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Using large-scale Monte Carlo calculations, we consider strongly disordered Heisenberg models on a cubic
lattice with missing sites �as in diluted magnetic semiconductors such as Ga1−xMnxAs�. For disorder ranging
from weak to strong levels of dilution, we identify Curie temperatures and calculate the critical exponents �, �,
�, and �; we find, per the Harris criterion, good agreement with critical indices of the pure Heisenberg model
where there is no disorder component. Moreover, we find that thermodynamic quantities �e.g., the second
moment of the magnetization per spin� self-average at the ferromagnetic transition temperature with relative
fluctuations tending to zero with increasing system size. We directly calculate effective critical exponents for
T�Tc, yielding values which may differ significantly from the critical indices for the pure system, especially
in the presence of strong disorder. Ultimately, the difference is only apparent, and eventually disappears when
T is very close to Tc.
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I. INTRODUCTION

Technologically relevant magnetic materials such as di-
luted magnetic semiconductors �DMS� are characteristically
strongly disordered due to the low concentration of random
magnetic moments �e.g., Ga1−xMnxAs where 5–12 % of the
Ga sites are occupied by substituent Mn ions�. DMS materi-
als such as Ga1−xMnxAs have been modeled theoretically us-
ing a classical Heisenberg model on an fcc lattice where the
Hamiltonian is H=�i,jJijSi ·S j with J�rij� being a carrier-
�hole-� mediated random indirect exchange coupling be-
tween moments separated by a distance rij given by J�r�
=J0e−r/lr−4�sin�2kFr�−2kFr cos�2kFr��. kF= � 3

2�2nc�1/3 is the
Fermi wave number, nc is the hole density, and l is the damp-
ing scale.

While individual parameters such as the ferromagnetic
transition temperature Tc have been calculated in theoretical
studies,1,2 the critical behavior of strongly disordered Heisen-
berg models on a three-dimensional �3D� lattice has not been
understood in detail in the context of a direct numerical cal-
culation. At the ferromagnetic transition, thermodynamic
quantities scale as power laws in the reduced temperature t
= �T−Tc� /Tc with, e.g., the magnetization varying as m� t�,
the correlation length scaling as �� t−�, and 	� t−� for the
magnetic susceptibility; hence critical exponents such as �,
�, and � �up to prefactors specific to the model under con-
sideration� completely specify the critical behavior near Tc
where t
1.

Our task is to determine the extent to which the critical
behavior of the three-dimensional Heisenberg model is influ-
enced by disorder �in the form of randomly removed mag-
netic moments�, and we have found the most singular con-
tributions to critical behavior to be unaffected by disorder
whether only a few magnetic moments are removed or the
majority of magnetic impurities are missing in cases of
strong disorder. A theoretical result �derived from a
renormalization-group �RG� calculation� known as the Harris
criterion3 holds that the sign of the specific-heat exponent �

determines whether the critical exponents are altered. Spe-
cifically, although modifications in the universality class are
expected for ��0, the Harris criterion predicts that disorder
will not affect the critical exponents when ��0. The hyper-
scaling identity �=2−d� implies that the condition for stable
critical behavior is ��2 /d, where d=3 is the dimensionality
of our system. In particular, since �=0.714�0.67 for the
Heisenberg model,4 the Harris result precludes disorder-
induced shifts in the critical exponents. With careful finite-
size scaling analysis, we have indeed confirmed that critical
behavior in the disordered models conforms to the 3D
Heisenberg universality class. An important finding of our
detailed numerical study is, however, the fact that the effec-
tive critical exponents of the strongly disordered model may
very well manifest an apparent violation of the Harris crite-
rion �i.e., a deviation from the corresponding pure Heisen-
berg model values� away from the critical temperature, thus
possibly considerably complicating the interpretation of ex-
perimental data.

The results of our numerical calculations are consistent
with experiment where the local critical behavior of thermo-
dynamic quantities such as the magnetic susceptibility 	
�e.g., the slope �eff=d log�	� /d log�t� of the log-log plot in
the case of the magnetic susceptibility� differs from the criti-
cal indices of the pure case with c=1.0 for intermediate val-
ues of the reduced temperature. Ultimately, the effective
critical exponents converge for sufficiently small t to the
critical behavior of the model with no disorder. Similarly, we
examine finite-size systems, and we would obtain results for
critical behavior which differ from those of the pure model if
we extrapolate to the bulk limit in a naïve manner. However,
by taking into account corrections to scaling, we compensate
for finite-size effects and obtain critical exponents identical
to those of the pure Heisenberg model.

Using large-scale Monte Carlo simulations, we calculate
critical exponents for the disordered Heisenberg model on a
3D lattice. Hence, we show that the universality class re-
mains unaltered from regimes where the model is weakly
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disordered and only a few magnetic moments are removed to
cases such as c=0.4 �the site-percolation threshold for the
simple cubic lattice is c=0.3116 where on average fewer
than half of the magnetic ions participate in a ferromagneti-
cally ordered phase�.

Another component of the Harris criterion is the predic-
tion that thermodynamic variables such as the magnetization
m and magnetic susceptibility 	 do �do not� self-average at
Tc in the bulk limit when �� �� �2 /3. The extent of self-
averaging may be quantified via the parameter g2= ���m2�2�
− ��m2��2� / ��m2��2,5 the relative variance of ��m2�� with re-
spect to disorder, where m is the magnetization, angular
brackets indicate thermal averages, and square brackets refer
to disorder averaging. For the Heisenberg model, we find
self-averaging to be intact with g2 ultimately decreasing after
reaching a maximum for moderate-sized systems containing
on the order of a few hundred magnetic impurities.

In Sec. II, we discuss details of our numerical techniques
for determining critical behavior of the disordered Heisen-
berg model. Subtleties include the need for a careful calcu-
lation of the Curie temperature Tc, and taking into account
corrections to scaling which would otherwise lead to the con-
clusion that disorder has affected the critical behavior of the
Heisenberg model; we find that the universality class is not
influenced by disorder, being identical to that of the pure
model.

In Sec. III, we give results in tabular form for the critical
exponents obtained in our calculation. Explicit numerical
values are given for the critical indices �, �, �, and � for
disorder ranging from very weak �e.g., c=0.95� to quite
strong �i.e., c=0.4�. In each case, we also provide the corre-
sponding critical exponent �calculated by us� for the pure
model, which is consistent with the best and most recent
values given in the literature.

In Sec. IV, we provide the apparent critical exponents
which differ from those of the pure model and would be
obtained for system sizes that are not sufficiently large. Simi-
larly, if one is not close enough to Tc in experiment �gener-
ally, the reduced temperature t= �T−Tc� /Tc should be less
than 10−3 to obtain the critical exponents of the pure Heisen-
berg model in systems with disorder�, spurious apparent
critical indices will be measured. This apparent violation of
the Harris criterion, even very slightly away from the critical
temperature, is an important cautionary remark following di-
rectly from our Monte Carlo studies of the disordered model.

Finally, in the appendix �Sec. V�, we provide the Monte
Carlo numerical results for thermodynamic variables such as
the magnetization m and magnetic susceptibility 	. Also in-
cluded are the corresponding theoretical results taking into

TABLE I. Tc values �with the uncertainty in the last digit for
each concentration c given�. The Tc results are given in units of
J0 /kB, whereas the inverse temperatures Kc are expressed in terms
of kB /J0.

Concentration Tc �units of J0 /kB� Kc �units of kB /J0�

c=1.0 1.4430 0.6930

c=0.95 1.3543 0.7384

c=0.90 1.2641 0.7911

c=0.80 1.0787 0.92705

c=0.70 0.88590 1.1288

c=0.60 0.6840 1.462

c=0.50 0.4701 2.127

c=0.40 0.2361 4.235
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FIG. 1. Curie temperatures calculated from Monte Carlo �filled
circles� for a range of disorder strengths from the pure case c=1 to
the site-percolation threshold where c=0.3116.
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FIG. 2. The graph contains log-log traces of the self-averaging
parameter g2= ��m2�2�− ��m2��2 for the second moment of the mag-
netization for very weak �c=0.95� to quite strong disorder �c
=0.40�; symbols are from Monte Carlo calculations and the solid
line is a guide to the eyes.
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FIG. 3. The image shows log-log plots of the magnetization m
versus system size L for the pure Heisenberg model where c=1.0
and disorder ranging from quite weak �c=0.95� to very strong �c
=0.40�. The symbols are results from Monte Carlo calculations and
the solid lines are theoretical fits.
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account leading singular terms, as well as the first correction
to scaling. There is very good agreement between the Monte
Carlo data and the results of the theoretical model �i.e., gen-
erally at least one part in 103 or better�.

II. METHODS AND TECHNIQUES IN THE NUMERICAL
ANALYSIS

Singularities in variables such as the specific heat and
magnetic susceptibility are smoothened as t→0 and the cor-
relation length � becomes comparable to the system size L.
However, we can determine critical exponents by exploiting
finite-size scaling at Tc; the magnetization scales as m
�L−�/L, the thermal derivative d� /dT of the correlation
length � varies as d� /dT�L1/�, and the magnetic susceptibil-
ity 	 diverges with increasing system size L with the singular
dependence 	=cL3���m2��− ��m��2��L�/�. The critical expo-
nents �, � /�, and � /� are obtained by calculating the appro-
priate thermodynamic quantities for many different system
sizes and carefully extrapolating to the thermodynamic limit.
Having calculated �, �, and �, one may obtain additional
critical exponents with the aid of hyperscaling relations. As
an example, the exponent �, given in terms of � and � by
�=2−� /�, is useful because it is a more sensitive parameter

than � alone in gauging the universality class of a specific
model.

To obtain critical exponents accurately, it is essential that
calculations be performed as close as possible to Tc �Ref. 6�
since the temperature range where finite-size scaling holds
becomes narrower with increasing system size L. To obtain
the ferromagnetic transition temperature Tc as precisely as
possible, we numerically calculate the normalized correlation
length � /L following Ref. 7. For temperatures below Tc, � /L
ultimately increases with increasing L, while above the Curie
temperature � /L eventually decreases. We find Tc by insist-
ing that � /L tends to a constant value for very large system
sizes �i.e., containing at least on the order of 107 spins�
where finite-size effects are negligible. In this manner, we
obtain Tc to within one part in 104. Alternatively, we may
examine the Binder cumulant U4=1− ��m�4� /3��m2��2.

Another approach for locating the ferromagnetic transi-
tion temperature which we have used and obtained the same
Curie temperature results is to examine moderate size sys-
tems where finite-size effects are a more important system-
atic effect and to use the Binder cumulant U4 in conjunction
with the normalized correlation length � /L to accurately cal-
culate Tc. Finite-size effects preclude a precise determination
of Tc with either technique alone; the intersections will actu-
ally scale as Tc+AUL−1/� for the Binder cumulants and Tc

TABLE II. Critical exponent ratios � /� for the magnetization with the amplitude m0 of the leading-order
term, the exponent � of the first correction to primary scaling, and the relative amplitude B� of the next-to-
leading-order term.

Concentration c �pure /�pure � /� m0 � B�

c=1.0 0.516 0.5159 1.083 −2.365 −0.233

c=0.95 0.516 0.5150 1.096 −2.242 −0.2269

c=0.90 0.516 0.5143 1.114 −1.975 −0.2001

c=0.80 0.516 0.5080 1.142 −2.038 −0.2538

c=0.7 0.516 0.5106 1.221 −1.648 −0.2651

c=0.6 0.516 0.5248 1.386 −1.305 −0.3164

c=0.5 0.516 0.5233 1.485 −1.373 −0.3779

c=0.4 0.516 0.5011 1.498 −1.919 −0.5600
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FIG. 4. The graph contains log-log plots of the magnetic sus-
ceptibility � versus L for the pure Heisenberg model with c=1.0 and
disorder ranging from quite weak �c=0.95� to very strong �c
=0.40�. The symbols are results from Monte Carlo calculations and
the solid lines are theoretical fits.
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FIG. 5. Shown are log-log traces of the thermal derivative of the
correlation length d� /dT versus L for the pure Heisenberg model
�c=1.0� and magnetic-moment concentrations ranging from very
weak �c=0.95� to quite strong disorder �c=0.40�. Symbols are
Monte Carlo data and the solid lines are theoretical fits.
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+A�L
−1/� for the normalized correlation length, respectively.

Nevertheless, by examining two different system-size pairs,
one may cancel the leading-order corrections from finite-size
scaling. In this manner, we have calculated Curie tempera-
tures to within one part in 104 for each impurity concentra-
tion we have examined. Tc results are shown in Fig. 1 for
disorder strengths ranging from the pure case �c=1.0� to the
site-percolation threshold �c=0.3116� appropriate to the 3D
simple cubic lattice; the Monte Carlo statistical error is much
smaller than the size of the symbols in the graph. The spe-
cific Tc values used in the Monte Carlo calculations of sin-
gular thermodynamic quantities appear in Table I; the recip-
rocals Kc=Tc

−1 are given as well.
The calculation of critical exponents involves the exploi-

tation of finite-size scaling trends easily obscured by statis-
tical fluctuations stemming from the random character of the
disorder, and hence it is necessary to average over many
realizations of disorder, 105 for c�0.9, and at least 4�104

for weak disorder where c=0.9 and c=0.95, as well as the
pure case where c=1.0. The large-scale Monte Carlo calcu-
lations have a significant parallel element, and we have ben-
efited from the use of the High Performance Computing
Cluster �HPCC� at the University of Maryland, cumulatively
using approximately a CPU decade to complete the calcula-
tions we report on here.

To circumvent critical slowing down plaguing local up-
date techniques such as the Metropolis method, our Monte
Carlo calculations employ cluster updates to flip large sets of
correlated spins. Specifically, we use alternating Wolff
cluster8 and Swendsen-Wang sweeps,9 the latter being in-
cluded because the Swendsen-Wang steps ultimately flip ev-
ery spin, including isolated clusters of moments inaccessible
to Wolff cluster moves. The cluster moves operate by flip-
ping groups of thermodynamically correlated spins and are
effective even in the vicinity of Tc where the diverging cor-
relation length � would otherwise be associated with a much
larger Monte Carlo autocorrelation time, as certainly would
be encountered with the use of the Metropolis method.

To reduce the severity of finite-size effects, we examine
cubic systems of size L with periodic boundary conditions.
We use 1000 hybrid sweeps per disorder realization and
equilibration effects are eliminated by discarding the first
quarter of the Monte Carlo sweeps. Monte Carlo calculations

require stochastic input, and we use a Mersenne Twister al-
gorithm to minimize correlations among random numbers
and to ensure the period of the sequence far exceeds the
number of random numbers used over the span of the Monte
Carlo simulations.

Thermal derivatives such as d� /dT need not be calculated
via numerical differentiation; it is more convenient instead to
use d�g� /dT= ��qE�− �q��E�� / �kBT� obtained by direct differ-
entiation of �q�=�confqconf exp�−Econf /kBT� /Z, where the
sum is over all possible system configurations, Z is the par-
tition function, E is the internal energy, and q is a generic
thermodynamic variable such as the magnetization.

By examining the parameter g2, which provides a mea-
sure of typical fluctuations from one realization of disorder
to the next, we find clear evidence of self-averaging at the
critical temperature Tc. Results for g2 for a range of disorder
strengths are shown in Fig. 2. The log-log g2 curves are
nonmonotonic, increasing for small values of L and attaining
a maximum �typically for systems containing on the order of
700 spins� before decreasing and ultimately becoming linear
for sufficiently small system sizes. An asymptotic power-law
decay in L of g2 for large system sizes is consistent with a
monotonic decreases in g2, a hallmark of self-averaging in
the bulk limit.

A more subtle question is whether disorder has an effect
on the critical behavior of the Heisenberg model. Asymptotic
finite-size scaling behaviors such as m�L−�/�, 	�	0L�/�, and
d� /dT�L1/� imply the corresponding log-log plots will be-

TABLE III. Critical exponent ratios � /� for the magnetization with the amplitude 	0 of the leading-order
term, the exponent � of the first correction to primary scaling, and the relative amplitude B� of the next-to-
leading-order term.

Concentration c �pure /�pure � 	0 � B�

c=1.0 1.955 1.957 0.05206 0.9468 −0.5276

c=0.95 1.955 1.963 0.05426 0.2783 −1.309

c=0.90 1.955 1.954 0.0598 0.4372 −1.054

c=0.80 1.955 1.935 0.0724 0.9121 −0.6482

c=0.70 1.955 1.973 0.07037 −0.7585 −7.574

c=0.60 1.955 1.977 0.08014 0.2133 −1.957

c=0.50 1.955 1.993 0.08915 −0.8402 −15.86

c=0.40 1.955 1.945 0.1317 −0.7112 −15.91

TABLE IV. Critical exponents � for disorder ranging from the
pure case �c=1.0� to strong disorder where c=0.4.

Concentration c �pure �

c=1.0 0.038 0.043

c=0.95 0.038 0.037

c=0.90 0.038 0.046

c=0.80 0.038 0.065

c=0.70 0.038 0.027

c=0.60 0.038 0.023

c=0.50 0.038 0.007

c=0.40 0.038 0.046
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come linear for large enough L with the slope yielding the
critical exponent of interest. However, although singular
thermodynamic quantities such as the magnetization m and
the susceptibility 	 vary asymptotically as 	=	0L�/� and m
=m0L−�/�, respectively, site disorder is a source of important
corrections to leading-order scaling, which must be taken
into account to obtain accurate expressions for critical expo-
nents such as � /� and � /�. Hence, in addition to the ampli-
tude and exponent of the most singular contributions to 	
and m, we perform nonlinear least-squares fitting to take into
account the next-to-leading-order exponent and amplitude
relative to that of the leading term with

	�L� = 	0�L�/� + B�L�� , �1�

m�L� = m0�L−�/� + B�L�� , �2�

d�

dT
�L� = A�

0�L1/� + B�L�� , �3�

where the coefficients B are the relative amplitude of the first
correction to primary scaling and the exponents labeled  are
next to leading-order exponents.

We calculate critical exponents and amplitudes by mini-
mizing the sum of the squares of the relative differences,
e.g., for the magnetic-susceptibility exponent �, with �

= 1
N ��i=1

N �
�Li

MC−�Li
LSF

�Li
MC �2�1/2, where �Li

is calculated numerically

with Monte Carlo simulations and �Li

LSF is given in Eq. �1� for

TABLE V. Correlation-length critical exponents � for d� /dT with the amplitude A�
0 of the leading-order

term, the exponent � of the first correction to scaling, and the relative amplitude r� of the first correction
term.

Concentration c �pure � A�
0 � r�

c=1.0 0.714 0.7149 0.2862 −1.428 2.798

c=0.95 0.714 0.7291 0.2500 −1.2543 1.760

c=0.9 0.714 0.7335 0.2045 0.4941 0.2366

c=0.80 0.714 0.7412 0.1322 0.7347 0.3706

c=0.70 0.714 0.7428 0.07814 0.7675 0.5878

c=0.60 0.714 0.7018 0.02545 0.9572 1.923

c=0.50 0.714 0.7188 0.01330 0.8838 1.759

c=0.40 0.714 0.6997 0.00261 0.6612 4.485

TABLE VI. Thermodynamic quantities from Monte Carlo simulations and theoretical fits for the pure
system, where c=1.0.

n mnum
x=1.0 mfit

x=1.0 	num
x=1.0 	fit

x=1.0 d�
dT num

x=1.0 d�
dT fit

x=1.0

5 0.46661 0.46662

6 0.42624 0.42620

7 0.39444 0.39445

8 0.36869 0.36871 2.8510 2.8512 5.2874 5.2882

9 0.34730 0.34731 3.6186 3.6181 6.2244 6.2216

10 0.32915 0.32917 4.4759 4.4740 7.2043 7.1992

11 0.31357 0.31355 5.4184 5.4148 8.2064 8.2178

12 0.29991 0.29991 6.4509 6.4481 9.2678 9.2749

13 0.28786 0.28787 7.5750 7.5712 10.372 10.369

14 0.27717 0.27714 8.7794 8.7790 11.495 11.497

15 0.26754 0.26751 10.075 10.074 12.677 12.658

16 0.25880 0.25879 11.460 11.456 13.853 13.851

17 0.25084 0.25086 12.924 12.924 15.065 15.074

18 0.24358 0.24360 14.480 14.480 16.331 16.326

19 0.23690 0.23693 16.120 16.121 17.618 17.607

20 0.23077 0.23076 17.844 17.848 18.906 18.915

22 0.21972 0.21972 21.547 21.560 21.586 21.609

23 0.214763 0.21475 23.559 23.545 22.996 22.994

24 0.21013 0.21010 25.609 25.614 24.391 24.403

25 0.20573 0.20573 27.774 27.769 25.859 25.836
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TABLE VII. Monte Carlo results and theoretical fits for thermodynamic quantities for a weakly disor-
dered Heisenberg model with c=0.95.

n mnum
x=0.95 mfit

x=0.95 	num
x=0.95 	fit

x=0.95 d�
dT num

x=0.95 d�
dT fit

x=0.95

5 0.47156 0.47162

6 0.43115 0.43101

7 0.39900 0.39908

8 0.37323 0.37317 3.0920 3.0911 4.3618 4.3626

9 0.35155 0.35161 3.9221 3.9241 5.1192 5.1173

10 0.33341 0.33332 4.8492 4.8521 5.9058 5.9050

11 0.31749 0.31756 5.8821 5.8747 6.7220 6.7234

12 0.30387 0.30380 6.9917 6.9915 7.5733 7.5706

13 0.29147 0.29165 8.2009 8.2022 8.4337 8.4448

14 0.28075 0.28082 9.4934 9.5065

15 0.27108 0.27109 10.912 10.904 10.278 10.269

16 0.26227 0.26228 12.396 12.395 11.216 11.217

17 0.25435 0.25427 13.983 13.978 12.173 12.188

18 0.24699 0.24693 15.666 15.655 13.197 13.179

20 0.23401 0.23395 19.286 19.284 15.242 15.225

22 0.22290 0.22279 23.237 23.281 17.323 17.349

24 0.21295 0.21306 27.658 27.646 19.546 19.545

26 0.20443 0.20448 32.391 32.376 21.816 21.811

36 61.475 61.475

TABLE VIII. Monte Carlo data and corresponding theoretical fits for the magnetization, magnetic sus-
ceptibility, and d� /dT for mildly disordered Heisenberg models �c=0.9�.

n mnum
x=0.9 mfit

x=0.9 	num
x=0.9 	fit

x=0.9 d�
dT num

x=0.9 d�
dT fit

x=0.9

5 0.47733 0.47747

6 0.43701 0.43671

7 0.40455 0.40463

8 0.37850 0.37856 3.3201 3.3184 2.4417 2.4127

9 0.35689 0.35685 4.2089 4.2092 2.8128 2.8098

10 0.33837 0.33842 5.1921 5.2010 3.2218 3.2212

11 0.32250 0.32253 6.2947 6.2933 3.6437 3.6461

12 0.30863 0.30863 7.4897 7.4857 4.0835 4.0835

13 0.29638 0.29636 8.7799 8.7776 4.5272 4.5330

14 0.28531 0.28541 10.1715 10.1687 4.9940 4.9938

15 0.27551 0.27558 11.670 11.659 5.4648 5.4655

16 0.26670 0.26667 13.245 13.247 5.9519 5.9475

17 0.25862 0.25856 14.928 14.933 6.4421 6.4396

18 0.25126 0.25113 16.714 16.718 6.9451 6.9412

20 0.23784 0.23799 20.604 20.579 7.9753 7.9719

22 0.22676 0.22668 24.797 24.828 9.0375 9.0373

24 0.21689 0.21681 29.428 29.464 10.136 10.135

26 0.20809 0.20811 34.484 34.484 11.253 11.264

28 0.20038 0.20036 39.888 39.906 12.411 12.422

32 0.18796 0.18712 51.840 51.863 14.835 14.821
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TABLE IX. Monte Carlo results with theoretical fits for key thermodynamic quantities in the case of
moderate disorder, where c=0.8.

n mnum
x=0.8 mfit

x=0.8 	num
x=0.8 	fit

x=0.8 d�
dT num

x=0.8 d�
dT fit

x=0.8

5 0.49310 0.49316

6 0.45209 0.45195

7 0.41946 0.41937

8 0.39240 0.39282 3.7346 3.7337 2.4117 2.4127

9 0.37079 0.37065 4.7334 4.7340 2.8128 2.8098

10 0.35190 0.35180 5.8429 5.8480 3.2218 3.2212

11 0.33547 0.33552 7.0858 7.0751 3.6437 3.6461

12 0.32145 0.32127 8.4009 8.4145 4.0835 4.0835

13 0.30867 0.30867 9.8800 9.8655 4.5272 4.5330

14 0.29742 0.29743 11.417 11.427 4.9940 4.9938

15 0.28726 0.28731 13.090 13.100 6.4421 6.4396

16 0.27804 0.27815 14.888 14.882 5.9519 5.9475

17 0.26980 0.26981 16.799 16.774 6.4421 6.4396

18 0.26212 0.26216 18.776 18.775 6.9451 6.9412

20 0.24868 0.24861 23.101 23.103 7.9753 7.9719

22 0.23693 0.23694 27.865 27.862 9.0375 9.0373

24 0.22681 0.22676 33.003 33.050 10.136 10.135

26 0.21781 0.21777 38.657 38.664 11.253 11.264

28 0.20973 0.20977 44.733 44.702 12.411 12.422

32 0.19605 0.19607 58.050 58.043 14.835 14.821

TABLE X. Monte Carlo results and theoretical fits for thermodynamic quantities corresponding to critical
exponents �, �, and � for a range of system sizes L for moderate disorder c=0.7.

n mnum
x=0.7 mfit

x=0.7 	num
x=0.7 	fit

x=0.7 d�
dT num

x=0.7 d�
dT fit

x=0.7

5 0.51371 0.51391

6 0.47241 0.47211

7 0.4389 0.43889

8 0.41201 0.41168 4.1464 4.1492 1.5110 1.5109

9 0.38852 0.38890 5.2738 5.2730 1.7535 1.7530

10 0.36941 0.36945 6.5313 6.5225 2.0032 2.0033

11 0.35261 0.35261 7.8917 7.8978 2.2611 2.2611

12 0.33768 0.33785 9.4050 9.3988 2.5235 2.5262

13 0.32469 0.32477 11.033 11.026 2.7974 2.7980

14 0.31308 0.31308 12.779 12.778 3.0780 3.0763

15 0.30259 0.30254 14.642 14.655 3.3598 3.3608

16 0.29296 0.29299 16.661 16.658 3.6553 3.6512

17 0.28451 0.28428 18.756 18.786 3.9476 9.9472

18 0.27625 0.27629 21.043 21.039 4.2492 4.2487

20 0.26210 0.26211 25.936 25.919 4.8674 4.8675

22 0.24997 0.24989 31.328 31.298 5.5083 5.5059

24 0.23933 0.23921 37.109 37.173 6.1555 6.1630

26 0.22973 0.22977 43.532 43.544 6.8363 6.8376

28 0.22125 0.22135 50.435 50.410 7.5259 7.5290

30 0.21377 0.21379 57.808 57.770 8.2433 8.2364
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TABLE XI. Monte Carlo and corresponding theoretical fits for m, �, and d� /dT for moderate disorder
with c=0.6.

n mnum
x=0.6 mfit

x=0.6 	num
x=0.6 	fit

x=0.6 d�
dT num

x=0.6 d�
dT fit

x=0.6

5 0.54158 0.54165

6 0.49865 0.49869

7 0.464646 0.464353

8 0.43616 0.43612 4.6385 4.6408 0.85119 0.85087

9 0.41211 0.41237 5.9258 5.9152 0.98288 0.98364

10 0.39194 0.39205 7.3248 7.3370 1.1209 1.1206

11 0.37460 0.37440 8.9036 8.9058 1.2616 1.2614

12 0.35895 0.35889 10.622 10.621 1.4060 1.4060

13 0.34494 0.34512 12.513 12.483 1.5528 1.5541

14 0.33278 0.33279 14.457 14.491 1.7085 1.7056

15 0.32167 0.32166 16.652 16.644 1.8594 1.8604

16 0.31144 0.31156 18.917 18.942 2.0172 2.0183

17 0.30233 0.30240 21.374 21.386 2.1776 2.1792

18 0.293935 0.293852 24.026 23.975 2.3468 2.3430

20 0.278766 0.27880 29.614 29.586 2.6786 2.6790

22 0.26589 0.26579 35.780 35.775 3.0249 3.0257

24 0.25447 0.25442 42.481 42.540 3.3835 3.3825

26 0.24429 0.24435 49.879 49.833 3.7460 3.7490

28 0.23538 0.23537 57.848 57.792 4.1222 4.1246

30 0.22724 0.22729 66.285 66.278 4.5131 4.5091

TABLE XII. Thermodynamic quantities from Monte Carlo simulations and corresponding theoretical fits
for strong disorder with half of the magnetic moments missing, c=0.5.

n mnum
x=0.5 mfit

x=0.5 	num
x=0.5 	fit

x=0.5 d�
dT num

x=0.5 d�
dT fit

x=0.5

5 0.57792 0.57819

6 0.53377 0.53361

7 0.49814 0.49769

8 0.46811 0.46798 5.3682 5.3740 0.38645 0.38685

9 0.44278 0.44290 6.8930 6.8840 0.44592 0.44569

10 0.42123 0.42136 8.5446 8.5634 0.50648 0.50621

11 0.40260 0.40262 10.433 10.413 0.56934 0.56834

12 0.38581 0.38612 12.436 12.433 0.63200 0.63198

13 0.37120 0.37145 14.682 14.625 0.69651 0.69706

14 0.38581 0.38612 17.011 16.989 0.76389 0.76352

15 0.34653 0.34641 19.477 19.524 0.82997 0.83131

16 0.33573 0.33561 22.203 22.231 0.89980 0.90038

17 0.32568 0.32573 25.120 25.111 0.97058 0.97067

18 0.31677 0.31666 28.156 28.162 1.0406 1.0422

20 0.28662 0.28659 34.610 34.781 1.1904 1.1885

22 0.28662 0.28659 42.166 42.089 1.3404 1.3392

24 0.27434 0.27438 50.003 50.085 1.4937 1.4940

26 0.263647 0.263579 58.783 58.769 1.6535 1.6528

28 0.25390 0.25393 68.260 68.142 1.8176 1.8152

30 0.24509 0.24525 78.284 78.203 1.9782 1.9812

D. J. PRIOUR, JR. AND S. DAS SARMA PHYSICAL REVIEW B 81, 224403 �2010�

224403-8



the system size Li. To carry out the nonlinear least-squares
fitting, we use a stochastic algorithm with an annealing stage
�i.e., the Metropolis criterion is used with the quantity �
treated as an “energy” and the “temperature” reduced at a
linear rate in the number of Monte Carlo sweeps over the
exponents and amplitudes� to minimize � by randomly per-
turbing exponents and amplitudes; after the annealing phase,
the Monte Carlo moves in the exponent and amplitude space
are accepted only if the sum of the squares of differences is
thereby reduced. To navigate the shallow “energy” landscape
corresponding to �, the average magnitude of the random
shifts is augmented �decreased� by a factor �1+� if a move
is accepted �rejected� with �10−5. In addition, we check for

convergence of the critical exponents and amplitudes by suc-
cessively doubling the time span of the annealing until the
results cease to change.

In experiment, the reduced temperature t is more readily
tuned than the system size. To show how the effective critical
behavior may vary appreciably for t�0.05, we calculate the
magnetic susceptibility 	 for t�0, but in the bulk limit as
would be appropriate for comparison experiment. For finite t,
it is sufficient to examine system sizes, such that L�� since
the correlation length will be finite for temperatures above
Tc. We find the condition � /L�0.06 is sufficient to reduce
finite size effects to a negligible level. In addition, by calcu-
lating 	 for a number of different system sizes, we may

TABLE XIII. Monte Carlo data and theoretical fits for the magnetization, susceptibility, and d� /dT for the
case c=0.4 of very strong disorder in the vicinity of the site-percolation threshold, c=0.3116.

n mnum
x=0.4 mfit

x=0.4 	num
x=0.4 	fit

x=0.4 d�
dT num

x=0.4 d�
dT fit

x=0.4

5 0.63025 0.63036

6 0.58355 0.58327

7 0.54462 0.54481

8 0.51280 0.51278 7.0363 7.0359 0.097086 0.09711

9 0.48570 0.48564 9.0001 9.0083 0.11011 0.11018

10 0.46236 0.46230 11.189 11.188 0.12359 0.12358

11 0.44190 0.44195 13.601 13.577 0.13720 0.13728

12 0.42378 0.42403 16.158 16.173 0.15144 0.15128

14 0.39391 0.39381 22.029 21.989 0.18022 0.18016

15 0.38075 0.38091 25.166 25.208 0.19493 0.19501

16 0.36932 0.36918 28.596 28.634 0.20974 0.21014

17 0.35837 0.35846 32.245 32.265 0.22537 0.22554

18 0.34866 0.34861 36.164 36.103 0.24193 0.24119

20 0.33109 0.33112 44.376 44.394 0.27323 0.27325

22 0.31595 0.31600 53.543 53.501 0.30523 0.30627

24 0.30289 0.30277 63.347 63.423 0.33949 0.34023

26 0.29122 0.29106 73.934 74.155 0.37480 0.37508

28 0.28050 0.28060 85.867 85.693 0.41256 0.41079

30 0.27112 0.27119 98.147 98.036 0.44716 0.44733
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FIG. 6. �Color online� Effective � /� curves are shown in a
semilogarithmic graph for various impurity concentrations c for
several decades of L. The inset shows the calculated � /� values
versus the impurity concentration. The horizontal gray lines in both
the primary graph and the inset correspond to � /� for the pure
system.
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correct for finite-size effects; we have explicitly verified that
a relation of the form A+Be−�L/� is a very good approxima-
tion to the dependence of thermodynamic variable on system
size when L is at least on the order of a few correlation
lengths, a condition we use to further improve our approxi-
mation to bulk behavior or to relax somewhat the condition
� /L�0.06 by examining somewhat smaller systems and sub-
sequently removing residual finite-size effects.

III. CRITICAL BEHAVIOR OF THE DISORDERED
HEISENBERG MODEL

The log-log plots in Fig. 3 show the magnetization with
symbols representing Monte Carlo results, and the continu-
ous curves are obtained from the corresponding nonlinear
least-squares fits. The excellent agreement of the Monte
Carlo data and theoretical fits may also be seen in the appen-
dix, where the simulation data and theoretical results are
given to five significant figures. Similarly, the magnetic sus-
ceptibilities appear in Fig. 4, where symbols represent the
Monte Carlo results and solid lines obtained from theoretical
fits closely match the Monte Carlo data. Finally, the correla-
tion length thermal derivatives d� /dT are graphed in Fig. 5,
and there is again good agreement between Monte Carlo re-
sults �symbols� and the solid lines obtained from theoretical
results.

Exponents and critical amplitudes are given for � /� in
Table II, � /� �corresponding to the susceptibility� in Table
III, � in Table IV, and � in Table V. The exponent � is
calculated from � and � with �=2� /�. The parameter � is a
sensitive parameter and, accordingly, there is greater vari-
ance in the results. However, the � values listed in Table IV
each have the same positive sign irrespective of the strength
of the site disorder. The leading-order exponents are consis-
tent with those of the pure Heisenberg universality class with
deviations due only to statistical Monte Carlo error, not sys-
tematic effects related to the disorder strength. Hence, since
each of the exponents �, �, �, and � are stable with respect
to the introduction of site defects, we conclude for the
Heisenberg model that critical behavior is unchanged even in
the presence of very strong disorder. Monte Carlo data for

thermodynamic quantities such as the magnetization and sus-
ceptibility appear with the results from theoretical fits in
Tables VI–XIII.

IV. EFFECTIVE CRITICAL BEHAVIOR AND APPARENT
VIOLATION OF THE HARRIS CRITERION

Although ultimately we find that the critical behavior of
the pure Heisenberg model emerges as the dominant part of
the singular components of thermodynamic variables such as
the magnetization m and magnetic susceptibility 	, finite-size
effects may obscure the genuine critical behavior for systems
of small to moderate size where bulk critical behavior has
not taken hold. Figures 6–8 show the apparent critical indi-
ces which would be obtained as the slope d log�	� /d log�t�
= t

	
d	
dt of the log-log graph, a quantity which may differ sig-

nificantly for the first several decades of the system size L
before eventually converging to the critical indices of the
pure Heisenberg model, indicated with horizontal gray lines.
Qualitatively similar behavior has been seen in RG
calculations10 as well as in experiment11–16 with the reduced
temperature t varied instead of the system size L. The insets
of Figs. 6–8 display � /�, � /�, and � obtained from the non-
linear least-squares fits. Again, throughout the broad disorder
spectrum considered, even for very strongly disordered sys-
tems �e.g., for the case c=0.4�, the critical indices we calcu-
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�pure for the case c=1.
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late are compatible with those of the pure system where there
is no disorder.

To make direct contact with experiment and show explic-
itly the apparent change in critical behavior may be set up by
strong disorder, we show finite t results where the effective
critical exponent �eff corresponding to the magnetic suscep-
tibility has been calculated; results are shown in panel �a�
and panel �b� of Fig. 9. For t�0, the susceptibility 	 will
scale as 	=	0�t−�+Bty1 +Cty2 +Dty3 + . . .� where � is the
genuine critical exponent for 	, and the terms with exponents
such as y1, y2 for the first two subleading terms are correc-
tions to scaling which may have a significant effect if t is
sufficiently large or in the presence of strong enough disor-
der.

In the critical regime where subleading terms may be ne-
glected, one may compute, e.g., for 	, �=− t

	d	 /dt. How-
ever, further from Tc where corrections to singular critical
behavior are more important, one obtains an “effective” ex-
ponent ��t� given by

��t� 	
− t

	

d	

dt
= �
1 + By1ty1+� + Cy2ty2+� + ¯

1 + Bty1+� + Cty2+� + ¯

� . �4�

��t� will eventually tend to the leading-order exponent � as
t→0, though one may have to measure 	 at very low values
of t if there is a strong disorder component.

The graphs shown in Fig. 9 show results from two distinct
calculations of ��t�. In panel �a� of Fig. 9, the Monte Carlo
data is drawn from a study where fewer disorder realizations
are examined �though still at least 5�103 configurations of
disorder are analyzed� in favor of obtaining a larger data set;
Monte Carlo results are shown as symbols with theoretical
curves obtained from nonlinear least square fitting shown on
the same graph. Similarly, for the set of calculations involv-
ing fewer data points but more intensive disorder averaging,
Monte Carlo data is graphed as symbols in panel �b� of Fig.
9, while again solid lines are theoretical curves gleaned from
least-squares fitting.

In both cases, although ��t� for the pure �c=1� case rises
steadily with decreasing t, the curves for each of the disor-
dered systems are nonmonotonic; the initial rise with de-
creasing t is followed by a peak and subsequent decline to
the asymptotic value of � only for very small values of the
reduced temperature on the order of t�10−3.

We reiterate that the critical exponents we calculate are
consistent with ��2 /3 where disorder is irrelevant to the
universality class in the RG sense. This inequality has been
placed on a rigorous footing in theoretical work17 under a
broad range of conditions and has also been established for
correlated disorder.18 We also emphasize that while the genu-
ine Heisenberg model critical exponents satisfy the hyper-
scaling relations, the apparent critical exponents obtained

TABLE XIV. Values of the self-averaging parameter g2 for
weak-to-moderate disorder strengths.

n g2
x=0.95 g2

x=0.90 g2
x=0.80 g2

x=0.70

4 0.011629 0.021031 0.036693 0.048896

5 0.012967 0.023353 0.040195 0.052853

6 0.013691 0.024601 0.041686 0.054397

7 0.013910 0.025078 0.042294 0.054408

8 0.014214 0.025350 0.042353 0.054383

9 0.014231 0.025331 0.042114 0.053457

10 0.014260 0.024991 0.041469 0.052606

11 0.014404 0.025016 0.041237 0.051461

12 0.014242 0.024941 0.040218 0.050677

13 0.014139 0.024665 0.040141 0.049733

14 0.013823 0.024351 0.039113 0.048602

15 0.014003 0.024223 0.038562 0.047621

16 0.013857 0.023888 0.038132 0.047256

17 0.013882 0.023619 0.037801 0.046230

18 0.013685 0.023398 0.037099 0.045487

20 0.013441 0.023101 0.036060 0.044077

22 0.013139 0.022324 0.035145 0.042900

24 0.013017 0.021689 0.034176 0.041727

26 0.012982 0.021758 0.033564 0.041068

28 0.021433 0.032892 0.039746

30 0.039227

32 0.020729 0.031422 0.038045

34 0.037439

36 0.012127 0.020170 0.030430

TABLE XV. Values of the self-averaging parameter g2 for mod-
erate to strong levels of disorder.

n g2
x=0.6 g2

x=0.5 g2
x=0.40

4 0.057541 0.066634 0.091366

5 0.061999 0.070882 0.093814

6 0.063578 0.072695 0.095018

7 0.062970 0.072895 0.094071

8 0.062751 0.071787 0.092343

9 0.061942 0.070998 0.090638

10 0.060216 0.068958 0.089034

11 0.059253 0.068091 0.086531

12 0.058137 0.066394 0.084828

13 0.057270 0.065569 0.083349

14 0.055345 0.063845 0.080870

15 0.054770 0.061972 0.079409

16 0.053529 0.061077 0.077896

17 0.052644 0.060114 0.076659

18 0.052211 0.058970 0.073666

20 0.050329 0.056281 0.071286

22 0.048794 0.055587 0.068609

24 0.047155 0.053513 0.066323

26 0.046044 0.052511 0.064995

28 0.045294 0.051496 0.063222

30 0.044054 0.050261 0.061438

32 0.043114 0.048754 0.060254

34 0.058666

36 0.041824 0.056226
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away from the critical behavior are not consistent with the
hyperscaling formulas, an indication of their problematic na-
ture.

V. CONCLUSIONS

In conclusion, within a large-scale Monte Carlo study, we
have examined Heisenberg models on three-dimensional lat-
tices with randomly deleted magnetic moments as a source
of disorder, finding self-averaging to be intact as predicted
by the Harris criterion. Moreover, our finite-size scaling
studies show leading-order critical behavior not to be influ-
enced by the presence of random defects with critical expo-
nents identical to those of the pure Heisenberg model univer-
sality class even for very strong disorder in the vicinity of the
site-percolation threshold where long-range ferromagnetic
order is lost altogether for T�0. However, while the
leading-order exponents are not sensitive to disorder, the
presence of site defects sets up corrections to primary scaling
which skew the effective exponents for finite system sizes L,
a characteristic which might naïvely be regarded as evidence
for the violation of the Harris criterion. A qualitatively simi-
lar apparent violation of the Harris criterion is seen in ex-
periment where thermodynamic quantities such as the mag-
netic susceptibility are measured with respect to the reduced
temperature t, and we have also calculated the same quanti-
ties in the bulk limit for t�0, finding the same apparent
violation of the Harris criterion. We conclude by asserting
the asymptotic validity of the Harris criterion sufficiently
close to the critical temperature in the strongly disordered
Heisenberg model appropriate for diluted magnetic semicon-
ductors, at the same time pointing out that slightly away
from the critical temperature, the effective exponents may

very well reflect an apparent �and incorrect� violation unless
extremely careful measures are taken to include finite-size
scaling and corrections to scaling in the analyses
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APPENDIX: THERMODYNAMIC QUANTITIES FROM
MONTE CARLO AND ANALYTICAL FITS

The appendix contains a sequence of tables explicitly giv-
ing thermodynamic quantities calculated in Monte Carlo
simulations with the theoretical fits obtained by stochasti-
cally enhanced least-squares fitting. The theoretical results
are in very close agreement with the corresponding Monte
Carlo data.

Tables XIV and XV contain the self-averaging parameter
g2 for various systems sizes for site disorder ranging from
the weak regime �where c=0.95� to the strongly disordered
c=0.40 case in the vicinity of the percolation threshold. A
consistent feature in the dependence of g2 on system size is
an initial rise and maximum attained for moderate-sized sys-
tems with on the order of 700 spins. After reaching a peak,
the g2 self-averaging parameter begins a steady decrease
consistent with intact self-averaging. However, the non-
monotonic behavior is another manifestation of significant
corrections to leading-order scaling.
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