + ��0 −

�2�2

2�4
�
�0
4 + �0
�0
6 �13�

with the renormalized quartic term positive. The results ob-
tained from an examination of Eq. �13� are identical to those
discussed in Refs. 13 and 19. As is seen from Fig. 1, below
tP the transition is into modulated state with the wave vector
that reaches values of q0�0.2�0

−1 and higher. The failure of
the gradient expansion is manifested in the significant dis-
crepancy between the values for the quartic coefficient at the
optimal wave vector within the gradient expansion and in the
full evaluation, shown in Fig. 1. Hereafter, we rely on unre-
stricted maximization of bc�t� with respect to q to determine
the critical field.

III. MAGNETIC FLUCTUATIONS

A. Magnetic fluctuations

If we are close to a magnetically ordered state, soft mag-
netic modes exist in the system. In the continuum limit the
fluctuations of the magnetization field M�r� are described by
the Gaussian free energy,

FM�M� =
1

2
� dr�−1M�r�2. �14�

Here we have ignored the momentum dependence of ��q�,
assuming the that the momenta relevant for superconductiv-
ity are Q��0

−1�	 /a �where a is the lattice spacing�. We do
not discuss here the role of the �possibly singular� antiferro-
magnetic �AFM� fluctuations in mediating the superconduct-
ing pairing: this role can only be addressed within the frame-
work of specific microscopic theories.51–53 Our task is to
consider the competition of superconductivity and the long-
wavelength fluctuations of the magnetization, whether uni-
form or staggered. Although the susceptibility is enhanced

0
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FIG. 1. �Color online� Optimal wave vector q0�bc�T�� �solid�
and quartic coefficient ��Bc�T�� �dot dashed� obtained by unre-
stricted maximization of bc�t� for LO state. Quartic coefficient for
small-q expansion �dashed� is also shown. Upper/lower panels are
for s- and d-wave �q along node� gaps.
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����P�, the system is not close to ferromagnetic order
���1�, hence we do not distinguish between B and the ap-
plied magnetic field H for the rest of the paper. In the same
spirit, we ignore M ·H in the magnetic free energy since its
contribution to the averaged free energy is a factor of �
smaller than the corrections we consider.

In Ref. 36 the susceptibility was taken to be temperature-
dependent ��T�=�0Tsf / �T+Tsf�, in agreement with experi-
ment,25 where Tsf is a characteristic energy scale for the low-
energy spin fluctuations. While we make use of this expres-
sion to make contact with Ref. 36, our main results are quali-
tatively the same for a temperature-independent � of the
same magnitude. We also ignore the field dependence of �.
Finally, we do not account for the quantum fluctuations of M
and consider only thermal fluctuations of the magnetization.

Recall that our goal is to investigate the effects of long-
wavelength magnetic fluctuations on the N-SC transition. We
include the competition between magnetism and supercon-
ducting orders via the lowest order term allowed by symme-
try in the free energy expansion,

FSC,M��,M� =
�

2
� dr
��r�
2M�r�2, �15�

where the coupling constant ��0 makes coexistence of the
two orders unfavorable. In a simple system it would be pos-
sible to determine � from microscopics, by expanding
B=H+4	M in each Green’s function in the powers of the
fluctuating magnetization and introducing the correlator
�M�r�M�r��� that is proportional to the susceptibility, in
analogy with Ref. 54. Such an expansion produces an M2
�
2
term. In a complex system with f-electrons, we cannot deter-
mine the coefficient of this term microscopically, and we use
Eq. �15� with a phenomenological parameter � to explore the
salient features of the model. Our consistency checks on the
choice of � are the magnitudes of the jump in �0 and of
�M /M across the first-order transition line. We find maximal
�0�Tc��0.3��0� and �M /M �1–5 % everywhere along the
first-order transition line. These values are moderate, hence
our choice of � is physically reasonable.

To verify the ubiquity of our results, we examined the
coupling of the SC order parameter to higher-order terms in
M�r�2 and its gradients, e.g., 
��r�
2
�M�r�
2 and, within the
small-q approximation, to gradients of the order parameter
itself, e.g., 
���r� ·M�r�
2. We checked that, while these
various couplings renormalize the transition temperature,
they do not introduce new features into the phase diagram.

To derive the effective theory for the superconducting or-
der we integrate out the magnetic fluctuations from the par-
tition function,

Z = exp�− �FL + FSC,M + FM�/T� � e−FL/TZSC,M

where FL=�dDrFL. We obtain the total free energy

F̄ = FL − T ln ZSC,M , �16�

where the magnetic contribution is

ZSC,M =� D�M�r��exp�−
1

T
�FSC,M + FM�� , �17�

and D�M�r�� indicates integration over all possible configu-
rations of magnetization. The integral is Gaussian in M,
hence we compute it analytically and expand in powers of

�
2 to obtain the corrections due to magnetic fluctuations to
the expansion coefficients in FL. Below we address these
corrections in each of the three phases we consider: uniform,
FF, and LO.

B. Uniform superconducting state

Integrating out the fluctuating magnetization for a uni-
form order parameter, �0, is straightforward. We work with
the Fourier components of the magnetization, Mk, and re-
strict the sum

FSC,M + FM = 	

k
�kc

1

2
��−1 + �
�0
2�
Mk
2, �18�

to one half of k space since Mk=M−k
� for real M�r�. There-

fore, from Eq. �17� we have, after Gaussian integration over
both real and imaginary parts of Mk,

ZSC,M = �

k
�kc

� 2	�T

1 + ��
�0
2�
d/2

, �19�

where now the product is taken over all k up to the cutoff of
the order of the lattice spacing 
kc
=	 / l and d is the dimen-
sionality of magnetization vector M.

Neutron-scattering55 measurement of the dynamic spin
susceptibility in CeCoIn5 shows evidence of spin fluctuations
and light Cd doping29 induces AFM order at the wave-vector
QAFM= �0.5,0.5,0.5�.32 Sister compound CeRhIn5 exhibits
AFM order at QAFM= �0.5,0.5,0.297�,56 which is stable
under pressure,57,58 before SC preempts AFM order at
P�2 GPa.59 Furthermore, the pressure dependence of Tc
and TN for CeRhIn5 and Cd-doped CeCoIn5 is nearly
identical29 suggesting that the SC and magnetic orders in
both are closely related. Hence, we conclude that CeCoIn5 is
in proximity to 3D magnetic ordering, and we take d=3 for
the purposes of this paper.

The corresponding contribution to the free energy is
FM��0�=−T ln ZSC,M. Subtracting the average magnetic

contribution to the normal-state energy, F̄M��0=0� we find
an additive contribution to the superconducting free energy
density,

Funi,M =
F̄uni,M��0� − F̄uni,M�0�

LD =
3

2

T

LD 	
k�kc

ln�1 + ��
�0
2�

=
3

2

T

lD ln�1 + ��
�0
2� , �20�

where LD is the volume. The last line of Eq. �20� follows
from 	ka�a�L / l�D where a does not depend on k. Expand-
ing this contribution in powers of 
�0
 for our 2D supercon-
ductor �D=2�, we find the renormalized expansion coeffi-
cients of f =F / �NFTc0

2 �, Eq. �9�,
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�̄u = �u +
3

2
t

Tc0

NFl2���T� , �21a�

�̄u = �u −
3

4
t

Tc0
3

NFl2�2�2�T� , �21b�

�̄u = �u +
1

2
t

Tc0
5

NFl2�3�3�T� , �21c�

where �u, �u, and �u are given in Eqs. �5a�–�5c�.
Since in the FF state, ��x�=�0eiQx, only the phase of the

order parameter is modulated, the coupling between the mag-
netization and the superconducting order, Eq. �15�, has ex-
actly the same form as in the uniform state. Hence the renor-
malized expansion coefficients are obtained from Eq. �21� by
a direct substitution of �FF, �FF, and �FF for �u, �u, and �u,
respectively.

C. Modulated LO state

In the LO state, in addition to the order parameter ��x�
=�0 cos�Qx� competing with the average magnetization, the
amplitude modulation couples the magnetic fluctuations at
wave vectors differing by 2Q. Therefore, the magnetic con-
tribution to the free energy is

FSC,M + FM = 	

k
�kc

�1

2
��−1 +

1

2
�
�0
2�
Mk
2

−
1

8
�
�0
2Mk · �Mk+2Q

� + Mk−2Q
� �� . �22�

After integrating out the fluctuations, the contribution to the
superconducting free energy density relative to the normal
state becomes

F̄LO,M =
3

2

T

LD 	
k�kc

�ln�1 +
1

2
��
�0
2�

+ ln�1 −
1

8
�2�2
�0
4 +

1

8
�3�3
�0
6�� . �23�

The first term differs from its counterpart in Eq. �20� by the
factor of 1/2, arising from the spatial average of cos2�Qx�.
The second term arises from the mode-mode coupling terms
in Eq. �22� and is derived in Appendix B. Under expansion in
�0, it only contributes to the fourth- and sixth-order terms in
the free energy, and we obtain

�̄LO = �LO +
3

4
t

Tc0

NFl2���T� , �24a�

�̄LO = �LO −
3

8
t

Tc0
3

NFl2�2�2�T� , �24b�

�̄LO = �LO +
1

4
t

Tc0
5

NFl2�3�3�T� , �24c�

where �LO, �LO, and �LO are given in Sec. II D.

Comparing Eqs. �21� and �24�, we see that the free energy
expansion depends on � and � only through their product
��. Thus, for subsequent analysis we define a dimensionless
coupling parameter,

�̃ =
3

2

Tc0

NFl2� =
3

2
Tc0TF� , �25�

where the characteristic temperature TF= �NFl2�−1 is on the
order of the Fermi temperature in the system. We also define
a dimensionless parameter based on the experimental fit of
��T�=�0Tsf / �T+Tsf�,

�̃ = �0
Tsf

Tc0
. �26�

With these parameters, the renormalized quadratic coeffi-
cients in Eqs. �21a� and �24a� become simpler, e.g.,

�̄u = �u + �̃�̃
t

t + tsf
. �27�

The renormalization of all other Landau coefficients is deter-
mined by the product �̃�̃, and, in simplifying the fourth- and
sixth-order terms in Eqs. �21� and �24�, we introduce the
parameter tF=TF /Tc0.

We note that the dimensionality of the magnetization vec-
tor M enters the Landau coefficients as a prefactor of the
coupling parameter �. Throughout this paper, we take d=3.
Using a different value for d simply decreases the magnetic
fluctuation contributions in Eqs. �21� and �24� by a factor of
d /3. For example, taking d=2 only requires that we use
3� /2 to obtain the same results �e.g., Tc� as for � and d=3.
Hence, we proceed with our choice d=3 without any loss of
generality.

D. Choice of energy scales and parameters

The exchange of entropy between the magnetic fluctua-
tions and superconductivity reduce the zero-field transition
temperature from the unrenormalized Tc0 to the experimen-
tally observed Tc���0� as determined from the instability
condition,

0 = �̄u = ln� Tc

Tc0
� +

3

2
TcTF�� . �28�

The extra entropy is released in a specific heat jump that
exceeds the BCS value,

�C/Tc���
NFTc0

2 =�−
�2f

�T2�
Tc���

=� ��̄�����2

2�̄���
�

Tc���
, �29�

where f��� is the dimensionless free energy for the given
coupling, �, and �̄�=��̄�T� /�T. Without magnetic fluctua-
tions, BCS mean-field theory predicts for s-wave gap
�C /CN=12 /7��3��1.43 and for d-wave gap symmetry
�C /CN=8 /7��3��0.95 at Tc0. Here, CN is the normal-state
specific heat and ��3��1.202 is the Riemann zeta function.
Measuring the jump relative to the s-wave value, we find for
B=0,
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�C/Tc���
1.43CN/Tc0

=� �1 +
3

2
TcTF��� + Tc����2

�
Y���
4� −
3�2	�2

7��3�
Tc

3TF�2�2�
Tc

, �30�

where Tc=Tc��� and ��=���T� /�T. Using Eq. �28� to elimi-
nate � we find

�C/Tc

1.43CN/Tc0
=

�1 +
�� + Tc���

�
ln�Tc0

Tc
��2

�
Y���
4� −
4�2	�2

21��3�
Tc

TF
ln2�Tc0

Tc
� �31�

in zero field. We discuss the field dependence of �C /Tc in
Sec. IV B 1.

From the experimentally measured behavior of the sus-
ceptibility, specific heat jump �C /Tc�B=0�, and Tc one can
estimate Tc0 provided a reasonable guess about the value of
TF can be made. For our purposes, we take Tc=2.3 K,
TF=40 K �the Kondo coherence temperature for CeCoIn5
�Ref. 60��, and the dimensionless �0�10−4 �see Ref. 25�. We
follow the example of Ref. 36 and set Tsf =1.5 K. With this
choice Tsf �Tc and we examine the effects of � which varies
substantially with temperature below Tc. Experiment, how-
ever, suggests a weaker temperature dependence of ��T�
with Tsf �3.5Tc.

25 Therefore, we verify that our general re-
sults are independent of the details of � by comparing
this case with the analysis for constant susceptibility. For
our chosen energy scales, we solve Eq. �31� with
�C /Tc=3�C /Tc0. This gives for s-wave Tc0=6.20 K and
�̃�̃�1.6 and for d-wave Tc0=9.27 K and �̃�̃�2.3.

IV. DISCUSSION AND RESULTS

Using the formalism outlined above, we are now in the
position to investigate the changes appearing in the transition
lines of the superconductor coupled to the magnetic fluctua-
tions. In the following we set TF, Tsf, and Tc0 as described at
the end of the previous section. We adjust the coupling � to
the magnetic fluctuations as well as the temperature depen-
dence of the magnetic susceptibility. We first address the
nature of the transition along the Bc�T� line and then consider
the thermodynamic signatures of these transitions.

A. Normal to superconducting transition in a magnetic field

Quite generally coupling to magnetic fluctuations sup-
presses the transition temperature since, as is clear from Eq.
�15�, the finite thermal average of M2�r� makes the appear-
ance of superconductivity energetically costly. This is also
evident from Eqs. �21a� and �24a�, which show positive ad-
ditive contribution to the quadratic coefficients in the Landau
expansion. In the absence of the field, when the coefficient
��T�=−ln T /Tc0, it follows from Eq. �28� that the transition
temperature Tc satisfies

� Tc

Tc0
�

B=0
= e−�3/2�TcTF���Tc� = exp�−

�̃�̃Tc

Tc + Tsf
� , �32�

where in the last step we explicitly invoked the temperature
dependence of the susceptibility. For small �̃�̃ the linearized

form of this equation coincides with that used in Ref. 36.
At the same time the results for the quartic coefficient,

Eqs. �21b� and �24b�, show that it is renormalized downward
by the magnetic fluctuations. Since the sign of this term con-
trols whether the transition is of the second or first order, it
seems possible that the order of the transition may change as
the strength of the magnetic fluctuations increases.

Figures 2 and 3 show that this is indeed the case: coupling
to magnetic fluctuations opens a region of first-order transi-
tion from the normal to both uniform and the modulated
superconducting state. This finding is a major conclusion of
our work and qualitatively fits with the behavior of CeCoIn5
where the transition becomes first order below T1�1 K,8

while the putative FFLO-type phase does not occur until a
lower temperature.3

To understand this behavior recall that in the absence of
fluctuations13,19,37 the quartic term of the Ginzburg-Landau
expansion for the uniform superconducting phase changes
sign, �u�TP�=0 exactly at the point along the Bc�T� line �at
temperature TP� where the modulated phase, reached via a
second-order transition, �LO�TP�=0, becomes allowed. Cou-
pling to the fluctuations increases �LO and lowers �u ensur-

0.0 0.25 0.5 0.75 1.0
T�Tc0

0.8

Η� Χ�
0.0

0.0

0.1

Μ B

2 Π Tc0

0.2

0.0 0.25 0.5 0.75 1.0
T�Tc0

0.8

Η� Χ�
0.0

0.0

0.1

Μ B

2 Π Tc0

0.2

FIG. 2. �Color online� The normal-to-superconducting transition
in s-wave �upper� and d-wave �lower� superconductors under a Zee-
man field. Modulation is along gap node for d-wave. Magnetic
fluctuations, �̃, modify the Bc2 transition, showing four distinct re-
gions �for increasing T�: second order into modulated, first order
into modulated, first order into uniform, and second order into uni-
form states.
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ing that the first-order transition in the uniform state occurs
at higher temperature than that where the modulated phase
can form.

As is seen from Figs. 2 and 3, the region of the first-order
transitions widens as the fluctuations become softer �� in-
creases� or compete more strongly �� increases� with super-
conductivity. There we define the temperatures tP

� and tLO
�

where the second-order transitions into the uniform and LO
modulated superconducting states, respectively, become first
order.

Since we use the expansion in powers of �0 we can only
estimate the location of the first-order transition line away
from the critical points at which the transition becomes sec-
ond order. However, since the jump in �0 across the first-
order transition is modest �e.g., for s-wave gap symmetry,
�0�tc��0.3�0�0� with �0�0�=	e−�E �1.76� this estimate is
quite reliable. We denote by tLO our estimate of the tempera-
ture along the bc�t� where the first-order transition lines into
the uniform and the LO phases meet. For t� tLO the transi-
tion �first or second order� is into the amplitude-modulated
phase while for t� tLO it is into a uniform phase. In the
absence of fluctuations, of course, tP

� = tLO
� = tLO= tP.

We find that for s-wave order the region of the first-order
transition, for the same values of the coupling and magnetic
susceptibility, is wider. This can be qualitatively explained
by examining the quartic Landau coefficient for both sym-
metries in the absence of fluctuations, shown in Fig. 4. In the
vicinity of TP, the coefficient �̃ is numerically smaller for an
s-wave order parameter than for d-wave, both on the uniform
and the modulated �with the wave vector Q yielding maximal
Bc for each symmetry� side of the transition. Hence it is
easier to drive an s-wave system to first-order transition.

Note that for d-wave SC we find that the modulation of
the order parameter along the gap nodes is stabilized even
below T=0.06Tc0 where, in the absence of fluctuations, the
antinodal direction would be more advantageous.12,42,49 The

antinodal modulation still gives a lower free energy at very
low temperatures, below a threshold that depends on the pa-
rameter �̃�̃, but that occurs far from the first-order transition
range that is our focus here, and therefore for the rest of this
paper, we discuss only d-wave SC where Q is oriented along
a gap nodes.

The key finding of the region of the first-order transition
does not depend on the exact temperature dependence of
��T�. For comparison, we also considered the constant sus-
ceptibility �1���Tc� so that, for a given coupling strength �̃,
we obtain the same Tc. In Fig. 5, we compare the critical
field and order of transition for ��T� and constant �1. Since
�̃�1��̃��T� for all T�Tc, superconductivity is suppressed
less and Bc�T� is higher for constant susceptibility. However,
in both cases the product �̃��1 and the magnetic fluctua-
tions have a larger effect for constant susceptibility than for
��T� on the fourth Landau coefficient where �̃� enters qua-
dratically. Thus, the N-SC transition is first order over a
wider temperature range for constant susceptibility. While
both the exact temperature range of first-order transition and
the degree of Bc�T� suppression depends on the temperature
dependence of �, the presence of these effects is independent
of the details of the susceptibility. Furthermore, the thermo-
dynamics of the transition are similar for both �1 and ��T�
where the only significant difference is the low-T behavior of
the specific heat jump for d-wave as discussed below.

We note that our results agree with those obtained from a
small-q expansion of the free energy functional.44 In Fig. 6
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FIG. 3. �Color online� Transition lines for s-wave and d-wave
with nodally oriented Q. Upper curves are in the absence of fluc-
tuations and lower curves are for �̃�̃=0.5.
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FIG. 4. �Color online� Quartic Landau coefficient evaluated
along Bc�T� for s-wave and d-wave symmetries with LO modula-
tion for t� tP and uniform state for t� tP.
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FIG. 5. �Color online� S-wave bc�t� for both constant ��t� and
�1���tc� for tc=0.76. Upper and lower curves are for �1 and ��t�,
respectively. Since �̃�1��̃��t� at t� tc, the critical field is sup-
pressed less for �1. As �̃��1 for both cases, the region of first-
order transitions is larger for �1.

BEAIRD, VORONTSOV, AND VEKHTER PHYSICAL REVIEW B 81, 224501 �2010�

224501-8



we compare the results obtained from the fully q-dependent
Landau functional and the small-q approximation by plotting
the optimal wave vectors found via each method. Each
model predicts first- and second-order transitions into both
the uniform and modulated SC states. Hence, our current
model supports our preliminary results44 while allowing us to
examine the upper critical field beyond the limitations of a
small-q approximation.

Our main conclusion so far is therefore that coupling to
thermal magnetic fluctuations drives the transition from the
normal to superconducting state first order in the vicinity of
the onset of the modulated state. Importantly, the transition is
first order on both sides of this point, i.e., we find first-order
transitions both in the uniform and into the LO state. At
lower temperatures the transition to the inhomogeneous su-
perconducting state is second order. This is natural within
our picture since the thermal fluctuations “die out” as the
temperature is lowered. Within the present framework we
cannot determine whether, should the quantum dynamics of
the magnetization be accounted for, the transition would re-
main first order to the lowest temperatures. However, since
tLO
� �0.5tc for d-wave order parameter �Figs. 2 and 3�, it

appears likely that the LO transition becomes second order
again at high enough temperatures so that the quantum fluc-
tuations are unlikely to have a major effect. We now inves-
tigate the thermodynamic signatures of these transitions.

B. Thermodynamics at N-SC transition

1. Specific heat jump at the second-order transition

The specific heat jump, measured relative to the BCS
s-wave value, at the second-order N-SC transition along
Bc�T� is given by

�C/Tc���
1.43C/Tc0

=
7��3�
8	2� ��̄��2

2�̄
�

Tc,Bc,Q0

. �33�

Here again the prime denotes the temperature derivative, and
the quadratic and quartic coefficients are determined from
Eqs. �21� and �24� evaluated at the transition point and opti-

mal modulation vector Q0. The results are presented in Fig. 7
for the s- and d-wave superconductors.

Not surprisingly, the specific heat jump diverges on ap-
proaching the first-order transition region. Note that in the
absence of fluctuations, even though the transition remains
second order throughout, there is a singularity in �C /Tc due
to the vanishing of the quartic coefficient at TP. The shoulder
in the specific heat in the modulated state is found both with
and without coupling to the magnetic moment, and hence
simply reflects the details of the variation in the coefficients
and the modulation wave vector with temperature.

Of more interest is the low-temperature behavior. While
for s-wave superconductors the specific heat jump vanishes
as T→0 for both �=0 and ��0, for the d-wave symmetry
the same jump is �a� finite for ��0 and �b� exhibits a mini-
mum at the lowest T.

The key to understanding this behavior is in evaluating
the T=0 limit of the coefficients �LO and �LO, which can be
done analytically as detailed in Appendix C. Note that the
classical fluctuations disappear at T=0, as evidenced by the
linear in t fluctuation corrections in Eqs. �21� and �24� and
that the values of bc and Q0 at t=0 do not depend on � or �.
For s-wave symmetry, the optimal wave vector and critical
field are Q0,s=e−�E�0

−1�0.56�0
−1 and bc,s=e−�E /2�0.28 ��E

�0.577 is Euler’s constant� at zero temperature, respec-
tively. We find that for the s-wave case in the absence of
fluctuations at Q0,s, the quartic coefficient �LO diverges as
�b2− �Q0,s /2�2�−3/2 as the field approaches bc,s �see Eq.
�C10��. Hence, �C /Tc=0 at zero temperature irrespective of
the value of �.

In contrast, we find that at zero temperature the optimal
wave vector for the d-wave gap is
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FIG. 6. �Color online� Optimal wave vector at N-SC transition
for s-wave with �̃�̃=0.4. Small-q approximation predicts tLO,grad

and tLO,grad
� . Upswing in q below tLO,grad

� indicates breakdown of
small-q expansion where �4��→0 �Ref. 44�.
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Q0,d = e−�E exp��3 − 1

4
��0

−1 � 0.67�0
−1 �34�

with bc,d / �2Q0,d�0�= ��1+�3� /4�1/2�0.83, and the coeffi-
cient �LO�T=0�=0.07 remains finite for all values of �. The
vanishing of the specific heat jump in the absence of mag-
netic fluctuations is now due to the vanishing of �� at T=0
�discussed in Appendix C 2�. The temperature slope of the
quadratic term, �̄��0�=�LO� �0�+ �̃��0�, increases as � be-
comes finite, and this leads to a finite value of �C /Tc for
d-wave order in the limit T→0 in the presence of the fluc-
tuations.

The negative slope at t=0 of the specific heat jump for
d-wave �Fig. 7�b�� is due to the temperature dependence of
�. To explain this, we expand Eq. �33� in t to find

�C/Tc

�C/Tc0
�

7��3�
8	2 � ��̄��2

2�̄
+

�̄��2�̄�̄� − �̄��̄��
2�̄2 t� , �35�

where all the derivatives and �̄ are evaluated at t=0.
As discussed in Appendix C 2, for d-wave symmetry the

quadratic derivative �̄��0�= �̃��0� is positive while the quar-
tic derivative �̄��0�=−��̃��0��2 / �6tF� is negative at low t.
The second-order quadratic derivative is �̄��0�=�LO� �0�
+2�̃���0� with �LO� �0��4.54 and ��=−�̃ / tsf

2 is always nega-
tive for ��T�. Hence, with ��T�, the initial slope at t=0 of the
specific heat jump is determined by how strongly the fluc-
tuations compete with superconductivity. As shown for �̃�̃
=0.3 in Fig. 7�b�, moderate coupling is sufficient to make
prominent the dip in the specific heat jump for d-wave at low
temperatures. For constant susceptibility, however, ��=0,
and the specific heat jump always increases from its value at
t=0.

2. Entropy and magnetization at the first-order transition

Between tP
� and tLO

� , where the transition is first order, we
compute the entropy jump, �S=−�f /�t, at the transition, and
show it in Fig. 8�a�. From Eq. �9�, the entropy jump is

− �S = � ��

�t

�0
2 +

��

�t

�0
4 +

��

�t

�0
6�

t=tc

= −
��

�t

�

2�
+

��

�t
� �

2�
�2

−
��

�t
� �

2�
�3

�36�

with 
�0
2=−� / �2�� at the first-order transition. As the effec-
tive coupling parameter between magnetism and supercon-
ductivity, �̃�̃, grows, more and more entropy is transferred at
Tc from the magnetic fluctuations to superconductivity, and
the entropy jump increases. We find, as expected, that �S is
largest in the vicinity of tLO, where �0 takes its maximum
value, and is on the order of a few percent of the entropy
difference between the SC state at T=0 and the normal state
at Tc�B=0�. We also find that �0 is moderate at the first-order
transition, with its largest value �0�tLO��0.3�0�t=0, b=0�,
and the results of our small �0 expansion make physical
sense.

The mismatch in the entropy jump in Fig. 8�a� at tLO
results from averaging the LO gap amplitude over the system
size in the limit q=0. Near tLO, the modulation wavelength

�FFLO=	�0 /q of ��x� becomes comparable to the system
size, and the profile of the order parameter near tLO re-
sembles a single kink11,12 profile that describes the uniform-
modulated transition within the SC phase. Below tLO the
modulation vector q0 rises rapidly along bc�t�, and the spatial
averaging of the order parameter is justified away from the
immediate vicinity of tLO. Therefore, we expect that a calcu-
lation free of the single-mode ansatz will give a greater en-
tropy jump in modulated state in the immediate vicinity of
TLO.

Since at the first-order transition � changes sign, we ex-
pand this coefficient near tP

� and tLO
� along the transition line,

�=gi�tc− ti
��, where gi is positive �negative� near ti= tP

��tLO
� �.

We find that, near the tricritical points,

− �S = SN�tc� − SSC�tc� ��− gi

2�

��

�t
�

tc

�tc − ti
�� , �37�

where SN and SSC are the entropy in the normal and SC
states, respectively. Hence −�S increases linearly in tc− ti as
seen in Fig. 8�a�. This behavior may be tested experimentally
in magnetocaloric measurements.

Exactly at the points tP
� and tLO

� , the entropy difference
between the normal and the superconducting states is zero.
Instead, there is a rapid release of entropy upon lowering the
temperature at a fixed field and entering the SC state. Near tP

�

and tLO
� , both the quadratic and quartic Landau coefficients

are small and can be expanded about ti
�, specifically,

�=ai�t− ti
�� and �=gi�t− ti

��. We then find


�0
2 =
− gi�t − ti

�� 
 �gi
2�t − ti

��2 − 3ai��t − ti
��

3�
�38�

and, sufficiently close to ti
�, 
�0
2 is dominated by the tem-

perature dependence of second term under the square root.

0
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(N
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FIG. 8. �Color online� Thermodynamics at first-order N-SC
transition for s-wave with �̃�̃=0.28, 0.32, and 0.36. Shown are �a�
decrease in entropy and �b� decrease in susceptibility. Temperatures
tP
�, tLO, and tLO

� are labeled for �̃�̃=0.28.
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Thus, the entropy relative to the normal state varies with
temperature as

SSC�t� − SN�t� � −
3

2
� ai

3

3�
�ti

� − t , �39�

where SSC�t� and SN�t� are the entropy in the SC and N
states, respectively.

To further test the validity of our parameter choices, we
calculate

M/H = ��−1 + �
�0
ave
2 �−1 �40�

along the first-order N-SC transition. Here, 
�0
ave
2 is the spa-

tial average of the SC order parameter. We find that magne-
tization is suppressed by the onset of superconducting order
�see Eq. �15�� as entropy is transferred between their respec-
tive degrees of freedom. The fractional change in magneti-
zation is

�M

M
= −

���T�
�0
ave
2

1 + ���T�
�0
ave
2 �41�

across the transition. This jump, as shown in Fig. 8�b�, re-
sembles the entropy jump in Fig. 8�a�, which makes sense as
both quantities depend on the value 
�0
 takes upon entering
the SC state. Thus, the jump in �0 across the transition may
be revealed by measuring both �M /M and �S along the line
of first-order transition.

Since we include fluctuations phenomenologically, it is
possible that the first-order transitions are due to an unrea-
sonable choice of the coupling parameter � such that the
magnetization is strongly renormalized. As a check on the
validity of our model, we verify that the magnetization does
not change drastically at the N-SC transition. As shown in
Fig. 8�b�, the relative change in M /H at a first-order transi-
tion is generally less than a few percent and validates our
method of including of the magnetic fluctuations.

V. CONCLUSIONS

Motivated in part by experiments on the 115 heavy-
fermion compounds we considered the effect of a Pauli-
limiting Zeeman field on s- and d-wave superconductors in
the presence of classical magnetic fluctuations. We consid-
ered both the uniform and inhomogeneous �FFLO� supercon-
ducting states, found that the amplitude-modulated state with
the modulation vector along the gap nodes is favorable in the
d-wave case, and investigated the order of the transition. Our
main finding is that there exists a range of temperatures, in
the vicinity of the onset of the modulated state, where the
normal-metal-to-superconductor transition is first order both
into a uniform and into a modulated state. The width of the
temperature range increases with the strength of coupling to
the magnetic fluctuation and is generally greater for s-wave
systems.

While we considered only classical thermal fluctuations,
since the regime of interest occurs for temperatures T /Tc
�0.2–0.5, we believe that this approach is sufficient. The
question of whether the transition remains second order as
T→0, e.g., when accounting for the quantum dynamics of

spins, is left for future studies. Among other potentially in-
teresting issues are whether impurity scattering, which is
known to suppress the inhomogeneous LO state, enhances or
shrinks the first-order transition regime, what the results of
combining the Zeeman field with the orbital coupling and
vortex physics would be. In the present form our approach
outlines a distinct, generic, path toward a first-order N-SC
transition, and demonstrates one experimentally observed
feature: the separation between the onset of the first-order
transition and the transition into a modulated state. It sug-
gests that accounting for magnetic fluctuations which are
known to exist in heavy fermion and other related com-
pounds affects the shape of the transition lines, the order of
the transition, and the behavior of the thermodynamic prop-
erties at the transition.
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APPENDIX A: EXPANSION IN �q

To derive the coefficients for the Landau free energy func-
tional, we begin with the requirement F=−T ln�Z� is an ex-
tremum with respect to �q and �q

�, so that

�F = 	
q
��q

�


�

+ 	

k

Y�k̂��c−k,−
† ck+q,+

† ����q + H.c. �A1�

We construct the Landau free energy functional by expand-
ing in powers of �q, but not in the modulation wave vector
q, which allows us to treat the low-temperature region. To
carry out this expansion we use the Gor’kov formulation of
the Green’s-function approach. The normal,

G
�k,k�;�� = − �T� ck,
���ck�,

† �0�� , �A2�

and anomalous,

F†�k,k�;�� = − �T� ck,−
† ���ck�,+

† �0�� , �A3�

Green’s function satisfy

�i�n − �k,+�G+�k,k�;i�n�

+ 	
q

Y�k̂��qF†�− k + q,k�;i�n� = �k,k�, �A4�

�i�n + �−k,−�F†�− k,k�;i�n�

+ 	
q

Y�k̂��q
�G+�k + q,k�;i�n� = 0, �A5�

respectively. Here, T� denotes imaginary time ordering and
�n=2	T�n+ 1

2 � is the fermionic Matsubara frequency. The
thermal average entering the free energy expression, Eq.
�A1�, is given by

�c−k,−
† ck+q,+

† � = − T	
n

F†�− k,k + q;i�n� . �A6�
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We iteratively expand Eqs. �A4� and �A5� in powers
of �q and �q

�, and hence find the series expansion for
F†�−k ,k� ; i�n�. Using this expansion for the thermal average
in Eq. �A1�, we integrate term by term with respect to �q,
and we obtain the Landau free energy density, FL=F /L2,
where L2 is the 2D system size, up to O�
�0
6� inclusive. We
find

FL = 	

qi�

�̃qi

�qi


2 + 	

qi�

�̃q1,. . .,q4
�q1

�q2

� �q3
�q4

� �q1+q3,q2+q4

+ 	

qi�

�̃q1,. . .,q6
�q1

�q2

� �q3
�q4

� �q5
�q6

� �q1+q3+q5,q2+q4+q6
,

�A7�

where the summation over 
qi� includes all possible combi-
nations of the allowed Fourier components of ��r�.

The fully q-dependent coefficients of the Ginzburg-
Landau expansion are given by

�̃q =
1


�

− T	

n,k

Y�k̂�
2G+

0�k + q;i�n�G−
0�− k;− i�n� ,

�A8�

�̃q1,. . .,q4
=

T

2 	
n,k


Y�k̂�
4G+
0�k + q1;i�n�

�G−
0�− k + q3 − q2;− i�n�

�G+
0�k + q2;i�n�G−

0�− k;− i�n� , �A9�

�̃q1,. . .,q6
= −

T

3 	
n,k


Y�k̂�
6G+
0�k + q1;i�n�

�G−
0�− k + q3 + q5 − q2 − q4;− i�n�

�G+
0�k + q2 + q4 − q3;i�n�

�G−
0�− k + q3 − q2;− i�n�

�G+
0�k + q2;i�n�G−

0�− k;− i�n� , �A10�

where

G

0 �k;i�n� = �i�n − �k,
�−1 �A11�

is the normal-state propagator for an electron in a Zeeman
field. After integration over k, the interaction strength 
�
 in
the quadratic coefficient � will be eliminated in favor of the
zero-field transition temperature Tc0. Assuming a circular
Fermi surface, we use 2D angular basis functions

Y�k̂� = �1 s-wave

�2�k̂x
2 − k̂y

2� = �2cos�2�� dx2−y2,� �A12�

normalized so that �
Y���
2�FS=1, where � is the azimuthal
angle in momentum space. Here �¯ �FS indicates an average
over the 2D Fermi surface. All the momentum sums are
evaluated using the fact that the Green’s functions are peaked
at the Fermi energy so that, for our model of a 2D circular
Fermi surface

	
k

→
NF

2	
�

0

2	

d��
−�

�

d� . �A13�

APPENDIX B: TRIDIAGONAL INTEGRAL

For the case of single-mode cos�Q ·r� modulation of the
order parameter, the magnetic contribution to the free energy
functional �due to the off-diagonal k ,k
2Q coupling� takes
the tridiagonal form

F�M�r�� = T	
k

�akMk · Mk
� + bkMk · �Mk+2Q

� + Mk−2Q
� �� ,

�B1�

where

ak = a �
1

2T
� 1

�
+

1

2
�
�0
2�, ∀ k �B2�

and

bk = b � −
1

8T
�
�0
2, ∀ k . �B3�

This yields the partition sum

Z = �
k
� D�Mk�exp
− �a
Mk
2 + bMk · �Mk+2Q

� + Mk−2Q
� ���

= �
i=1

d

�
k
� D�Mk,i�exp
− �a
Mk,i
2

+ bMk,i�Mk+2Q,i
� + Mk−2Q,i

� ��� , �B4�

where the product over i accounts for the d spatial compo-
nents of M�r�. To compute this integral, we separate the
product over all wave vectors into a product over compo-
nents parallel and perpendicular to the direction of Q. As the
terms comprising Z have no functional dependence on i, we
have Z=Z0

d, where

Z0 = �
k�

�
k�

� D�Mk�,k�
�exp�− a
Mk�,k�


2�

� exp�bMk�,k�
�Mk�,k�+2Q

� + Mk�,k�−2Q
� �� . �B5�

Due to the coupling between Mk�,k�
and Mk�,k�
2Q, the

product over k� can be divided up into a product of integrals
taken only over wave vectors 
k�
� 
Q
, effectively employ-
ing the Brillouin-zone method of solid-state physics with

k�
� 
Q
 corresponding to the first Brillouin zone. Each term
in the product over 
k�
� 
Q
 is then an integral connecting k�

to kn=k� +n�2Q�, where n is an integer. The sum over k is
cutoff at a wave vector on the order of the inverse lattice
spacing kc=	 / l. So, to cutoff the sum over n, we define the
cutoff integer nc such that k
nc

=k� 
nc�2Q��kc.
Separating the product over k� in this way and introducing

the notational shorthand

Mn�k�,k�� = Mk�,k�+n�2Q�,

our partition sum can be rewritten
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Z0 = �
k�

�
k�=−Q

Q � �¯D�M1�D�M−1�D�M0��

�exp�− a
M0
2 − bM0�M1
� + M−1

� � − ¯� . �B6�

We integrate over the real and imaginary parts of Mn=Mn�
+ iMn� and restrict the product over k to be over one half of k
space because Mk=M−k

� for real M�r�. However, as the in-
tegrand factors into two identical integrals over Mn� and Mn�,
we can integrate over Mn� alone and take the product over all
values of k. Thus,

Z0 = �
k�

�
k�=−Q

Q � �¯D�M1��D�M−1� �D�M0���

�exp�− a�M0��
2 − 2bM0��M1� + M−1� � − ¯� . �B7�

Beginning with n=0, we integrate recursively over all Mn�
and denote by an and bn the renormalized coefficients of
�M
n� �2 and Mn�M−n� , respectively. Working with a and b
given in Eqs. �B2� and �B3�, the integration coefficients are

a0 = a and b0 = b for n = 0, �B8�

a1 = a0 −
b0

2

a0
and b1 =

b0
2

a0
for n = 1, �B9�

and, for n�1, the remaining terms

an+1 = a0 −
anb0

2

an
2 − bn

2 and bn+1 =
bnb0

2

an
2 − bn

2 �B10�

are determined recursively. The partition sum becomes

Z0 = �
k�,k�

�	

a0
� 	2

a1
2 − b1

2 � ¯ �� 	2

anc

2 − bnc

2

= �
k�,k�

��	

a0
�2nc+1� a0

2

a1
2 − b0

2 � ¯ , �B11�

where k� � �−Q ,Q� is understood. The free energy functional
F�M�r�� can now be replaced with its thermodynamic aver-
age F=− −1 ln�Z� which is

F =
d

2 � 	

k
=0

kc

ln�a0

	
� + 	

k�,k�

n

�
ln�an

2 − bn
2

a0
2 �� , �B12�

where for the second sum n� �−nc ,nc�. The prime implies
that n=0 is excluded from the sum since the n=0 term is
ln�1�=0.

In order to obtain the necessary small � expansion of Eq.
�B12�, we need to expand �an

2−bn
2� /a0

2 to O�
�0
6� inclusive.
We do this by introducing recursion relations

sn = an + bn = a0 −
b0

2

sn
, n � 1,

dn = an − bn = a0 −
b0

2

dn
, n � 1 �B13�

with the initial values s1=a0 and d1=a0−2b0
2 /a0, respec-

tively. Taking a0=a and b0=b from Eqs. �B2� and �B3�, we
expand sndn /a0

2= �an
2−bn

2� /a0
2 to third order in b since b

� 
�0
2. Expressing a and b in units of 1 /2�T, we have the
initial values

s1 = a = 1 − 2b ,

d1 = a −
2b2

1 − 2b
= 1 − 2b − 2b2 − 4b3 + O�b4� , �B14�

and the remaining terms for n�1,

sn = dn = 1 − 2b − b2 − 2b3 + O�b4� . �B15�

With these expressions, we find that sndn=1−4b+2b2 is in-
dependent of n when expanded to third order in b. Thus,

sndn

a0
2 =

1 − 4b + 2b2

�1 − 2b�2 = 1 − 2b2 − 8b3 + O�b4� �B16�

and, substituting b=−��
�0
2 /4, we finally obtain

an
2 − bn

2

a0
2 = 1 −

1

8
�2�2
�0
4 +

1

8
�3�3
�0
6 �B17�

up to O�
�0
6� inclusive. Since the summands no longer de-
pend on n, we recollect the summation over k�, k�, and n
into a sum over 
k
�kc. We take the sum to include all
n� �−nc ,nc� with the n=0 term identical to the rest. We jus-
tify this by noting that, for a system of size LD, the sum over
k� for n=0 is of order 2QL and is much smaller than the sum
over all k� �kc �of order 2kcL� since Q�kc �where Q��0

−1

and kc=	 / l�.
After subtracting the average magnetic contribution to the

normal state, the fluctuation contribution to the supercon-
ducting free energy is

FLO,M =
d

2 
	


k
=0

kc �ln�1 +
1

2
��
�0
2�

+ ln�1 −
1

8
�2�2
�0
4 +

1

8
�3�3
�0
6�� , �B18�

which, with d=3, is the expression given in Eq. �23�.

APPENDIX C: ZERO-TEMPERATURE LIMIT

We determine the Landau coefficients �̄LO and �̄LO and
their temperature derivatives in the limit t→0. We first de-
rive analytically �LO and �LO from Eq. �6� �with prefactor of
1/2 for LO� and Eq. �7� for both s-wave and d-wave at zero
temperature; there the magnetic fluctuations die out so that
�̄LO=�LO and �̄LO=�LO. We then determine numerically the
derivatives �LO� �0�, �LO� �0�, and �LO� �0� for d-wave symmetry
and add to them the magnetic fluctuation corrections at t=0.

1. Analytic determination of bc, q0, and �LO

We first evaluate the quadratic Landau coefficient for the
LO gap modulation. In the limit t=0, the quadratic coeffi-
cient becomes
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�LO =
1

4
�
Y���
2ln��b + q̄�2�� −

1

2
��1

2
� , �C1�

where Y���=1 and Y���=�2cos 2� for s- and d-wave gaps,
respectively. Here we use the notation b=�B / �2	Tc0� and
q̄=q cos��−�q�, where q=�0Q /2. The angle �q is the modu-
lation direction with respect to the crystalline a axis and
�q=	 /4 for nodally oriented d-wave. Integration over �
yields

�LO,s =
1

2
Re�ln�b + �b2 − q2

2
�� −

1

2
��1

2
� �C2�

and

�LO,d =
1

4
ln�q2

4
� +

b4

q4 −
b2

q2 +
1

8
−

1

2
��1

2
� �C3�

for s-wave and d-wave, respectively. We locate the transition
by finding the maximum b for which �LO,d=0, and we find
that for s-wave,

q0,s = bc,s = 2e��1/2� =
e−�E

2
� 0.281, �C4�

where �E�0.577 is Euler’s constant and for d-wave,

q0,d =
e−�E

2
exp�− 2a4 + 2a2 −

1

4
� � 0.337,

bc,d = aq0,d � 0.278, �C5�

where a= ��1+�3� /4�1/2�0.826.
To determine the quartic Landau coefficient, first note

that, in the limit T=0, the Matsubara sum 2	T	nF��n� be-
comes the integral �d�F���. Thus, we rewrite Eq. �7� as

�LO = Re�
0

� d�̄

128	2�
0

2	 d�

2	

Y���
4I���̄,b,q,�� , �C6�

where �̄=� / �2	Tc0� and

I���̄,b,q,�� =
��̄ + ib��3��̄ + ib�2 − q̄2�

���̄ + Ib�2 + q̄2�3 . �C7�

We perform the angular integration changing variables to
z=ei� and then integrating around the unit circle in the com-
plex z plane. After thus averaging over the Fermi surface, we
arrive at

I�,s��̄,b,q� =
2q4 + 5q2�̄b

2 + 6�̄b
4

2�̄b
2�q2 + �̄b

2�5/2 �C8�

and

I�,d��̄,b,q� =
24�̄b

q8

8q4�̄b + 44q2�̄b
3 + 40�̄b

5

�q2 + �̄b
2

−
24�̄b

q8 �q4 + 24q2�̄b
2 + 40�̄b

4� �C9�

for s-wave and d-wave, respectively. Here �̄b= �̄+ ib. Evalu-
ating the integral over �̄ we arrive at

�LO,s =
3

32	2

3b2 − 2q2

b�b2 − q2�3/2 �C10�

and

�LO,d =
1

64	2q2�1 − 2
b2

q2�3 − 36
b2

q2 + 40
b4

q4�� , �C11�

the quartic Landau coefficients at t=0. From Eq. �C10�, we
find that �LO,s diverges as bc→q0 �see Eq. �C4�� while, from
Eqs. �C5� and �C11� we see that �LO,d�0.070 remains finite
when T→0.

2. Evaluation of derivatives for d-wave at T=0

The temperature derivatives of the quadratic and quartic
coefficients are

�̄LO� ��̃,t� = �LO� �t� +
1

2
�̃� , �C12a�

�̄LO� ��̃,t� = �LO� �t� + �̃��, �C12b�

�̄LO� ��̃,t� = �LO� �t� −
1

6tF
�̃2�2. �C12c�

Expressions for �LO� �t�, �LO� �t�, and �LO� �t� are obtained by
taking the first and second derivatives of Eq. �6� �with pref-
actor of 1/2 for LO modulation� and the first derivative of
Eq. �7�, respectively, with respect to t.

We determine �LO� �0�, �LO� �0�, and �LO� �0� numerically
by fixing b=bc,d and q=q0,d and evaluating the derivatives
as t approaches zero. As shown in Fig. 9, we find that
�LO� =�LO� =0 and �LO� �4.544 at t=0. Using these values
and working with ��T�, we obtain �̄LO� �0�=6.18�̃�̃,
�̄LO� �0�=4.544−152.8�̃�̃, and �̄LO� �0�=−1.48��̃�̃�2 in the
zero-temperature limit.
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FIG. 9. �Color online� Temperature derivatives of quadratic and
quartic Landau coefficients for d-wave at fixed bc,d and q0,d in
zero-temperature limit. Main figure shows �LO� and −�LO� , both of
which limit to zero at t=0. Inset: �LO� �4.54 at t=0.
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