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We reinvestigate the behavior of the conductivity of several disordered quantum lattice models at infinite
temperature using exact diagonalization. Contrary to the conclusion drawn in a recent investigation of similar
quantities in identical systems, we find evidence of a localized regime for strong random fields. We estimate
the location of the critical field for the many-body localization transition for the random-field XXZ spin chain,
and compare our findings with recent investigations in related systems.
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I. INTRODUCTION

Anderson localization in noninteracting systems is a well
understood physical process whereby sufficiently strong dis-
order leads to localization of eigenstates and hence insulating
behavior in systems that would otherwise be conductors.1

Extensive work performed over the last 50 years has estab-
lished in great detail the nature of the Anderson transition in
noninteracting systems while much less work has been
aimed at elucidating how short-ranged interactions modify
the simple picture of transport that emerges in the noninter-
acting situation.2 This is somewhat surprising, given the fact
that attention to the issue of interactions already appears in
Anderson’s classic 1958 paper.3

Recently Basko, Aleiner, and Altshuler �BAA� performed
a detailed diagrammatic analysis demonstrating that weak,
short-ranged electron-electron interactions generically lead
to a finite-temperature metal-insulator transition in systems
that would be localized in the absence of interactions.4 In
fact the analysis and implications of the work of BAA go
beyond consideration of interacting electrons, suggesting that
more general quantum entities �e.g., spins, bosons� with local
interactions may generically fail to thermalize until a thresh-
old energy is reached. The notion that such a “many-body”
localization �MBL� transition may occur is at odds with the
intuition that interactions should lead to a finite dc conduc-
tivity at all finite temperatures in analogy with the mecha-
nism of phonon-mediated hopping conductivity. It is also at
odds with, for example, the analysis of Fleishman and
Anderson which argues that truly short-ranged interactions
are insufficient to induce conductivity in an otherwise local-
ized system at any temperature.5

The work of BAA has motivated more recent investiga-
tions of the possibility of a finite-temperature transition from
a localized �nonergodic� phase to a delocalized phase where
interactions afford thermalization of the system. These
works, both analytical and numerical, have reached some-
what conflicting conclusions.6–10 In this work, we reconsider
the analysis of Karahalios et al.8 Via examination of the con-
ductivity, these authors concluded that, in general, finite-
temperature systems of one-dimensional interacting spins are
always conducting, thus contradicting the claim of BAA.

II. IMAGINARY-FREQUENCY CONDUCTIVITY

Here, as in previous work, we make use of the important
observation of Oganesyan and Huse that the many-body lo-

calization transition may be probed at infinite temperature by
varying the disorder strength.6 This simplifies the problem by
reducing the number of control parameters that may be var-
ied to tune the system from a delocalized to a localized
phase. As in the work of Karahalios et al., we examine one-
dimensional spin chains via exact diagonalization, calculat-
ing the conductivity via the Kubo formula. An important
conclusion of our work is that sufficient care needs to be
exercised in the interpretation of the zero-frequency conduc-
tivity as a function of disorder strength and level broadening.

For a finite system of length L at T→�, the Kubo formula
for the conductivity is given by

���� =
�

L
lim
�→0

�
0

�

ei��+i��t�j�t�j�0��dt , �1�

where �=1 /kBT, j�t� is the current operator at time t, and �
can be thought of as both a numerical tool for convergence
as well as a phenomenological level broadening for discrete
spectra.11 The real part of the conductivity may be decom-
posed as �����=D����+�reg���, where the Drude weight D
measures purely ballistic conduction and arises due to pairs
of degenerate states connected by the current operator. How-
ever, in the systems studied here, all level degeneracies are
lifted in the presence of disorder and conductivity is purely
diffusive. Thus we may take as our definition of the dc con-
ductivity �dc=���→0� without concern for the Drude con-
tribution. By employing the spectral representation of the
Hamiltonian we arrive at the “imaginary-frequency” dc con-
ductivity,

��i�� =
�

ZL
�
m,n

��m�j�n��2
�

�2 + ��nm�2 , �2�

where H�n�=En�n�, �nm=En−Em, and Z is the partition func-
tion.

The authors of Ref. 8 calculate the full frequency-
dependent �ac� conductivity spectrum using a level-
broadening binning procedure and draw conclusions regard-
ing dc conductivity based on the �→0 behavior. However,
as we will show, all finite-sized systems with level broaden-
ing will exhibit a nonzero dc conductivity, and thus such an
analysis is inconclusive. Rather, it is the conductivity’s de-
pendence on this level broadening which allows one to draw
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conclusions regarding conducting and insulating behaviors in
the thermodynamic limit.

As discussed by Thouless and Kirkpatrick,12 finite sys-
tems should display a simple asymptotic behavior for the dc
conductivity that scales as � for small � and �−1 for large �.
The distinction between conductor and insulator manifests in
the behavior between these asymptotic regimes. In particular,
we expect that a system with insulating behavior will exhibit
an imaginary-frequency dc conductivity with well-resolved
� and �−1 regimes separated by a simple maximum. Finite-
sized systems expected to behave as conductors in the L
→� limit exhibit a broad crossover between these regimes,
with a plateau signifying the onset of a true dc
conductivity.11,12 Although the dc conductivity is well de-
fined only in the thermodynamic limit �specifically, L→�,
then �→0�, we see evidence for dc conductivity manifesting
itself even at the small system sizes accessible by exact di-
agonalization.

It should be pointed out that although the analysis em-
ployed here was originally developed for noninteracting sys-
tems, our results empirically show that it is equally appli-
cable to interacting ones, by replacing the single-particle
levels with many-body levels. Specifically, we locate an in-
sulating regime in which ��i���� when � is less than the
level spacing in the many-body localization volume, which
does not scale with the size of the system. This behavior is to
be contrasted with an observed metallic regime, which has
��i���� as long as � is less than the many-body level spac-
ing in the system volume—a spacing which vanishes in the
thermodynamic limit yielding a dc conductivity plateau at
small to intermediate �.

III. QUANTUM LATTICE MODELS

We study two quantum lattice models in the presence of
disorder: the XXZ spin chain and the t-t�-V model of spinless
fermions, originally studied in its disordered form by Ogane-
syan and Huse6 and more recently by Monthus and Garel.13

The disordered XXZ chain is given by the Hamiltonian

HXXZ = J�
j=1

L

�Sj
xSj+1

x + Sj
ySj+1

y + �Sj
zSj+1

z 	 + �
j=1

L

wjSj
z, �3�

where we choose the random fields wj uniformly from
�−W ,W	. The current operator for the XXZ chain is given by

jXXZ = J�
j=1

L

�Sj
xSj+1

y − Sj
ySj+1

x 	 . �4�

The disordered t-t�-V model is described by the Hamil-
tonian

Ht-t�-V = �
j=1

L 
− t�cj
†cj+1 + cj+1

† cj� − t��cj
†cj+2 + cj+2

† cj�

+ V�nj −
1

2
��nj+1 −

1

2
� + wjnj , �5�

where, following Oganesyan and Huse, the random on-site
energies wj are chosen from a Gaussian distribution with

mean 0 and variance W2. The t-t�-V model’s current operator
is

jt-t�-V = i�
j=1

L

�t�cj
†cj+1 − cj+1

† cj� + 2t��cj
†cj+2 − cj+2

† cj�	 . �6�

In what follows, we restrict our Hilbert space to Stot
z =0 for

the XXZ chain and to half filling for the t-t�-V model. We
have explored other alternatives and find our results to be
qualitatively similar. All results are presented for L=14 with
periodic boundary conditions, although we have studied sys-
tems as large as L=16 and find our conclusions unaltered.
We average over Nr=100 independent realizations of disor-
der and calculate error bars as the standard deviation of the
mean, 	� /�Nr, where � �not to be confused with the con-
ductivity� is the standard deviation across disorder realiza-
tions. Our results appear to be converged, although for such
a small range of system sizes one should view such state-
ments with care. This is especially true for smaller values of
disorder, where finite localization lengths, if they exist, can
clearly be larger than the system sizes accessible from exact
diagonalization.

The aforementioned claim of Karahalios et al. is rather
surprising in light of the fact that an earlier time-dependent
density matrix renormalization group �tDMRG� calculation
performed on strongly disordered spin chains found evidence
of a localized phase, at least when viewed from the stand-
point of the local spin-spin correlation function.7 In Fig. 1,
we reproduce this result �for a smaller system and the shorter
time scales accessible in exact diagonalization� and compare
it with dynamics in the noninteracting system which is
known to be localized. It is clear that, for the interacting
system, the local spin-spin correlation exhibits quantitatively
similar relaxation compared to the localized system and
shows no sign of decay from a plateau �the analog of the
Edwards-Anderson parameter�, indicative of a glassy phase.

IV. RESULTS AND THE MANY-BODY LOCALIZATION
TRANSITION

We turn next to an investigation of the conductivity in the
above disordered lattice models. As discussed above, it is
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FIG. 1. Local spin-spin correlation function, �Sj
z�t�Sj

z�0�� for the
disordered XXZ chain with W=5. Results are shown for the nonin-
teracting case, �=0.0 �filled circles� and for the interacting case,
�=0.5 �solid line�. Error bars for the noninteracting case �not
shown for clarity� are of the same order as those shown for the
interacting case.
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useful to compare the � dependence of the dc conductivity in
the interacting models directly with their noninteracting
counterparts to set a baseline for localization. In Fig. 2, we
present results for two different values of the anisotropy � in
the XXZ spin chain. We extend the results of Karahalios et
al., who examine disorder strengths only as high as W=1, by
performing our calculations up to W=6. Clearly, by W=4 in
both interacting cases the conductivity curves are essentially
indistinguishable from the noninteracting localized case.
Thus, at least with regard to exact diagonalization on these
system sizes and based solely on examination of the conduc-
tivity, the interacting behavior is identical to the noninteract-
ing, localized behavior. Using this condition, we can place an
upper limit, Wc
4 in both cases �=0.5 and �=1.0.14 It
should be noticed as well that already at W=1 there is sig-
nificant structure in ��i��, exhibiting a nearly flat region in
between the small and large � regimes. This suggests that
these interacting data are in a conducting regime, although
care must be used because this also might be an indication of
localization behavior on length scales larger than we can
access via exact diagonalization. One should also note that
this conducting behavior is fully consistent with the conclu-
sions of Karahalios et al. at W=1.0. With the above caveats,
we can place the critical value of W for a many-body local-
ization transition in the range 3�Wc�4.15 It is thus unsur-
prising that Karahalios et al. found no evidence for the MBL
transition, as we have shown that it occurs at disorder
strengths larger than those investigated in Ref. 8. We have
additionally analyzed adjacent many-body level spacings
�not shown here�, whose crossover from the Gaussian or-
thogonal ensemble to Poisson statistics16–18 occurs at this
same critical strength of disorder, confirming the robustness
of our approach.

In order to confirm our expectations of a conducting
phase in the thermodynamic limit, L→�, we have examined

the effects of system size on the conductivity of the interact-
ing XXZ spin chain with �=0.5. We focus on the disorder
strength W=1 because of its apparent conducting behavior in
Fig. 2. Furthermore, one is in danger of approaching local-
ization lengths equal to the size of the system for values of
disorder much smaller than this. We show in Fig. 3 the con-
ductivities for system sizes L=10, 12, 14, and 16. Results for
L=16 are shown for Nr=50 realizations of disorder. Clearly,
the plateau becomes more resolved for larger system sizes,
strongly suggesting a nonzero dc conductivity in the thermo-
dynamic limit. Furthermore, the plateau’s growth extends to-
ward smaller � in agreement with the many-body level-
spacing discussion above.

We have also examined the behavior of the disordered
t-t�-V model of Oganesyan and Huse, the results of which
are presented in Fig. 4. The behavior is qualitatively the
same as above, suggesting the existence of a MBL transition
in this model as well. However, it should be pointed out that
the crossover between apparent conducting and insulating
behavior in ��i�� is significantly broader in the t-t�-V model
than in the XXZ systems, making a prediction of the critical

10
-6

10
-4

10
-2

10
0

10
-6

10
-4

10
-2

10
0

10
-6

10
-4

10
-2

10
0

10
-6

10
-4

10
-2

10
0

10
-4

10
-2

10
0

10
210

-6

10
-4

10
-2

10
0

10
-4

10
-2

10
0

10
2 10

-6

10
-4

10
-2

10
0

(a) (b)

(d)(c)

(e) (f)

η, imaginary part of frequency [J]

co
nd

uc
tiv

ity

W = 1 W = 2

W = 3 W = 4

W = 5 W = 6

FIG. 2. �Color online� The dc conductivity as a function of the
imaginary frequency, �, for the disordered XXZ chain �J=1� with
W=1–6 ��a�–�f�	 for the noninteracting case, �=0.0 �black line,
circles� and for two interacting cases, �=0.5 �red line, squares� and
�=1.0 �green line, diamonds�. Error bars are smaller than the sym-
bols. The blue line shows linear slope.
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FIG. 3. �Color online� System-size dependence of the dc con-
ductivity as a function of the imaginary frequency, �, for the disor-
dered XXZ chain �J=1� with �=0.5 and W=1. Conductivities are
presented for L=10 �green line, plus signs�, 12 �blue line, dia-
monds�, 14 �red line, squares�, and 16 �black line, circles�, showing
the development of the dc conductivity plateau in the L→� limit.
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FIG. 4. �Color online� The same as in Fig. 2 but for the disor-
dered t-t�-V model �t= t�=1� with �a� W=3, �b� W=5, �c� W=10,
and �d� W=16, for the noninteracting case, V=0 �black line, circles�
and for the interacting case, V=2 �red line, squares�. Where not
shown, error bars are smaller than the symbols. The blue line shows
linear slope.
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disorder strength difficult. At larger system sizes, this cross-
over should become more abrupt but unfortunately such
sizes are beyond the reach of exact diagonalization. Despite
the above difficulties, we would expect, based on the same
means of analysis presented above, that the critical value of
W in this model is higher than the Wc�5 range found in the
real-space renormalization-group calculation of Monthus and
Garel. Although, it is not clear when studying finite systems
that different quantities, such as those investigated here and
by Monthus and Garel, should behave in a similar manner.
However, our result does strongly suggest conducting behav-
ior at W�5.

V. CONCLUSIONS

To summarize, we have carried out a systematic investi-
gation of the diffusive conductivities of two common disor-
dered quantum lattice models: the XXZ spin chain and the

t-t�-V model of spinless fermions. We find that by studying
the behavior of ��i��, we can place reasonable bounds on
the location of the MBL transition. By examining disorder
strengths higher than those explored in previous works, we
find for the disordered XXZ chain �both �=0.5 and �=1.0�
that the finite-size conductivity extrapolates quantitatively to
the noninteracting values by W�4. Our results are also
qualitatively consistent with the recent work of Monthus and
Garel, but we would expect based on finite-size studies of the
conductivity, that the transition occurs at a disorder value
larger than that found by their numerical renormalization-
group procedure.
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