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We study the electron spin resonance of low-dimensional spin systems at high temperature and test the
Kubo-Tomita theory of exchange narrowing. In finite-size systems �molecular magnets�, we found a double-
peak resonance which strongly differs from the usual Lorentzian. For infinite systems, we have predictions for
the linewidth and line shape as a function of the anisotropy strength. For this, we have used an interpolation
between a nonperturbative calculation of the memory function at short times �exact diagonalization� and the
hydrodynamic spin diffusion at long times. We show that the Dzyaloshinskii-Moriya anisotropies generally
induce a much larger linewidth than the exchange anisotropies in two dimensions, contrary to the one-
dimensional case.
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I. INTRODUCTION

The paramagnetic resonance is a well-known phenom-
enon resulting from the collective precession of the total
magnetization about an external magnetic field. For spin sys-
tems with interactions of the standard SU�2� Heisenberg
form, the total magnetization is conserved and there is no
relaxation of the magnetization, regardless of the strength of
the interaction. It is no longer true when anisotropic interac-
tions are present and the magnetization relaxes with a char-
acteristic time scale. A theoretical issue is to relate this time
scale �or the width of the resonance� to the anisotropy
strength in a many-body system. In strongly interacting sys-
tems, small anisotropies �as in transition-metal compounds�
lead to an exchange-narrowed Lorentzian resonance.1 The
linewidth is given, generically, by the theory of
Kubo-Tomita,2 and cast into a more general formalism by
Mori3 and Zwanzig.4 However, the Markovian assumption
used by Kubo-Tomita was later argued to break down in
low-dimensional systems. For one-dimensional systems, de-
viations from the Lorentzian line shape were indeed ob-
served experimentally and attributed to spin diffusion,5,6

which was not taken into account in the first place. Recently,
Oshikawa and Affleck7 have developed a direct approach in
one-dimensional S= 1

2 systems, based on an effective-field
theory, which is valid at low temperatures and could account
successfully for the �low-� temperature dependence of the
measured linewidths. It is, however, clear that a theory of the
high-temperature linewidth would be very useful to extract
the anisotropies experimentally. The Kubo-Tomita formula
has been widely used in this regime but not thoroughly
tested.

It is nonetheless known that, even in the high-temperature
regime, a direct application of the Kubo-Tomita formula fails
in the case of Dzyaloshinskii-Moriya anisotropy in one
dimension,8,9 which is first order in the spin-orbit coupling in
S= 1

2 systems. It predicts indeed a linewidth varying like
D2 /J, which was originally argued to be responsible for the
large linewidth observed, in particular, in CuGeO3.10,11 It is
in fact incompatible with a general argument in one dimen-

sion, which leads to predict a smaller D4 /J3.8,9 It is then of
the same order of magnitude as the contribution of the ex-
change anisotropy �as also happens for other observables12�,
i.e., fourth order in the spin-orbit coupling and, hence, small.
As alternatives, unconventional superexchange13 or dynami-
cal Dzyaloshinskii-Moriya interactions14 were invoked to ex-
plain the strong broadening. Nonetheless, it is expected, on
general grounds, that one-dimensional systems may possess
an inherent strong broadening because of spin diffusion at
high temperatures. One issue is to obtain a reliable quantita-
tive estimation of the effect. Approximations, such as the
random-phase approximation �RPA�,5 perturbative
expansions,15 or self-consistent RPA,16 suggested, in particu-
lar, departures from the Lorentzian line shape, but it is diffi-
cult to judge how quantitative these theories are.

In contrast, in two spatial dimensions, it is surprising to
notice �empirically� that applying the Kubo-Tomita’s formula
seems to give rather accurate results at high temperatures.
For instance, in the Shastry-Sutherland compound,
SrCu2�BO3�2, this gives an out-of-plane Dzyaloshinskii-
Moriya interaction D=2.4 K,17 while neutron scattering
gives 2.1 K.18

In the following, we will give a quantitative estimation of
the linewidth in one and two dimensions and the correspond-
ing line shapes. We predict an enhancement of the linewidth
with respect to the perturbative Kubo-Tomita formula, par-
ticularly strong when the diffusive motion is assumed at long
times. Moreover, while we agree that the linewidth induced
by the Dzyaloshinskii-Moriya anisotropy or the exchange an-
isotropy are of the same order in one dimension �or more
generally for the reducible19 Dzyaloshinskii-Moriya interac-
tions�, we claim that, in two dimensions, the irreducible
Dzyaloshinskii-Moriya interactions lead to a linewidth es-
sentially varying like D2 /J, i.e., like in Kubo-Tomita, with a
prefactor that we shall estimate.

An approach consists of exact numerical diagonalizations
of the Hamiltonian and a calculation of the dynamics using
the Kubo formula.20 The approach is interesting not only
because there is no approximation made but also because it
provides information on the whole electron spin resonance
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�ESR� spectrum and tells us whether there are more reso-
nances than the paramagnetic resonance. It is of course lim-
ited by the system size and especially at finite temperatures
where one needs to calculate all eigenstates. As we shall see,
a direct computation of the Kubo formula gives results which
are difficult to extrapolate to the thermodynamic limit. Since,
however, the calculation is exact for small sizes, the predic-
tion for the line shape may be interesting for molecular mag-
nets, in particular, to disentangle different mechanisms.
However, to obtain information for bulk systems, we suggest
that it is more interesting to calculate the memory function
by exact diagonalization, in the Mori-Zwanzig framework.
While the calculation of the memory function is exact only at
short times for finite-size systems, its validity goes beyond
the perturbative short-time expansion developed earlier.2,15

We find a clear slowing down of the memory function com-
pared to Kubo-Tomita in one dimension �but not in two di-
mensions�, possibly indicative of a crossover to spin diffu-
sion. We can then test the spin-diffusion assumption for the
long-time behavior. It is indeed reasonable to assume that the
short-time behavior depends on the microscopic details of
the lattice �and hence needs a precise calculation� while the
long time may be more universal �and depends primarily on
the spatial dimension�. This allows to obtain a quantitative
idea of how accurate the Kubo-Tomita’s result is in one and
two dimensions.

II. KUBO FORMULA AND FINITE-SIZE SYSTEMS

The linear response of the spin system to a long-
wavelength oscillating magnetic field along, say, an x axis is
given by the Kubo formula �or susceptibility�,

���� = i�
0

+�

dtei�t��Sx�t�,Sx�0��� , �1�

where Sx=�iSi
x is the total magnetization along the x axis.

The absorption cross section of the incident electromagnetic
wave is proportional to ������, and

����� = ��1 − e−���Sxx��� , �2�

where

Sxx��� = �
−�

+�

dtei�t�Sx�t�Sx�0��

=
1

Z�
n,p

e−�En	�n	Sx	p�	2��� − Ep + En� �3�

with a sum over the eigenstates 	n� and 	p� of the Hamil-
tonian �Z is the partition function�. At high temperatures
�T�J�, ������= ��2 /T�Sxx��� and we show only Sxx��� in
the following. Furthermore, all the states have the same
weight �we now take e−�En =1 which is valid for T�J� and
Sxx��� is an even function of � �Sxx���=Sxx�−���. To com-
pute Eq. �3�, we have calculated all eigenenergies and eigen-
states of the Hamiltonian by exact numerical diagonalization.
We have first considered the Heisenberg Hamiltonian for
one-dimensional spin rings �with periodic boundary condi-

tions� with two types of SU�2�-symmetry-breaking anisotro-
pies, one is the Dzyaloshinskii-Moriya interaction �first order
in spin-orbit coupling�,

H = �
i

JSi · Si+1 + Di · �Si 	 Si+1� , �4�

where Di is a staggered vector from bond to bond �strength
D� and taken along the z axis. The second is the XXZ ex-
change anisotropy �second order in spin-orbit coupling�,

H� = �
i

JSi · Si+1 − �JSi
zSi+1

z �5�

with an easy-plane anisotropy ��
0�. Importantly, H can be

mapped onto H� by rotating the spin operators, S̃i
+

=ei�−1�i�Si
+ with �=D /2J, giving �
D2 /2J2 at the lowest

order.8,9,12 In this mapping, the long-wavelength oscillating
magnetic field acquires a staggered component. In the fol-
lowing, we restrict ourselves to an external field h along z. In
this case, the z component of the total magnetization, Sz, is
conserved and the magnetic field splits the excited states ac-
cording to −hSz but does not change the matrix elements in
Eq. �3�. In addition, the operator Sx changes Sz by �1 so that
Ep−En is shifted by �h. As soon as h is larger than the
linewidth, the h�0 line shape is the same as for h=0 shifted
by �h.

The result of the calculation of the Kubo formula �3� for
N=16 spins interacting with Hamiltonian �4� is shown in
Fig. 1 �the delta peaks in Eq. �3� are slightly broadened by a
Gaussian form21�. We find a broad resonance centered at the
magnetic field h �there is no finite shift�. Since we are at high
temperatures, we stress that Sxx��� is the same around
�=−h. The calculation being exact, this is the line shape we
predict for molecular magnets of the ring geometry, at high
temperature, would the mechanism giving the linewidth be
purely magnetic in origin. In Fig. 1, the different curves cor-
respond to different strengths of Dzyaloshinskii-Moriya cou-
pling. They are normalized in intensity and rescaled in fre-
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FIG. 1. �Color online� ESR line shape of a one-dimensional
chain of N=16 spins �T�J�. The curves are rescaled with the half
width at half maximum, �0 /J �shown in the inset as a function of
D /J for three sizes�.
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quency using the linewidth, noted �0, and defined as the half
width at half maximum of the full line. They all collapse
onto a single �quasi�-universal line shape with a double-peak
structure, in a wide range of anisotropy strengths, D
�0.1–0.8J and sizes. If we consider the special case h=0,
the double-peak structure can be seen as a pseudogap. The
prediction of this line shape seems at odds with the conven-
tional exchange-narrowing theory which, in general, predicts
a single Lorentzian. We will discuss the origin of these dif-
ferences below. In addition to the double-peak structure,
there is an additional weight in the wing. In fact, the line
shape can be fitted by four Lorentzians, two centered at
�0.59�0 and two at �3�0.59�0� �each component is given
by a dashed line in Fig. 1 and the fit by a solid thick line�.

The linewidth �0 increases basically like 
D2 /J �inset of
Fig. 1� with a rather small prefactor, 
. The prefactor is size
dependent and is difficult to extrapolate to the thermody-
namic limit. For this reason �and following the discussion of
Sec. III�, the special double-peak line shape may or may not
survive in the thermodynamic limit. For molecular rings, this
should be relevant and the prefactor is found to be 

=0.090�N=12�, 0.071�N=14�, and 0.059�N=16�.

We now emphasize the difference between the
Dzyaloshinskii-Moriya model and the XXZ model, as far as
the response is concerned. In Fig. 2, we show the resonance
line in absolute values for the two models with coupling
strengths related by the mapping 2�= �D /J�2. The two reso-
nance lines are undistinguishable at low energies �inset of
Fig. 2� but differ at high energy in the background �Fig. 2�.
The difference comes from the small oscillating staggered
field �or umklapp contribution from the spin fluctuations at
q=�� that the mapping induces,8,9

Sxx��� = cos2� S̃xx��� + sin2 �S̃u
xx��� , �6�

where Sxx and S̃xx correspond to the Dzyaloshinskii-Moriya

and XXZ model, respectively, and S̃u
xx��� is the q=� re-

sponse. The second term gives extra “forbidden” resonances

�or “satellite” lines� at low temperatures.22 These resonances
have disappeared at high temperatures. Instead, this contri-
bution gives a broad background, covering the whole energy
range. This is the origin of the difference of the two curves at
high energy. To summarize, the resonance line shape as
shown in Fig. 1 is the same for both the Dzyaloshinskii-
Moriya and the XXZ models as long as we use the corre-
spondence 2�= �D /J�2 �and not too small intensities�.

Note that we have found deviations about the universality
of the low-energy line shape at strong anisotropies �either
Dzyaloshinskii-Moriya or XXZ�. This is expected because,
for �=1, the model is XY and the line shape is known to be
exactly Gaussian.23 We have recovered this result numeri-
cally: we have found no difference with a Gaussian at �=1
�no finite-size effects�. The way it crossovers from a Gauss-
ian function to four Lorentzians �by reducing � from 1� is to
depress the response at �=h and let side peaks appear, which
decrease in height. It is therefore clear that in the range of
strong anisotropies �D�J or ��0.5�, the line shape is not
universal at all. It is worth noting that the line shape can also
be calculated in exact soluble models which are extensions
of the XY model.24

III. KUBO-TOMITA THEORY, EXACT CALCULATION OF
THE MEMORY FUNCTION

We now discuss the Kubo-Tomita theory in order to un-
derstand why the line shape is not a single Lorentzian in such
finite-size systems and go beyond the limitations imposed by
finite-size calculations. A way to clarify the assumptions is to
start with the more general Mori-Zwanzig formalism.3,4 In
this framework, the spin fluctuations �those that do not de-
pend on time through the magnetization function� are viewed
as a random noise �the bath� that forces the magnetization to
equilibrate. The system is then governed by a Langevin
equation,

d

dt
Sx�t� = − �

0

t

d���t − ��Sx��� + ��t� 
 F�t� , �7�

where the “memory function” �or self-energy� ��t� is related
to the correlation function of the random force ��t� by the
fluctuation-dissipation theorem. However, neither ��t� nor
��t� are easily expressed in terms of the original spin Hamil-
tonian because of unknown projection operators.3,4 It is only
at second order in perturbation theory �here in the
anisotropy�,4 that ��t� is given by the total force correlation
function

��t� = �F�t�F†�0�� , �8�

where the total force �or torque� is given by F�t�
= ieiHt�H ,Sx�e−iHt. Since F�t� is linear in the anisotropy, ��t�
is second order, and perturbation theory holds for small
anisotropies. Equation �8� is precisely what Kubo and Tomita
have obtained directly by perturbation theory.

The second assumption is that Sx�t� is slow compared to
the relaxation time of the force �local equilibrium�.4 It is true
that the force F is not conserved by the dynamics �whereas
Sx�t� is nearly conserved� and evolves on a short time scale
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FIG. 2. �Color online� ESR line shape �high-energy tail� for a
one-dimensional chain �T�J� for the Dzyaloshinskii-Moriya and
XXZ models �using 2�=D2 /J2�. The response is identical only at
low energy �inset�.
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of order 1 /J,1,2 but the absence of memory at long times is
an assumption. If it is true �the system is Markovian�, Eq. �7�
simply defines a relaxation time, �c �or Onsager’s transport
coefficient�

1

�c
= �

0

+�

d����� . �9�

In this “fast” regime, the line shape is therefore always
Lorentzian with half width at half maximum �linewidth�
given by 1 /�c. In contrast, if slow hydrodynamic modes are
present, the spin motion may be diffusive.5,6 In this case, the
memory function has a power-law tail ��t��1 / td/2 and Eq.
�9� diverges for d�2. In fact, this signals a change in line
shape and the general solution of Eq. �7� for the correlation
function is

Sxx��� =
1

4�

�����
�� + ������2 + �����2 �10�

with ����= i�0
+���t�ei�tdt the Laplace transform of the

memory function, and �����, ����� are its real and imagi-
nary parts. If “slow” processes are present, ���� varies con-
siderably near �=0 and the line shape deviates from a
Lorentzian. The form of ��t� is therefore of importance and
various assumptions have been used. The original �third� as-
sumption of Kubo-Tomita was to use a Gaussian decay for
��t�, based on the short-time evolution given by perturbation
theory,

��t� = �
n

�it�n

n!
Mn+2, �11�

where Mn+2 are the moments, M2=��0�= �F2�, M3
= ��H ,F�F�, M4= ��H ,F��F ,H��, etc. They can be calculated
exactly at high temperatures. For the XXZ model �5�,
M2 /J2=�2 /4, M3=0, and M4 /J4=3�2 /8−�3 /4+�4 /4. So at
short times, ��t� /��0�=1− 1

2!�e
2t2 with the definition �e

2



M4

M2
. Kubo and Tomita have postulated that

��t� = ��0�exp�− �e
2t2/2� �12�

with �e
2 matching that of the short-time expansion, Eq. �11�,

at second order, �e
2
M4 /M2=3J2 /2−�J2+�2J2. Equation

�12� then basically corresponds to assuming a resummation
of an infinite number of terms. The Kubo-Tomita formula for
the linewidth is then at high temperature,

1

�c
=
�

2

M2

�e
�
�

3

�2

4
J . �13�

To summarize, the assumptions that lead to Eq. �13� are �i�
perturbation theory in ��1, �ii� Markovian behavior, and
�iii� perturbation theory in time t�1 /J.

In order to go beyond perturbation theory and test these
assumptions, we have calculated

��t� =
1

Z�
n,p

e−�En	�n	�H,Sx�	p�	2ei�En−Ep�t �14�

by exact diagonalization of the Hamiltonian �see Eq. �3� for
the definitions�. We restrict ourselves again to high tempera-

tures �e−�En =1� and have computed all matrix elements.
Here we calculate quantities for the model �5� which makes
no difference as we mentioned. At short times �Fig. 3�, ��t�
decreases indeed on a time scale �1 /J and the Kubo-Tomita
Gaussian decay holds for tJ�1.5 �perturbative regime�. For
tJ
1.5, ��t� decreases slowly and by comparing the results
for different sizes, we see no difference between the N=16
and N=18 curves for tJ�6.5. We can therefore be confident
that for tJ�6.5, ��t� is representative of the thermodynamic
limit. The result is different from the Gaussian decay and
there is a considerable slowing down for 1.5� t�6.5. We
have here access to a regime that would be difficult to access
by perturbation theory. We will come back on this nonper-
turbative regime in the next section. Above tJ�6.5, finite-
size effects dominate. In particular, at longer times �Fig. 4�,
��t� acquires an additional broad peak at about taJ�10–17.
ta increases almost linearly with the length of the chain N
and its amplitude decreases with �1 /N3/2 �as shown by the
fit in the inset of Fig. 4�. A possible interpretation is that this
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additional peak is related to the torque traveling around the
ring. In this case, indeed the arrival time is expected to be
controlled by J and weakly sensitive to the anisotropy, which
is what we found. In fact if we take the des Cloizeaux-
Pearson speed of the hydrodynamic excitation, the arrival
time is ta=N /c=2N /��6–11. This additional peak together
with the long-time decay should be at the origin of the
“double-peak” structure observed in Fig. 1. A simple way to
see the effect of a long-time decay of ��t� is to consider the
Gaussian memory function of Eq. �12� with a long-time scale
1 /�e�1 /J. The Laplace transform, ����, is a sum of a
Gaussian function �imaginary part� and a Dawson function
�real part�, and Sxx��� �Eq. �10�� acquires a double-peak
structure.25 This occurs when the time scale of the memory
function becomes comparable to that of the spin motion
1 /�e��c


2� / �2+
��. For a general ��t�, the change in
sign of the curvature of Eq. �10� at �=0 signals the occur-
rence of a double-peak structure. This happens when �c
� �t�+ �t2�1/2, where �tn�= �1 /n!��0

+���t�tndt /�0
+���t�dt. As a

consequence, there may be a critical size above which the
double-peak structure disappears. These long-memory pro-
cesses �non-Markovian� explain why deviations from a
Lorentzian line shape take place in finite-size systems.

IV. RESONANCE IN ONE-DIMENSIONAL
THERMODYNAMIC SYSTEMS

In the previous sections, we have given the exact line
shape of a finite-size system. As we have explained, it is
difficult to extrapolate it in the thermodynamic limit. We
now discuss a way to obtain the resonance line in the ther-
modynamic limit by using some additional assumptions. The
crucial point is to obtain the memory function ��t� but exact
diagonalization suffers from finite-size effects at long times.
It is therefore interesting to assume a long-time behavior and
test its consequences on the resonance line, which can then
be compared to experiments. For this, we will interpolate
between the exact result at short times �up to the time where
��t� has converged for N→�, i.e., tJ=6.5 in Fig. 3� and the
assumed hydrodynamic behavior at long times.

First we note that the slowing down obtained in the non-
perturbative regime �1.5� tJ�6.5� already leads to increase
the linewidth compared with Kubo-Tomita. If we assume, for
instance, an abrupt cutoff at tJ=6.5 �remember that for tJ

6.5, ��t� is dominated by finite-size effects�, Eq. �9� de-
fines a lower bound for the linewidth. The lower bound, fit-
ted by �0.41�2, is yet larger than the Kubo-Tomita formula,
0.26�2 �Eq. �13�� �both shown in Fig. 5�.

We now consider the idea that the long-time behavior may
be universal and governed by a spin-diffusion equation. We
recall that the diffusion of ��t� is obtained assuming a RPA
decoupling of the four-spin correlations in ��t�,5,6

�Sq
+�t�Sq

z�t�Sq�
z �0�Sq�

− �0����Sq
+�t�Sq�

− �0���Sq
z�t�Sq�

z �0��. Since Sz

is conserved, the long-wavelength modes are supposed to be
diffusive with �Sq

z�t�S−q
z �0���e−Dq2t. On the other hand,

�Sq
+�t�S−q

− �0���e−Dq2te−t/�c is cutoff by the anisotropy, where
�c is precisely the characteristic time scale we are looking
for, as emphasized by Reiter and Boucher.16 When summed
over q, this leads at long times �t�1 /J� to

��t� �
e−t/�0

td/2 , �15�

where �0 is the cutoff time of the memory function: within
the self-consistent RPA, �0=�c. As explained above, we can-
not test this behavior quantitatively by exact diagonalization,
although the slowing down for 1.5� tJ�6.5 seems to indi-
cate a crossover regime. To test the idea of spin diffusion,
Fabricius and McCoy have examined directly the two-spin
autocorrelation function for the N=16 chain at high tempera-
tures and concluded that the exponent may be closer to 0.7 in
one dimension and increases with �.26 So the exponent 1/2
may be underestimated, thus leading to overestimate the line-
width. Since �c now explicitly enters in Eq. �15�, Eq. �9� is a
self-consistent equation. This is precisely the equation that
Reiter and Boucher solved.16 Instead of relying on RPA to
obtain the prefactors, here we shall assume a long time tail of
the form �15� and interpolate to the short-time behavior we
have obtained by exact diagonalization. The idea of interpo-
lating the two types of behavior was used by Gulley et al.,15

together with perturbative short-time expansion. The interpo-
lation provides a “variational” function ��t ,�c� and we solve
�in a similar spirit as in Ref. 16� the �now� self-consistent Eq.
�9� with the new ��t ,�c�. In fact the long-tailed ��t� changes
the line shape according to Eq. �10�. In this case, Eq. �9�
does not hold anymore and we calculate the linewidth using
instead the self-consistent equation, Sxx�1 /�c�=Sxx�0� /2,
where Sxx��� is the solution given by Eq. �10�. The differ-
ence between the two procedures is in fact quite small �from
4% to 7% depending on ��, and we show only the full self-
consistent result in Fig. 5 �squares�. This provides an estima-
tion of the linewidth for a pure one-dimensional model
within the spin-diffusion assumption.

It is now possible to relax the assumption that the cutoff
�0=�c in Eq. �15�. It does not seem to be physically reason-
able to take �0
�c at high temperatures because it would
mean having finite torque-torque correlations but no spin-
spin correlation after a certain time.27 In this case, Eq. �9�
leads to a divergence of the linewidth �
�0 whereas the use
of the correct line shape provides a less diverging result
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�shown in the inset of Fig. 6�. The other assumption �0��c is
physically more relevant for two reasons. First �0 may be an
intrinsic characteristic time of the one-dimensional model
that terminates the spin diffusion before the anisotropy cut-
off: �0=�c is valid only at the RPA level. Second, �0 may be
an extrinsic “noise:” there are additional interactions, such as
interchain couplings, that also tend to terminate the
diffusion.28–30 In fact it was argued that �0J depends on the
interchain coupling J� through �J� /J�−4/3, which may indeed
be a shorter time scale.28 On the other hand, following the
exact result at short times, the cutoff cannot be chosen
smaller than �0J=6.5 �but of course if J� /J becomes very
strong, then one has to recalculate the short-time behavior as
well�. The linewidth decreases when �0 decreases; as a con-
sequence, we regard the region represented in Fig. 5 by a
hatched area as possibly relevant for experiments �we con-
sider �0 as an unknown parameter�. As we now explain, in
this region, the line shape is a function of �0, thus giving the
possibility to say how long the motion is diffusive and if it is
diffusive at all.

In Fig. 6, we give the line shapes �normalized by the
area�, computed from Eq. �10�, for different cutoffs of spin
diffusion, �0. At small �0��c, the line shape is always
Lorentzian �straight dashed line in the inverse representation
on the right�. For the self-consistent cutoff �0=�c, the line
shape strongly deviates from a Lorentzian. The deviation is
less than that found by using the RPA calculation with a
spin-diffusion tail �which is given by the Fourier transform
of exp�−At3/2� �see intermediate dashed line�� �Ref. 5� and
still far from the Gaussian profile �upper dashed line�. For
�0
�c we find a double-peak structure similar to that found
in finite-size chains. We have therefore two possibilities for
the double-peak structure as a function of the system size:
either it survives in the thermodynamic limit �which means
that for some reasons �0 could remain larger than �c� or it
disappears. For a general �0, the inverse line shape changes
smoothly as function of �0 and therefore a comparison of the
line shape with experiment would provide a measure of the
cutoff time, �0.

The linewidth �Fig. 5�, together with the line shape �Fig.
6�, can therefore be used to extract the anisotropy strength

and test the spin-diffusion assumption. Note that in one di-
mension, because of the mapping we have discussed, it is not
possible to tell whether the linewidth is due to the
Dzyaloshinskii-Moriya or exchange anisotropies:8,9 both
contribute to an equal amount, using the replacement 2�

�D /J�2.

V. RESONANCE IN TWO-DIMENSIONAL
THERMODYNAMIC SYSTEMS

In two dimensions, the pattern of Dzyaloshinskii-Moriya
vectors may generally be more complicated, depending on
the symmetries of the crystal structure. In particular, it is not
always possible to perform the mapping onto an exchange
anisotropy because of the frustration that the closed loops of
the lattice introduce �irreducible components�. In this case,
there seems to be no reason why the Dzyaloshinskii-Moriya
term should contribute to the linewidth by an equal amount
as the exchange anisotropy, and we shall see that it does not.

We have considered the example of the kagome antiferro-
magnet where the pattern of Dzyaloshinskii-Moriya vectors
precisely have irreducible components.31 These are the z
component of the Dzyaloshinskii-Moriya field. We have cal-
culated the memory function ��t� by exact diagonalizations
of clusters of up to 15 spins. We see that the result is weakly
dependent on the strength of the Dzyaloshinskii-Moriya cou-
pling, D �Fig. 7, left�, except through ��0�=D2 /8 �at high
temperatures�. As a consequence, the linewidth should vary
essentially like D2 /J. We now proceed like in one dimension
to obtain a quantitative estimation of the prefactor. In fact
finite-size effects are somehow more difficult to handle be-
cause we have less sizes available. In addition, we see a
parity effect between clusters of odd and even sizes �Fig. 7,
right�. If we had only the N=12 cluster, it would be tempting
to conclude that Kubo-Tomita is essentially exact in two di-
mensions. However, the N=15 cluster deviates from Kubo-
Tomita. It is not clear whether this is an artifact due to the
odd size of the cluster. We now proceed with the interpola-
tion to the spin-diffusion assumption �which is in 1 / t in two
dimensions�. Since we see no clear slowing down in the
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present case, we have used two different times for the inter-
polation, tJ=1 �which certainly gives an upper bound� or
tJ=1.5 �see the two dashed lines in Fig. 7�.

The two results of the self-consistent calculation are
shown in Fig. 8 �squares� and are fitted by 1 /�c
=0.32�D /J�2 and 0.22�D /J�2 for small anisotropy. The line-
width is therefore larger than in one dimension. To put num-
bers, if we take D=0.2J, the linewidth is 6.0	10−3J �Fig. 8�,
whereas for the same D in one dimension, we have to take
�= �D /J�2 /2=0.02, and the linewidth is 1.0	10−3J �Fig. 5�.
Now, as in one dimension, the area below the self-consistent
result in Fig. 8 could be experimentally relevant �because of
interplane couplings, for instance�. Away from the Kubo-
Tomita line �lower bound in Fig. 8�, we can see in Fig. 9 that
the line shape starts to deviate from a Lorentzian �but less
than in one dimension�.

We now apply this to the S= 1
2 kagome compound

ZnCu3�OH�6Cl3.33 The analysis of the linewidth using the
Kubo-Tomita formula provided D /J=0.08.32 If we assume
that spin diffusion takes place, the self-consistent calculation

reproduces the same experimental linewidth providing
0.044�D /J�0.08 �see dashed line in Fig. 8�. It is difficult
to compare directly with the ESR line shape of
ZnCu3�OH�6Cl3 because the experiment was done on powder
samples.32 One needs to average over all directions of the
field and we have assumed a single direction here. Nonethe-
less, Fig. 10 shows that the deviations from a Lorentzian in
the wings �here we restrict to ��h, which is not spoiled by
an impurity line� can be accounted for by the spin-diffusion
assumption and D /J�0.05. The result may be partly coinci-
dental because there are other sources of deviations, such as
the chemical disorder and the polycrystalline nature of the
sample. Still we note that this coupling strength is not incom-
patible with the analysis of NMR which stated that D /J
�0.05.34 In any case, from the ESR linewidth alone, we can
conclude that 0.044�D /J�0.08.

VI. CONCLUSION

First, for finite-size chains �zero dimension�, we have
found a special �and exact� double-peak line shape �Fig. 1�
which may be interesting in molecular magnets having the
geometry of a ring, especially because the line shape seems
insensitive to the strength anisotropy �up to a rescaling� and
size �in the limit of small size�. We have stressed that such a
line shape usually results from non-Markovian correlations
in the memory function, which we did find in the calculation
of ��t� in this case.

In the thermodynamic limit, we have obtained the elec-
tron spin resonance in one and two dimensions for the
anisotropies relevant to S= 1

2 systems, by computing the
memory function. We have provided the exact numerical re-
sult for ��t� at short times and used it as an initial condition
for a long-time spin-diffusion tail, which was taken as an
assumption. We have then calculated the characteristic relax-
ation time �or linewidth� self-consistently, as well as the line
shape.

In one dimension, the spin-diffusion assumption leads to
enhance the linewidth by a factor that we have quantitatively
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estimated �see Fig. 5 �squares��. It is about four times larger
than the perturbative Kubo-Tomita’s result. When this is true,
the line shape strongly differs from a Lorentzian. To compare
with experiments, it is interesting to consider another time
scale, �0 which is the cutoff of the memory function �the
physical reason may be intrinsic or extrinsic; for instance,
because of interchain couplings�. When �0 is reduced from
its self-consistent value, the linewidth decreases and the line
shape crossovers to a Lorentzian. A comparison of both the
linewidth and line shape should therefore allow experimen-
tally to determine the anisotropy strength and �0 �with a bet-
ter accuracy than the use of the Kubo-Tomita formula�. Note
that, given a resonance line, we can extract the anisotropy
parameter � but we cannot tell whether � is due to the ex-
change anisotropy or the Dzyaloshinskii-Moriya field �unless
the later is forbidden by symmetry�: both contribute at the
same order of magnitude in one dimension.8,9

In two dimensions, the situation is different and there are
two distinct cases: �1� irreducible case �the Dzyaloshinskii-
Moriya vectors do not sum to zero while going around
closed loops of the lattice�. We have argued that the line-
width should vary essentially like D2 /J. �2� Reducible case
�the Dzyaloshinskii-Moriya vectors do sum to zero�. An ex-
act transformation maps again the model onto an exchange
anisotropy and, as in one dimension, both contribute at the
same order ��2J�D4 /J3�.

The result in the irreducible case is in fact what the Kubo-
Tomita formula gives, qualitatively. Quantitatively, the pref-
actor is bounded below by the Kubo-Tomita result. In fact if
we restrict to the cluster of even size �N=12�, we see an
excellent agreement with the Gaussian decay and we would
be tempted to conclude that we see no quantitative difference
with Kubo-Tomita. By computing the next cluster �N=15�,
however, the difference turns out to be larger. While it is

difficult to know if the difference comes from the odd size of
the cluster, we have given in the later case the interpolation
to the 1 / td/2�d=2�. The self-consistently calculated linewidth
is in this case close to 0.22D2 /J or 0.32D2 /J �Fig. 8� depend-
ing on the interpolation time, but still larger than the Kubo-
Tomita’s formula, 0.11D2 /J �and in between, if interplane
couplings are present�.

We have applied the present theory to the two-
dimensional kagome ZnCu3�OH3�Cl2,33 and concluded that
0.044�D /J�0.08 from the ESR linewidth. In addition, the
spin-diffusion assumption seems to account for the devia-
tions of the line shape from a Lorentzian �Fig. 10� but single
crystals are needed to avoid additional averaging effects. In
this compound, the out-of-plane Dzyaloshinskii-Moriya
component is irreducible while the in plane is reducible.31

For single crystals, we therefore predict a much larger line-
width when the field is perpendicular to the plane.

We also note that, in absolute values, the irreducible
Dzyaloshinskii-Moriya interactions in two dimensions in-
duce a linewidth larger than in one dimension �where the
Dzyaloshinskii-Moriya interactions are always reducible�.
The essential factor that governs the linewidth in low-
dimensional S= 1

2 systems is not the strength of the diver-
gence 1 / t1/2 versus 1 / t of the spin diffusion �assuming it
exists� but rather the reducible versus irreducible character of
the Dzyaloshinskii-Moriya interaction. We have illustrated
this on the kagome lattice but, at high temperatures, the
shape of the lattice should not matter �as long as there are
closed loops with Dzyaloshinskii-Moriya vectors not sum-
ming to zero�.

ACKNOWLEDGMENT

We would like to thank A. Zorko for providing us with the
experimental data of the line shape �Ref. 32�.

1 P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269
�1953�.

2 R. Kubo and K. Tomita, J. Phys. Soc. Jpn. 9, 888 �1954�.
3 H. Mori, Prog. Theor. Phys. 33, 423 �1965�.
4 R. Zwanzig, Phys. Rev. 124, 983 �1961�.
5 R. E. Dietz, F. R. Merritt, R. Dingle, Daniel Hone, B. G. Silber-

nagel, and Peter M. Richards, Phys. Rev. Lett. 26, 1186 �1971�.
6 H. Benner and J.-P. Boucher, in Magnetic Properties of Layered

Transition Metal Compounds, edited by L. J. de Jongh �Kluwer,
Dordrecht, 1990�, p. 323.

7 M. Oshikawa and I. Affleck, Phys. Rev. Lett. 82, 5136 �1999�.
8 J. Choukroun, J.-L. Richard, and A. Stepanov, Phys. Rev. Lett.

87, 127207 �2001�.
9 M. Oshikawa and I. Affleck, Phys. Rev. B 65, 134410 �2002�.

10 I. Yamada, M. Nishi, and J. Akimitsu, J. Phys.: Condens. Matter
8, 2625 �1996�.

11 R. M. Eremina, M. V. Eremin, V. N. Glazkov, H.-A. Krug von
Nidda, and A. Loidl, Phys. Rev. B 68, 014417 �2003�.

12 T. Kaplan, Z. Phys. B: Condens. Matter 49, 313 �1983�; L.
Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. Rev.
Lett. 69, 836 �1992�.

13 M. V. Eremin, D. V. Zakharov, R. M. Eremina, J. Deisenhofer,
H.-A. Krug von Nidda, G. Obermeier, S. Horn, and A. Loidl,
Phys. Rev. Lett. 96, 027209 �2006�.

14 M. V. Eremin, D. V. Zakharov, H.-A. Krug von Nidda, R. M.
Eremina, A. Shuvaev, A. Pimenov, P. Ghigna, J. Deisenhofer,
and A. Loidl, Phys. Rev. Lett. 101, 147601 �2008�.

15 J. E. Gulley, Daniel Hone, D. J. Scalapino, and B. G. Silberna-
gel, Phys. Rev. B 1, 1020 �1970�.

16 G. F. Reiter and J.-P. Boucher, Phys. Rev. B 11, 1823 �1975�.
17 A. Zorko, D. Arčon, H. van Tol, L. C. Brunel, and H. Kageyama,

Phys. Rev. B 69, 174420 �2004�.
18 O. Cépas, K. Kakurai, L. P. Regnault, T. Ziman, J. P. Boucher, N.

Aso, M. Nishi, H. Kageyama, and Y. Ueda, Phys. Rev. Lett. 87,
167205 �2001�.

19 Y. F. Cheng, O. Cépas, P. W. Leung, and T. Ziman, Phys. Rev. B
75, 144422 �2007�.

20 S. Miyashita, T. Yoshino, and A. Ogasahara, J. Phys. Soc. Jpn.
68, 655 �1999�; A. Ogasahara and S. Miyashita, ibid. 72, 44
�2003�.

21 For a finite-size system, one could argue that there is no need for
broadening as it is the exact result once the Hamiltonian is

EL SHAWISH, CÉPAS, AND MIYASHITA PHYSICAL REVIEW B 81, 224421 �2010�

224421-8

http://dx.doi.org/10.1103/RevModPhys.25.269
http://dx.doi.org/10.1103/RevModPhys.25.269
http://dx.doi.org/10.1143/JPSJ.9.888
http://dx.doi.org/10.1143/PTP.33.423
http://dx.doi.org/10.1103/PhysRev.124.983
http://dx.doi.org/10.1103/PhysRevLett.26.1186
http://dx.doi.org/10.1103/PhysRevLett.82.5136
http://dx.doi.org/10.1103/PhysRevLett.87.127207
http://dx.doi.org/10.1103/PhysRevLett.87.127207
http://dx.doi.org/10.1103/PhysRevB.65.134410
http://dx.doi.org/10.1088/0953-8984/8/15/012
http://dx.doi.org/10.1088/0953-8984/8/15/012
http://dx.doi.org/10.1103/PhysRevB.68.014417
http://dx.doi.org/10.1007/BF01301591
http://dx.doi.org/10.1103/PhysRevLett.69.836
http://dx.doi.org/10.1103/PhysRevLett.69.836
http://dx.doi.org/10.1103/PhysRevLett.96.027209
http://dx.doi.org/10.1103/PhysRevLett.101.147601
http://dx.doi.org/10.1103/PhysRevB.1.1020
http://dx.doi.org/10.1103/PhysRevB.11.1823
http://dx.doi.org/10.1103/PhysRevB.69.174420
http://dx.doi.org/10.1103/PhysRevLett.87.167205
http://dx.doi.org/10.1103/PhysRevLett.87.167205
http://dx.doi.org/10.1103/PhysRevB.75.144422
http://dx.doi.org/10.1103/PhysRevB.75.144422
http://dx.doi.org/10.1143/JPSJ.68.655
http://dx.doi.org/10.1143/JPSJ.68.655


given. In fact there are many additional sources of natural broad-
ening. Even if these were absent, experimentalists usually modu-
lates the external field by a �very� small-frequency component,
thus artificially broadening each peak.

22 T. Sakai, O. Cépas, and T. Ziman, J. Phys. Soc. Jpn. 69, 3521
�2000�.

23 U. Brandt and K. Jacoby, Z. Phys. B 25, 181 �1976�.
24 J. H. H. Perk and H. W. Capel, Physica A 100, 1 �1980�; 92, 163

�1978�.
25 A. Abragam and M. Goldmann, Nuclear Magnetism: Order and

Disorder �Clarendon Press, Oxford, 1982�, p. 30.
26 K. Fabricius and B. M. McCoy, Phys. Rev. B 57, 8340 �1998�.
27 At lower temperatures, this is not excluded though. Indeed it is

possible that if a spin-nematic state develops at some critical
temperature, the four-spin correlation function does slow down,
whereas the spin-spin correlation function does not. If this is so,

we would predict a strong change in the resonance line shape.
28 M. J. Hennessy, C. D. McElwee, and P. M. Richards, Phys. Rev.

B 7, 930 �1973�.
29 J.-P. Boucher, M. Ahmed Bakheit, M. Nechtschein, M. Villa, G.

Bonera, and F. Borsa, Phys. Rev. B 13, 4098 �1976�.
30 T. T. P. Cheung and Z. G. Soos, J. Chem. Phys. 69, 3845 �1978�.
31 O. Cépas, C. M. Fong, P. W. Leung, and C. Lhuillier, Phys. Rev.

B 78, 140405�R� �2008�.
32 A. Zorko, S. Nellutla, J. van Tol, L. C. Brunel, F. Bert, F. Duc, J.

C. Trombe, M. A. de Vries, A. Harrison, and P. Mendels, Phys.
Rev. Lett. 101, 026405 �2008�.

33 For a review, see P. Mendels and F. Bert, J. Phys. Soc. Jpn. 79,
011001 �2010�.

34 I. Rousochatzakis, S. R. Manmana, A. M. Läuchli, B. Normand,
and F. Mila, Phys. Rev. B 79, 214415 �2009�.

ELECTRON SPIN RESONANCE IN S= 1
2… PHYSICAL REVIEW B 81, 224421 �2010�

224421-9

http://dx.doi.org/10.1143/JPSJ.69.3521
http://dx.doi.org/10.1143/JPSJ.69.3521
http://dx.doi.org/10.1007/BF01320179
http://dx.doi.org/10.1016/0378-4371(80)90147-8
http://dx.doi.org/10.1103/PhysRevB.57.8340
http://dx.doi.org/10.1103/PhysRevB.7.930
http://dx.doi.org/10.1103/PhysRevB.7.930
http://dx.doi.org/10.1103/PhysRevB.13.4098
http://dx.doi.org/10.1063/1.437050
http://dx.doi.org/10.1103/PhysRevB.78.140405
http://dx.doi.org/10.1103/PhysRevB.78.140405
http://dx.doi.org/10.1103/PhysRevLett.101.026405
http://dx.doi.org/10.1103/PhysRevLett.101.026405
http://dx.doi.org/10.1143/JPSJ.79.011001
http://dx.doi.org/10.1143/JPSJ.79.011001
http://dx.doi.org/10.1103/PhysRevB.79.214415

