
Spin-torque-induced excitations of in-phase oscillation in an in-plane-magnetized elliptical
nanopillar device: A numerical study

Kiwamu Kudo,* Tazumi Nagasawa, Hirofumi Suto, Rie Sato, and Koichi Mizushima
Corporate Research and Development Center, Toshiba Corporation, 1, Komukai-Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan

�Received 23 December 2009; revised manuscript received 11 June 2010; published 25 June 2010�

According to the analytic theory of spin-torque-induced magnetization oscillations, it is expected that single-
mode states involving a spatially uniform oscillation can emerge when the sign of the nonlinear frequency-shift
coefficient is positive. For an in-plane-magnetized elliptical nanopillar device, the sign can be positive when
the in-plane bias field is applied along the direction far from the in-plane easy axis. By using micromagnetic
simulations, we demonstrate that the in-phase oscillation, in which all the magnetic moments in the free layer
oscillate in phase, emerges in the elliptical nanopillar device under the bias field in the direction far from the
in-plane easy axis. The consistency between the theory and the simulations indicates that the magnetization-
oscillation patterns excited in the elliptical device are mainly determined by the cooperative effect between two
factors: the exchange spin-wave dispersion and the nonlinear shift of local frequencies.
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I. INTRODUCTION

Since the demonstration of the microwave magnetization
precession due to the spin-torque effect in a magnetic-
layered nanostructure,1,2 the research and development of the
novel nanosized oscillator—the spin-torque oscillator
�STO�—has been very active in the field of magnetic
devices.3,4 There are two typical geometries of STOs: mag-
netic nanocontact and nanopillar geometries. Depending on
the geometries and the orientations of the applied magnetic
field, various types of magnetization-oscillation modes are
excited in the “free” layer. In an in-plane-magnetized nano-
contact, the self-localized spin-wave “bullet” or/and the
propagating linear spin-wave mode is excited depending on
the applied field angle. These modes, which are initially pre-
dicted by the theories5,6 and confirmed by the micromagnetic
simulations,7,8 have recently been observed in an
experiment.9 In the case of magnetic nanopillars, a greater
variety of oscillation modes has been observed in experi-
ments and obtained by micromagnetic simulations: the center
and ends’ oscillation modes in the elliptical element,10 the
coherent oscillations in the elliptical nanopillar device under
the bias magnetic field along the hard axis,11,12 the chaotic
oscillation behavior in the square nanopillar structures,13 and
so on.

According to the theory based on the spin-wave Hamil-
tonian formalism, the Landau-Lifshitz-Gilbert-Slonczewski
�LLGS� equation for the spin-torque-induced magnetization
oscillation near the threshold reduces to the form of the com-
plex Ginzburg-Landau equation �CGLE�.6,14 The CGLE pro-
vides a universal description of slow spatiotemporal varia-
tion near a supercritical Hopf bifurcation and has been used
to describe a huge variety of phenomena.15 The equation has
the following form:

�W

�t
= W + �1 + ic1��2W − �1 − ic3��W�2W . �1�

The expression �1� for the spin-torque-induced magnetiza-
tion oscillation is obtained by a suitable scale transformation
of Eq. �3.30� of Ref. 14. The complex amplitude W�r , t� rep-

resents the amplitude and phase of the lowest temporal Fou-
rier mode of the magnetization oscillations. The parameter c1
represents the dispersion coefficient for the exchange spin
waves normalized by the magnitude of the diffusion. The
parameter c3 represents the normalized nonlinear frequency-
shift coefficient and has various values depending on mag-
netic anisotropies and an external magnetic field.14,16–20 In a
nondissipative limit ��c1,3�→��, the CGLE reduces to the
nonlinear Schrödinger equation �NLSE�.

For an infinitely large system, the CGLE �1� has the
plane-wave solutions involving a uniform-oscillation solu-
tion that can be interpreted as synchronized states in an os-
cillatory medium21 but the solutions are unstable in the pa-
rameter range of 1−c1c3�0 �the Benjamin-Feir unstable
range�, and turbulence appears.15 The term 1 appearing in
this instability condition implies the effect of stabilizing a
uniform oscillation by the diffusion term 1·�2W. On the
other hand, the term c1c3 implies the cooperative effect be-
tween the two factors: the exchange spin-wave dispersion
represented by ic1�

2W and the amplitude-dependent shift of
local frequencies represented by ic3�W�2W. Since the param-
eter c1 is large and negative in the spin-torque-induced exci-
tation system,6,22 the instability condition reduces to

�c1�c3 � 0. �2�

This condition signifies that the synchronized states, or the
single-mode states characterized by a single wave number,
are permitted to emerge when the coefficient of the nonlinear
frequency shift is positive �c3�0�. On the other hand, when
the coefficient of the nonlinear frequency shift is negative
�c3�0�, the frequency nonlinearity and the spin-wave dis-
persion cooperatively lead to the repulsive interaction be-
tween the magnetic moments, and the instability occurs.

For the nanocontact structures, the theory based on the
CGLE or the perturbed NLSE has been used to analyze the
oscillation modes,6,7,9,14,22 showing that Eq. �2� is the neces-
sary condition for the existence of the self-localized spin-
wave bullet in a nanocontact geometry. In the case of the
in-plane-magnetized, isotropic, free layer, the coefficient of
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frequency shift is negative �c3�0� so that the self-localized
spin-wave bullet can be supported. In the case of normally
magnetized nanocontact, the coefficient of frequency shift is
positive �c3�0� so that the propagating linear spin-wave
mode can emerge.22 The mode transition between the spin-
wave bullet and the propagating linear spin wave is caused
by the change in the sign of the nonlinear frequency-shift
coefficient.22

In contrast to the nanocontact structures, the theory based
on the CGLE has not been employed explicitly to examine
the oscillation modes for the pillar structures. In this study,
we consider the magnetization dynamics in an in-plane-
magnetized, anisotropic, pillar structure. In particular, an in-
plane-magnetized, elliptical nanopillar device with the shape
anisotropy is considered. For the in-plane-magnetized, aniso-
tropic film, the sign of the nonlinear frequency-shift coeffi-
cient can change from negative to positive as the in-plane
bias field is rotated from the in-plane easy axis to the hard
axis under the condition that the bias field H0 satisfies Hu
�H0�4Hu, where Hu is the effective in-plane anisotropy
field.17,20 Accordingly, from the theory based on the CGLE,
it is expected that the oscillation-mode transition due to the
sign change in the nonlinear frequency-shift coefficient oc-
curs in the in-plane-magnetized, anisotropic film depending
on the in-plane bias-field angle �0. In addition, some syn-
chronized states involving a uniform oscillation are expected
to emerge under the in-plane bias field in the direction far
from the in-plane easy axis. In a uniform oscillation, all the
magnetic moments in the free layer oscillate in phase with
the same amplitudes. Such a homogeneous oscillation mode
is probably useful for the oscillator application.

Motivated by the theoretical consideration, we have per-
formed the micromagnetic simulations for the variation in
magnetization dynamics with the in-plane bias-field angle �0
focusing on the emergence of a uniform oscillation. It is
demonstrated that the in-phase oscillation, in which all the
magnetic moments in the free layer oscillate in phase,
emerges in the elliptical nanopillar device under the in-plane
bias field in the direction far from the in-plane easy axis.

This paper is organized in the following way. In Sec. II,
we derive again the CGLE from the LLGS equation by the
reduction method, which was applied to a reaction-diffusion
equation in the earlier study,23 in order to clarify the corre-
spondence between the theory and the simulations �see, for
example, Sec. II B�, although the CGLE for the spin-torque-
induced excitations is well known.6,14 In Sec. III, we present
details of the micromagnetic simulations. A spatial two-
dimensional �2D� “minimal” micromagnetic simulation is
performed, i.e., only zero-temperature magnetization dynam-
ics of a 2D thin film is considered. The simulations are per-
formed on an infinitely large film �Sec. III B� as well as an
elliptical device �Sec. III C�. The simulation for the infinite
film is used to mediate between the simulation for the ellip-
tical device and the theory based on the CGLE. In Sec. III C,
the magnetization-oscillation patterns excited in the elliptical
device are discussed by comparing them with those excited
in the infinite film. It is demonstrated that the mode transition
from incoherent to in-phase oscillation occurs owing to the
sign change in the nonlinear frequency-shift coefficient. In
Sec. IV, we conclude the paper.

II. COMPLEX GINZBURG-LANDAU EQUATION

A. Derivation of the CGLE

To derive the CGLE, we expand the LLGS equation
around the uniform steady solution up to the third-order
terms. The expanded LLGS equation has the form of a
reaction-diffusion equation. Once the reaction-diffusion
equation is obtained, the reduction method,23–25 just as it is,
is applicable to the expanded equation.

We consider the 2D magnetic film extending in the x-y
plane. The easy-axis magnetic anisotropy Ku��0� lies in the
film along the x direction as shown in Fig. 1. It is assumed
that the film thickness is less than the exchange length lex

=�A /2�Ms
2, where A is the exchange stiffness constant and

Ms is the saturation magnetization. It is supposed that the
film is so large that the effect of boundaries is negligible.

The LLGS equation for the free-layer magnetization vec-
tor m�r , t�=M�r , t� /Ms �r= �x ,y�� is given by

�m

�t
= − �m 	 Heff + 
m 	

�m

�t
+ �Im 	 �m 	 p� , �3�

where � is the gyromagnetic ratio and 
 is the Gilbert damp-
ing constant. The value of 
 is assumed to be �0.01, which
is typical for soft magnetic materials. The first term of the
right-hand side of Eq. �3� is the torque forcing the magneti-
zation vector to precess around the effective magnetic field
Heff. We assume that the effective magnetic field is given by

Heff�m� = H0 − Hdem�m · ẑ�ẑ + Hu�m · x̂�x̂ + Hex, �4�

where H0 is the external bias field, Hdem is the demagnetizing
field, Hu is the in-plane anisotropy field given by Hu
=2Ku /Ms, and Hex is the inhomogeneous exchange field
given by Hex=4�Mslex

2 �2m. The second term of the right-
hand side of Eq. �3� represents the relaxation of the magne-
tization vector to the steady state. The third term of the right-
hand side of Eq. �3� is the Slonczewski spin-torque term26 in
which � is the spin-transfer efficiency, I is the direct current,
and p= pxx̂+ pyŷ+ pzẑ is the pinned-layer magnetization vec-
tor with the unit length. The efficiency � is given by �
=�gB / �2�e�MsVfree�, where � is the spin-polarization factor,
g is the Landé factor, B is the Bohr magneton, e is the
electron charge, and Vfree is the volume of the free layer.

The LLGS Eq. �3� has a uniform steady solution mst,
which satisfies �mst /�t=0 with Hex=0. The steady solution
is defined as mst�cos � cos � x̂+cos � sin � ŷ+sin � ẑ,

φ

z

uK
θ

x

y

u2 mst

u1

M

FIG. 1. 2D magnetic thin film extending in the x-y plane. The
unit vectors û1, û2, and mst form an orthonormal right-handed sys-
tem: û1�sin � cos � x̂+sin � sin �ŷ−cos ẑ, û2�−sin �x̂+cos �ŷ,
and mst�cos � cos �x̂+cos � sin �ŷ+sin �ẑ. The vector mst de-
notes the uniform steady solution of Eq. �3�.
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where �� ,�� is the spherical coordinate shown in Fig. 1. The
direction �� ,�� is determined by solving the following equa-
tion:

Heff�mst� −
�I

��
mst 	 p = Hmst, �5�

where H is the auxiliary field and ���� / �1+
2�. Note that
the vector mst, and thus the angles �� ,�� and the field H,
depend on current, i.e., mst=mst�I�. In the absence of current
�I=0�, the solution of Eq. �5� coincides with the equilibrium
vector meq. The equilibrium vector is determined by

Heff�meq� = Hmeq. �6�

In the case of an in-plane-magnetized film under an in-plane
bias field H0=H0�cos �0 , sin �0 ,0�, for example, the equilib-
rium angle �eq is equal to zero ��eq=0�, and the equilibrium
angle �eq is determined by solving the following equations:

	H cos �eq = H0 cos �0 + Hu cos �eq

H sin �eq = H0 sin �0.

 �7�

In addition to the steady-solution vector mst, the two unit
vectors û1 and û2 forming an orthonormal right-handed sys-
tem are introduced �see Fig. 1�. By the bases, the magneti-
zation vector around the steady solution is expressed by
m�r , t�=u1�r , t�û1+u2�r , t�û2+u3�r , t�mst with �u1,2��1 and
u3�1. Since the LLGS Eq. �3� preserves the norm of �m�
=1, only two components of the magnetization vector are
independent. For the sake of convenience, the pinned-layer
magnetization vector p is also expressed by the bases as p
= p1û1+ p2û2+ p3mst. The component p3 can be written as
p3=mst ·p=cos �, where � is the angle between mst and p.

By the Taylor expansion of the LLGS equation around the
uniform steady solution up to the third order, we obtain the
following equation in terms of the deviations u�r , t�
��u1�r , t� ,u2�r , t��T:

�u

�t
= �L + D�2�u + Muu + Nuuu, �8�

where Muu and Nuuu denote the second- and third-order
expansion terms with the dyadic and triadic notations, re-
spectively. This equation has the form of a reaction-diffusion
equation. To obtain Eq. �8�, the spatial variation in ui�r , t�
�i=1,2� has been assumed to be small, and the nonlinear
terms including spatial variations such as ui�

2uj have been
neglected. In Eq. �8�, the linear coefficient matrix L is given
by

L = ��I cos � − ��3 + 
�2� − �1 − 
��3 + �I cos ��
�2 − 
��3 − �I cos �� �I cos � + ��3 − 
�1�

 ,

�9�

where

�1/�� � H − Hu sin2 � ,

�2/�� � H + Hdem cos2 � − Hu sin2 � cos2 � ,

�3/�� � Hu sin � sin � cos � , �10�

and the diffusion matrix D is given by

D = ��4�Mslex
2 � 
 1

− 1 

 . �11�

Note that the matrix L is the function of the current I, i.e.,
L=L�I�. In particular, � and �i �i=1,2 ,3� in the matrix L
depend on the current implicitly. The stability of the steady
solution is determined by the eigenvalues of L. The eigen-
values of L�I� are given by

���I� = ��I� � ��2�I� − ��I� , �12�

where

��I� �
1

2
trL�I� = �I cos � −




2
��1 + �2� �13�

and

��I� � det L�I� = �1 + 
2���1�2 − �3
2 + ��I cos ��2� .

�14�

For the excitation of magnetization oscillations, it is neces-
sary that the matrix L has a pair of complex-conjugate eigen-
values, i.e., �2�I����I�. In this case, whether the steady so-
lution mst�I� is stable or not is determined by the sign of the
real part of the eigenvalues, ��I�. The solution is asymptoti-
cally stable for ��I��0. On the other hand, the solution is
unstable for ��I��0 and an oscillation emerges. The oscilla-
tion threshold current Ic is determined by the equation ��Ic�
=0, i.e.,

�Ic cos �c =



2
��1 + �2� , �15�

where �c is the angle between mst�Ic� and p. We consider the
case that ��I��0 for 0� I� Ic and ��I��0 for I� Ic. In this
case, the steady solution mst�I� is stable for 0� I� Ic, and the
oscillatory instability occurs at I= Ic �Hopf bifurcation�. The
condition that ��I=0��0, i.e., �1+�2�0, signifies that the
equilibrium vector corresponds to the minimum magnetic en-
ergy state, which is relevant in the absence of the current.

In the following, we restrict our attention to the current
region near the threshold. Accordingly, the expansion of the
LLGS equation is executed around the vector mst�Ic�. The
vector mst�Ic� denotes the oscillation-center point. We ignore
the implicit higher-order dependence of � and �i
�i=1,2 ,3� on the current I and replace it with Ic. Moreover,
we ignore the terms of O�
2�. Thus, the eigenvalue of L is
written as

���I� = � i�0 + �Ic cos �c, �16�

where = �I− Ic� / Ic measures the distance from the threshold
Ic, and �0=�det L�Ic����1�2−�3

2 corresponds to the ferro-
magnetic resonance frequency at the threshold. In the expres-
sion of the eigenvalue, �+�I�= i�0+�Ic cos �c, the term i�0
represents the critical part and the term �Ic cos �c repre-
sents the remaining part. The matrix L is correspondingly
divided into the two parts such that L=L0+L1, where the
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matrix L0 is the critical part given by L0=L�Ic� and the ma-
trix L1 is the remaining part given by L1=�Ic cos �c1 �1 is
the unit matrix�. Accordingly, Eq. �8� is rewritten as

� �

�t
− L0u = L1u + D�2u + Muu + Nuuu. �17�

Although the nonlinear terms Muu and Nuuu generally de-
pend on the current I, the current appearing in those terms is
replaced by Ic to give M0uu and N0uuu. Now, the applica-
tion of the reduction method described in detail in the
textbooks24,25 to Eq. �17� can be carried out in a direct way.
All terms of the right-hand side of Eq. �17� are treated as
perturbation terms in the reduction method. By the reduction
in Eq. �17�, the following 2D CGLE for the complex ampli-
tude W�x ,y , t� is obtained:

�W

�t
= �1W − g�W�2W + d�2W . �18�

The coefficients in Eq. �18� are given by

�1 = �U� · L1U� = �Ic cos �c, �19�

d � d� + id� = �U� · DU� = �4�Mslex
2 �
 − i

�1 + �2

2�0
 ,

�20�

and

g � g� + ig� = − 3�U� · N0UUU� + 4�U� · M0UL0
−1M0UU�

+ 2�U� · M0U�L0 − 2i�0�−1M0UU� . �21�

The vectors U and U� appearing in Eqs. �19�–�21� are the
right and left eigenvectors of L0 corresponding to the eigen-
value i�0, respectively. These vectors are normalized as
U�U=U�U=1, where U denotes a complex conjugate of U.
Since the analytic expression for g �Eq. �21�� is rather com-
plicated, the numerical calculation is necessary for obtaining
the value. The complex amplitude W�r , t� gives the ampli-
tude and phase of the lowest temporal Fourier mode of mag-
netization oscillations, and the original variable u is given by

u�r , t�=W�r , t�Uei�0t+W̄�r , t�Ue−i�0t. In Eq. �18�, the linear
term �1W denotes the linear growth. The nonlinear terms of
Eq. �18�, −g��W�2W and −ig��W�2W, represent the nonlinear
relaxation and the nonlinear shift of frequencies, respec-
tively. The linear spatial variation terms of Eq. �18�, d��2W
and id��2W, represent the diffusion and the linear dispersion,
respectively.

In the supercritical region ��0� for g��0, the scale
transformation,

��1t,��1/d�r,�g�/�1W� → �t,r,W� , �22�

gives a simpler form of Eq. �18�,

�W

�t
= W + �1 + ic1��2W − �1 − ic3��W�2W , �23�

where

c1 �
d�

d�
= −

�1 + �2

2
�0
and c3 � −

g�

g�
. �24�

This is the same form as Eq. �1�. From the viewpoint of the
CGLE �23� regarding the spin-torque-induced excitations,
the collective dynamics of magnetic moments is determined
by only the two parameters, c1 and c3. From Eq. �24�, it is
found that the parameter c1 has a rather large negative value
since the value of 
 is small ��0.01�. Note that the values of
c1 and c3 depend on the direction of the bias field via the
direction of the oscillation-center point mst�Ic�.

As mentioned in the introduction �Sec. I�, the form of Eq.
�23� for the spin-torque-induced excitations has been ob-
tained by Slavin et al. �see Eq. �3.30� of Ref. 14�. They have
used the classical Hamiltonian formalism for spin waves to
derive the form of Eq. �23�. In contrast to their derivation
method, our method is based on the reduction in a reaction-
diffusion equation, and the similarity and the difference be-
tween the spin-torque-induced excitation system and the
reaction-diffusion system is clear. For example, the form of
the diffusion matrix D represented by Eq. �11� is peculiar to
the spin-torque-induced excitation system. From Eq. �11�,
one can see that the antisymmetric part of the matrix D is
much larger than the symmetric part. In contrast, the diffu-
sion matrix usually has a small antisymmetric part in the
reaction-diffusion system.24 The large value of �c1� in the
spin-torque-induced excitation system is caused by the large
antisymmetric part of D.

B. CGLE parameters

Figure 2 shows the dependence of the parameters, c1 and
c3, on the in-plane bias-field angle �0 in the in-plane-
magnetized, anisotropic film. The values of c1 and c3 are
calculated by Eq. �24�. The parameters chosen are H0
=600 Oe, Hu=300 Oe, Hdem=7200 Oe, and 
=0.025,
where H0 is the magnitude of the in-plane bias field H0
=H0�cos �0 , sin �0 ,0�. The pinned-layer magnetization vec-
tor is chosen as p=meq= �cos �eq , sin �eq ,0�, where the angle
�eq is determined by solving Eq. �7�. When p=meq, the
oscillation-center point mst�Ic� coincides with the equilibrium
vector meq. From Fig. 2, one can see that the parameter c1
has a large negative value. The parameter c3 has a wide

FIG. 2. �Color online� Dependence of the CGLE parameters, c1

and c3, on the in-plane field angle �0 in the in-plane magnetized
magnetic film. The parameters chosen are H0=600 Oe, Hu

=300 Oe, Hdem=7200 Oe, 
=0.025, and p=meq.
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range of values depending on the in-plane field angle �0 and
changes the sign at �0�80°. The sign of c3 is positive when
the bias field is rotated far from the in-plane easy axis
��0�80° for the parameters used�.

Although we have assumed that p=meq, the angular
dependence of c1 and c3 shown above hardly changes when
the angle �eq between meq and p is less than �45°,
i.e., �tan �eq��1. This can be understood as follows. From
Eq. �15�, at the threshold, the magnitude of the term
�Imst	p that appears in Eq. �5� is estimated as
��Icmst	p�= �
��1+�2� /2� tan �c. Since the value of 
 is
small ��0.01�, the quantity ��Icmst	p� /�� is much smaller
than the magnitude of the effective magnetic field as long as
�tan �c��1. Accordingly, if �tan �c��1, Eq. �5� is close to
Eq. �6�, and the oscillation-center point mst�Ic� approxi-
mately coincides with the equilibrium vector meq. Therefore,
when the condition of �tan �eq��1 is satisfied, the
oscillation-center point mst�Ic�, which determines the angular
dependence of c1 and c3, approximately coincides with the
equilibrium vector meq. Consequently, the values of c1 and c3
hardly change for the pinned-layer vector p in the range of
�tan �eq��1.

As shown in Fig. 2, in the in-plane magnetized film with
the parameters of H0=600 Oe, Hu=300 Oe, Hdem
=7200 Oe, 
=0.025, and p=meq, the sign of the normalized
nonlinear frequency-shift coefficient c3 changes from nega-
tive to positive at �0�80°. Accordingly, from the theory
based on the CGLE, it is expected that the oscillation-mode
transition occurs at �0�80°. In addition, some synchronized
states are expected to emerge under the in-plane bias field in
the direction far from the in-plane easy axis ��0�80°�. We
confirm these predictions by micromagnetic simulations in
the next section.

III. MICROMAGNETIC SIMULATIONS

A. Simulation setup

We consider the in-plane magnetized film with the effec-
tive in-plane anisotropy field Hu�300 Oe and the effective
demagnetizing field Hdem�7200 Oe. By applying the field
H0=H0�cos �0 , sin �0 ,0� �H0=600 Oe� to the film, we ex-
amine the variation in magnetization dynamics with the in-
plane field angle �0. Two kinds of magnetic films with the
thickness of 4 nm are simulated: an infinitely large film and
an elliptical film. The sketches of the two films are shown in
Figs. 3�a� and 3�b�. The magnetization-oscillation patterns

excited in the elliptical film are discussed by comparing them
with those excited in the infinite film. For the comparison
between them, we use almost the same parameters for the
two films.

Our simulation code is based on the integration of the
LLGS equation. Only zero-temperature, 2D free-layer mag-
netization dynamics in the layered magnetic structure is con-
sidered. The effect of the pinned layer is taken into account
just via the vector p included in the Slonczewski term. The
other effects of the pinned layer �e.g., a stray field from the
pinned to the free layer� are ignored. We integrate the LLGS
equation by a fourth-order Runge-Kutta method with a fixed
time step �t. We use random initial conditions by generating
uniform pseudorandom numbers. The calculation of the de-
magnetizing field, which involves a large computational cost,
is performed by the fast Fourier transform �FFT� method.

For the simulation of the infinite film, we use the periodic
boundary conditions and limit the computational region to
500	500	4 nm3 �Fig. 3�a��. The computational region is
discretized in a mesh of �500 /128�	 �500 /128�	4 nm3

cells. The long-range dipole-dipole interaction between mag-
netization cells, which results in the demagnetizing field, is
cut off at the length lcut=2.5 m. No quantitative changes in
simulation results are produced if lcut�2.5 m.

For the simulation of the elliptical film �Fig. 3�b��, we use
the free boundary conditions �m /�n �boundary=0 �n=x ,y ,z�.
The computational region is discretized in a mesh of 2.5
	2.5	4 nm3 cells. The zero-padding method is used to cal-
culate the demagnetizing field, which makes the FFT of con-
volutions applicable to nonperiodic structures.27

The parameters used in the simulations for both the infi-
nite film and the elliptical film are the exchange stiffness
constant A=1.3	10−6 erg /cm, the Gilbert damping con-
stant 
=0.025, the gyromagnetic ratio �=1.76
	107 �Oe s�−1, and the time step �t�14.2 fs. The other
parameters, the in-plane uniaxial anisotropy Ku and the satu-
ration magnetization Ms, are chosen as follows: Ku=8.6
	104 erg /cm3 and Ms=573 emu /cm3 for the infinite film,
and Ku=0 erg /cm3 and Ms=650 emu /cm3 for the elliptical
film. By drawing the field-magnetization curves numerically,
we have checked that these parameters make the effective
values Hu�300 Oe and Hdem�7200 Oe, respectively. Note
that the effective anisotropy field Hu for the elliptical film is
caused by the shape anisotropy.

In the formulation described in Sec. II, under the param-
eters of H0=H0�cos �0 , sin �0 ,0� �H0=600 Oe�, Hu
=300 Oe, and Hdem=7200 Oe, the equilibrium magnetiza-
tion vector meq lies in the film, and the in-plane angle �eq is
calculated by Eq. �7�. By calculating the value of meq for
each �0, we set the direction of the pinned-layer magnetiza-
tion vector as p=meq. In this case, the steady-solution vector
mst�I� coincides with the equilibrium vector meq, and the
threshold current Ic is theoretically given by

�Ic =
�


2
�2H − Hu sin2�eq + Hdem� �25�

from Eq. �15�. By calculating the value of Ic using Eq. �25�
for each �0, we set the current at I=1.05Ic, i.e., near the
threshold. In the simulations of the infinite film, we have
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φ0

500 nm

500
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x

y PBC
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B
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φ

H0

130 nm

y

x

φ
meq//p

φ0
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FIG. 3. In-plane-magnetized thin films on which the micromag-
netic simulations are performed: �a� the infinite film and �b� the
elliptical film.
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found that the calculated values of Ic approximately coincide
with the simulated values. On the other hand, in the simula-
tions of the elliptical film, we have found that the calculated
values of Ic are a few percent larger than the simulated val-
ues. This is because the equilibrium state in the elliptical film
obtained by the simulations is the spatially inhomogeneous
state with the smaller threshold current.

We have numerically checked that the possible
magnetization-oscillation patterns near the threshold do not
depend on the direction of the pinned-layer vector p as long
as the vector p satisfies �tan �eq��1. The simulation results
shown below represent the near-threshold behavior of the
magnetization dynamics for the pinned-layer magnetization
vector p in the range of �tan �eq��1.

B. Infinite film

In this section, the dependence of magnetization dynamics
on the in-plane field angle �0 in the infinite film is shown.

We introduce the quantity ��m�	p�z to show the oscillation
behavior, where the symbol �m� denotes the average magne-
tization vector defined as

�m� =
1

#cells �
j�cells

m�j� . �26�

We also introduce the length of the average magnetization
vector ��m��. This quantity gives the spatial uniformity de-
gree; if ��m��=1, then the magnetization oscillation is com-
pletely uniform, and if ��m��=0, then the magnetization vec-
tors are completely disordered. Since we use random initial
conditions, the uniformity degree ��m�� is approximately
equal to zero at the initial time t=0.

Figure 4 shows the time evolution of ��m�� and ��m�
	p�z, the shorter time scale �the interval of 2 ns� plots of
��m�� and ��m�	p�z, and the snapshots of spatial patterns
�m�x ,y , t�	p�z for the in-plane field angles �0=0°, 30°, 70°,
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FIG. 4. �Color online� �first column� Time evolution of ��m�� and ��m�	p�z in the infinite film, �second column� the shorter time scale
plots of ��m�� and ��m�	p�z, and �third and fourth columns� the snapshots of magnetization-oscillation patterns �m�r , t�	p�z at the points
indicated by the capital letters for the in-plane field angles �0=0°, 30°, 70°, 85°, and 90° as indicated on the left.
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85°, and 90°. The currents of �I /2�=315.1, 310.7, 292.0,
284.4, and 283.6 MHz are injected for �0=0°, 30°, 70°, 85°,
and 90°, respectively.

The propagating plane waves involving a uniform oscil-
lation are observed for �0=85° and 90°. For �0=85°, the
uniform oscillation with ��m��=1, in which all the magnetic
moments oscillate in phase with the same amplitudes, is ob-
tained in the steady state �Figs. 4�g� and 4�h��. For �0=90°,
the propagating plane-wave pattern as well as the uniform-
oscillation pattern emerges. Which types of pattern emerge
depends on initial conditions, i.e., it depends on the choice of
seeds for uniform pseudorandom numbers. In Figs. 4�i� and
4�j�, the propagating plane-wave pattern is shown. The
propagating plane wave can be interpreted as a synchronized
state; all the local frequencies of the magnetic moments are
the same and the phase differences between the magnetic
moments are locked. Note that the propagating plane-wave
pattern obtained has the wavelength of 500 nm �see the snap-
shots for the points I and J�, which indicates that the plane-
wave pattern is affected by the periodic boundary condition.
In order to discuss the property of the propagating plane
wave, it is probably necessary to perform the simulation on a
much larger film but it is beyond the scope of the present
paper. What is important now is that the coherent-oscillation
pattern, in which all the local frequencies of magnetic mo-
ments are the same, emerges when �0�80°. In particular,
the completely uniform-oscillation pattern can emerge for
�0�80°.

In contrast to the coherent oscillation obtained for �0
=85° and 90°, the incoherent oscillation, in which the am-
plitude and the phase are strongly disturbed, is observed for
�0=0° and 30° �Figs. 4�a�–4�d��. The uniformity degree
��m�� randomly oscillates reflecting the strong amplitude and
phase turbulence, and the large-amplitude, spatially localized
events �see the snapshots for the points A and C� occur in-
termittently in space and time. The size of the localized re-
gion is about 100 nm. Figure 5 shows the time evolution of
the p component of the magnetization vector located at the
spatial point labeled with the asterisk symbol �� � for �0
=0°. The point A shown in Fig. 5 denotes the same time as
that shown in Fig. 4�b�. The spatial pattern of m ·p �the inset

of Fig. 5� indicates that the oscillation amplitude in the lo-
calized region is very large. This large-amplitude oscillation
appears and disappears within a few hundred picosecond as
can be seen from the time evolution of m�� , t� ·p �the inset of
Fig. 5�. We believe that the large-amplitude, spatially local-
ized, intermittent event corresponds to the CGL burst that is
observed in the CGLE with the parameters of c1,3�−1.28,29

In Figs. 4�e� and 4�f�, the magnetization dynamics for
�0=70° is shown. The behavior is the typical one obtained
for 50° ��0�80°. In this region of in-plane field angles, the
weakly disturbed stripe pattern is observed in the steady
state; the magnetization vectors oscillate regularly but small
amplitude and phase fluctuations are seen. In Fig. 6, the time
evolution of �m	p�z for the spatial points of “cell L,” ”cell
C,” and “cell R” is shown. From Fig. 6, one can see that the
small amplitude and phase fluctuations occur.

From the simulation results shown above, it is recognized
that the transition from the incoherent to the coherent oscil-
lation occurs at �0�80°. This is consistent with the theoret-
ical prediction described in Sec. II B. Moreover, the large-
amplitude, spatially localized, intermittent event such as the
CGL burst has been observed for small in-plane field angles
��0�30°�. These results indicate that the CGLE, which is
approximately derived from the LLGS equation, provides a
qualitatively correct description of the collective magnetiza-
tion dynamics excited by spin torque. Consequently, the
magnetic film under spin torque can be treated as the oscil-
latory medium that is well described by the CGLE.

We comment on the relation between the spatially local-
ized intermittent event and the self-localized spin-wave bul-
let. The spatial profile of the large-amplitude, spatially local-
ized region �the inset of Fig. 5� is similar to that of the
self-localized spin-wave bullet which is excited in the in-
plane-magnetized nanocontact device.6,7 In addition, both the
modes emerge under the negative frequency nonlinearity.
Accordingly, the spin-wave bullet can be interpreted as the
stabilized CGL burst, i.e., the nanocontact geometry plays an
essential role to stabilize the large-amplitude, spatially local-
ized events.

In the nanocontact geometry, the propagating spin-wave
mode has been observed when the out-of-plane field is ap-
plied to the film.7,9 For the out-of-plane field, the nonlinear
frequency shift is positive.16 The propagating spin-wave
mode observed in such a normally magnetized nanocontact
is considered to be related to the coherent-oscillation mode

FIG. 5. �Color online� Main panel: time evolution of the p com-
ponent of the magnetization vector located at the spatial point la-
beled with the asterisk symbol �� � for �0=0°. Inset: �left� snapshot
of magnetization-oscillation pattern m�r� ·p at the point A. The as-
terisk symbol �� � denotes the spatial point which is paid attention.
�Right� Enlargement of the interval between t=175.5 and 177.5 ns.

cell Rcell Ccell L

FIG. 6. �Color online� Time evolution of �m	p�z for the spatial
points of cell L, cell C, and cell R. The in-plane field angle is
chosen as �0=70°.
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we have obtained for �0=85° and 90°. The common ground
of the two modes is that they are the synchronized states and
that they emerge under the positive frequency nonlinearity.
Based on the analogies between the two modes, we expect
that the propagating spin-wave mode can emerge in the in-
plane-magnetized nanocontact device composed of an in-
plane anisotropic magnetic film when the in-plane field is
applied along the hard axis.

C. Elliptical film

The dependence of magnetization dynamics on the in-
plane field angle �0 in the elliptical film is shown in this
section. Figure 7 depicts the representative snapshots of os-
cillation magnetization pattern �m�x ,y�	p�z for �0=0°, 30°,
75°, 85°, and 90°. These are the snapshots at the time that
��m�	p�z has a maximum value in the oscillation period.
The currents of �I /2�=315.1, 310.7, 289.1, 284.4, and
283.6 MHz are injected for �0=0°, 30°, 75°, 85°, and 90°,
respectively. The simulation shows that the transition from
the incoherent to the in-phase oscillation occurs at �0�80°.
For �0=0°, 30°, and 75°, the incoherent oscillations emerge.
On the other hand, for �0=85° and 90°, the almost uniform,
in-phase oscillations emerge. The incoherent oscillations are
classified into two types: a strongly disturbed oscillation for
�0=0° and a weakly disturbed oscillation for �0=30° and
75°. For �0=0°, 75°, and 90°, we show the time evolution of
��m�� and ��m�	p�z in Fig. 8, and the time evolution of

�m	p�z for the spatial points of cell L, cell C, and cell R in
Fig. 9.

In the case of �0=90°, an almost uniform in-phase oscil-
lation emerges in the steady state. The uniformity degree is
approximately one ���m���1� �Fig. 8�e��, and all the magne-
tization vectors oscillate in phase accompanying small am-
plitude fluctuations �Fig. 9�c��. This in-phase oscillation cor-
responds to the synchronized oscillation patterns obtained in
the infinite film for �0�80° presented in the previous sec-
tion. The origin of the amplitude fluctuations is probably the
inhomogeneous distribution of the demagnetizing field due
to the effect of elliptical shape.

In the case of �0=75°, small amplitude and phase fluc-
tuations occur �Fig. 9�b��, and the weakly disordered pattern
emerges. The oscillation behavior shown in Fig. 9�b� is simi-
lar to that shown in Fig. 6. The pattern shown in Fig. 7�b� or
7�c� is therefore analogous to the weakly disturbed behavior
observed in the infinite film.

In the case of �0=0°, the amplitude as well as the phase is
disturbed �Fig. 9�a��, and the strongly disordered pattern
emerges �Fig. 7�a��. The pattern shown in Fig. 7�a� is analo-
gous to the strongly disturbed behavior observed in the infi-
nite film because a large-amplitude, spatially localized region
is seen at the right side of the ellipse. Unlike the case of the
infinite film, the large-amplitude region appears with regular
rhythm �Figs. 8�a� and 8�b��. This is probably due to the
effect of elliptical boundaries.

In Fig. 10, the oscillation behavior for �0=0° just above
the onset of the oscillation threshold is shown. The magni-
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FIG. 7. �Color online� Representative snapshots of oscillation magnetization pattern in the elliptical magnetic film. The dependence on
the in-plane field angle �0 is shown; �0= �a� 0°, �b� 30°, �c� 75°, �d� 85°, and �e� 90°.
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tude of the current is chosen as �I=294.1 MHz. In this low-
current regime, the oscillation state is seemingly homoge-
neous since ��m���0.99 �Fig. 10�a��. However, the
amplitude as well as the phase is strongly disturbed �Fig.
10�b��, which is similar to the behavior shown in Fig. 9�a�.
The spatial uniformity of ��m���0.99 results just from the
smallness of the oscillation amplitude due to the small mag-
nitude of the current. The property of the oscillation for �I
=294.1 MHz �Fig. 10� is essentially the same as that for
�I=315.1 MHz �Figs. 8�a�, 8�b�, and 9�a��. A magnetization-
oscillation pattern similar to that shown in Fig. 10 has been
reported in the several papers30–32 �see, e.g., Fig. 2 in Ref. 30
and Fig. 1�b� in Ref. 31�; such an oscillation emerges in the
low-current regime under the bias field with small angle �0.
Although the inhomogeneity of the oscillation is small
���m���1�, the magnetic moments do not oscillate in phase.

The simulation results for the elliptical film shown above
are basically consistent with the simulation results in the
infinite film shown in Sec. III B and the theoretical predic-
tion described in Sec. II B, although the effect of elliptical
boundaries on magnetization dynamics has been observed.
This indicates that the transition from the incoherent to the
in-phase oscillation obtained by the simulation for the ellip-
tical film mainly originates from the cooperative effect be-
tween the exchange spin-wave dispersion and the nonlinear
shift of local frequencies. In the experimental results re-
ported by the authors of Refs. 11 and 12, the spectrum line-
width of the elliptical STO decreases as the in-plane bias
field is rotated from the in-plane easy axis to the hard axis.
We believe that the variation in the spectrum linewidth origi-
nates from the spatial coherence of the free-layer magnetiza-
tion dynamics dominated by the cooperative effect men-
tioned above.

The emergence of in-phase oscillations in the elliptical
film suggests that the single-domain �macrospin� approxima-
tion is applicable to the fairly large element with the size of
130	70 nm2 if an in-phase oscillation emerges. This is in
contrast with the widely accepted consequence of micromag-
netics that the single-domain approximation is valid when
the size of the element is smaller than 4−8	 lex��40 nm� 33

but because the uniformity of the magnetization oscillation is
the dynamical uniformity, not the static one, there are no
inconsistencies.

IV. CONCLUSION

On the basis of the CGLE for the spin-torque-induced
excitations, it is expected that some synchronized states can

emerge in magnetic pillar structures when the nonlinear fre-
quency shift is positive. For the in-plane-magnetized, aniso-
tropic, thin films, this can be achieved when a bias field is
applied along the direction far from the in-plane easy axis.
We have confirmed the theoretical prediction by the micro-
magnetic simulations. The simulations have been performed
on two kinds of magnetic films: the infinite film and the
elliptical film. The simulation for the infinite film has been
performed in order to mediate between the simulation for the
elliptical film and the theory based on the CGLE. In the
simulation for the elliptical film, we have demonstrated that
the in-phase oscillation emerges under the bias field in the
direction far from the in-plane easy axis in accordance with
the theory based on the CGLE. The consistency between the
theory and the simulations indicates that the spin-torque-
induced dynamics near the oscillation threshold is signifi-

FIG. 10. �Color online� �a� Time evolution of �my� and ��m�� for
�0=0° in the elliptical film just above the onset of the oscillation
threshold. �b� Time evolution of my for the spatial points of cell L,
cell C, and cell R. The magnitude of the current is chosen as �I
=294.1 MHz.

cell L cell C cell R

FIG. 9. �Color online� Time evolution of �m	p�z for the spatial points of cell L, cell C, and cell R. The in-plane field angles are �0

= �a� 0°, �b�75°, and �c�90°.
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cantly influenced by the cooperative effect between the ex-
change spin-wave dispersion and the nonlinear shift of local
frequencies, and that the positive frequency nonlinearity is
necessary for the emergence of the in-phase oscillation in the
elliptical nanopillar device.
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