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In the skutterudite compounds the anharmonic “rattling” oscillations of 4f-guest ions in the surrounding Sb12

host cages are found to have significant influence on the low-temperature properties. Recently specific-heat
analysis of Pr�Os1−xRux�4Sb12 has shown that the energy of crystalline electric field singlet-triplet excitations
increases strongly with Ru concentration x and crosses the almost constant rattling mode frequency �0 at about
x�0.65. Due to magnetoelastic interactions this may entail prominent nonadiabatic effects in inelastic neutron-
scattering intensity and quadrupolar susceptibility. Furthermore the Ru-concentration dependence of the super-
conducting Tc, notably the minimum at intermediate x is explained as a crossover effect from pair-forming
aspherical Coulomb scattering to pair-breaking exchange scattering.
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I. INTRODUCTION

The tetrahedral rare-earth skutterudite compounds
RM4X12 �R=rare earth, M =Ru, Fe, and Os, and X=P, As,
and Sb� are found to exhibit a great variety of electronic
ground states driven by 4f-electron correlations.1 Metallic
heavy electron and mixed valent as well as Kondo semicon-
ducting behavior may be found. The 4f ground state may
show quadrupolar or more exotic multipolar order.2–4 In
PrOs4Sb12 and substituted compounds superconductivity
appears5–7 which is possibly of strongly anisotropic
nature.7–9 The latter has recently also been found in
PrPt4Ge12.

10 It has been proposed11,12 that low-energy crys-
talline electric field �CEF� excitations play an important role
in the formation of Cooper pairs and likewise in the quasi-
particle mass enhancement.13,14 These only slightly disper-
sive excitations were identified in inelastic neutron-scattering
�INS� experiments15 in PrOs4Sb12. Furthermore NMR/
nuclear quadrupole resonance16 and ultrasonic17,18 measure-
ments give evidence for the importance of anharmonic “rat-
tling” oscillations of 4f-host ions in the cages formed by
surrounding Sb12 icosahedrons on the low-temperature prop-
erties.

Recent systematic specific-heat measurements in the sub-
stitution series Pr�Os1−xRux�4Sb12 have shown19 that both
CEF excitations and local rattling mode give contributions in
addition to the usual Debye part. From the analysis Miyazaki
et al. were able to obtain the dependence of the low-energy
singlet-triplet CEF excitation ��x� and the rattling phonon
frequency of the Pr guest �0�x� on the Ru concentration x. It
was found that ��x� increases with Ru content �x� from
��0��8 K to ��1��84 K. For xc�0.65 the triplet excita-
tion energy crosses the oscillator energy �0�45 K of the
low-energy anharmonic rattling phonon associated with the
Pr oscillations in the cage. The latter is almost independent
of the Ru concentration x. Earlier results6 showed that the
critical temperature Tc�x� varies between Tc�0�=1.85 K and
Tc�1�=1.20 K and exhibits a minimum in between with
Tc�xc�=0.7 K around the same Ru content xc. This raises the
question whether there is a connection between the crossing
effect and the observed Tc minimum and whether the nona-
diabatic effects play a role in the appearance of the mini-
mum.

In this work we discuss a model for the nonadiabatic ef-
fects between rattling phonons and CEF singlet-triplet exci-
tations in Pr�Os1−xRux�4Sb12. These effects should be prima-
rily observable close to xc where an anticrossing and
formation of “vibronic” or mixed modes is expected. The
latter have partly a phononic and partly a CEF excitation
nature. Although similar effects are known for other rare-
earth compounds20 they have so far not been identified in the
skutterudite family. The observed ��x�, �0�x� behavior in
Pr�Os1−xRux�4Sb12 however suggests their presence. The
mixed mode formation should lead to a direct clear signature
in the dipolar INS cross section, magnetic and quadrupolar
susceptibility, as well as rattling phonon spectral function.
Indirectly other physical quantities such as NMR relaxation,
resistivity, and Tc suppression or enhancement should also be
influenced. Some of these effects will be discussed in the
present work within an exactly solvable bosonic model for
the two types of coupled excitations.

In Sec. II the vibronic model is introduced and solved in
Sec. III. The dynamical susceptibilities and associated struc-
ture functions, in particular, the dipolar one relevant for INS
are derived in Sec. IV. Furthermore we investigate the influ-
ence of vibronic excitations on the formation or breaking of
Cooper pairs and the resulting Tc�x� variation with Ru con-
tent in Sec. V. Finally Sec. VI gives the summary and con-
clusion.

II. MODEL DEFINITION

First we consider the local 4f electronic part. The effect of
a tetrahedral CEF on the Pr3+ has been studied in detail in
Ref. 21. Its main consequence is a mixing of the cubic �Oh�
�4 and �5 triplets to tetrahedral �4

�1,2� triplets which have
both dipolar and quadrupolar transitions from the ground-
state singlet �1. In the following we restrict to �1 and lowest
�4

�2���t triplet states as shown by Shiina.22 The singlet-
triplet CEF Hamiltonian in Pr�Os1−xRux�4Sb12 may then be
written in bosonic form as

Hst = ��x��
n
�an

†an +
1

2
� �n = x,y,z� , �1�

where ��x� is the singlet-triplet CEF splitting of
Pr�Os1−xRux�4Sb12 that varies from ��0�=8 K for the Os
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compound to ��1�=84 K for the Ru system. The triplet
states are linear combinations of cubic �5 and �4 states21

described by

��tn	 = �1 − d2�1/2��5n	 + d��4n	 , �2�

where d characterizes the strength of the tetrahedral CEF part
�Appendix A�. When the latter is small �d�1� then �t is
close to the nonmagnetic cubic �5 triplet. When the tetrahe-
dral CEF part dominates we have d2→ 1

2 
Eq. �A1�� and �t is
an equal-amplitude mixture of nonmagnetic �5 and magnetic
�4 cubic triplets. The ��tn	 states are created by the bosonic
operators an �n=1–3� according to ��tn	=an

†��s	 from the
singlet ground state.22,23 They are related to an �n=x ,y ,z�
through a1=−�1 /�2��ax− iay� ; a2=az ; a3= �1 /�2��ax+ iay�.
The singlet-triplet system has quadrupolar and, because of
the tetrahedral mixing amplitude d, also dipolar matrix ele-
ments for inelastic transitions. In bosonic representation the
dipole operators are given by

J = bD�ax + ax
†,ay + ay

†,az + az
†� , �3�

where bD=2�5
3d is the dipolar matrix element 
d. The

�5-type quadrupolar operators On�n=yz ,zx ,xy� are generally
given in terms of the total angular momentum components Jn
�n=x ,y ,z�. In bosonic representation one has

Oyz = JyJz + JzJy = ibQ�ax − ax
†� ,

Oxz = JxJz + JzJx = ibQ�ay − ay
†� ,

Oxy = JxJy + JyJx = ibQ�az − az
†� , �4�

where bQ= 2
�3

�35�1−d2� is the quadrupolar singlet-triplet
matrix element which is maximal for d=0, contrary to bD.
These are the order parameters in the field-induced antifer-
roquadrupolar phase of PrOs4Sb12 �Refs. 22 and 24–27� and
their dynamics corresponds to the excitation of quadrupolar
excitons.15,23

Now we introduce the rattling phonon part which may be
seen as a low-frequency optical phonon corresponding to the
anharmonic movement of the heavy Pr ion in the wide cage
formed by the Sb12 icosahedron. Such almost dispersionless
rare-earth host modes lying within the acoustic-phonon
bands are reported in Ref. 28 for the Ce skutterudite. They
belong to T1 representation of Th and therefore are triply
degenerate, corresponding to the three Cartesian directions
of rattling motion in the cage. Due to the anharmonic poten-
tial of the cage the effective rattling frequency �e�T� may be
temperature dependent, similar as in the �-pyrochlore super-
conductor KOs2O6.29,30 On the other hand the low-
temperature effective rattling frequency �0=�e�T=0� is al-
most independent of Ru content x with �0�x��45 K.
Therefore, as observed in Ref. 19 the singlet-triplet energy
��x� crosses the rattling frequency around xc�0.65 �dashed
lines in Fig. 1� which is, incidentally, close to the Ru con-
centration where Tc�x� shows its minimum. In the quasihar-
monic approximation30 the rattling phonon part at low-
temperature is given by

Hr = �0�
n
�bn

†bn +
1

2
� , �5�

where n=1–3 denotes one of the triply degenerate guest
modes which are created by the phonon operators bn

†.
The coupling of rattling modes and local CEF excitations

�all dispersive effects in phonons and CEF excitations are
neglected� may be written in terms of displacements and 4f
quadrupoles as31

Hr−4f = g0Q0�
in


bn�i� + bn
†�i��On�i� , �6�

where Q0= �2MN�0�−1/2 �M =mass of Pr and N=number of
sites i� and g0 is the coupling constant. Expressing the quad-
rupole operators with singlet-triplet boson operators the total
Hamiltonian for each site is given by

H = �
n
�1

2
�0�bn

†bn + bnbn
†� +

1

2
��an

†an + anan
†�

+ ig̃0bQ�bnan − bn
†an

† + bn
†an − bnan

†�� . �7�

This is the bosonic model Hamiltonian used in the following
analysis. The first part describes three degenerate rattling
phonon modes the second singlet-triplet CEF excitations and
the last one their local magnetoelastic interactions.

It is bilinear in the �a� singlet-triplet CEF and �b�
phononic boson operators and may therefore be diagonal-
ized. For that purpose we write it in matrix form as

0 0.2 0.4 0.6 0.8 1
x [Ru]

0

0.5

1

1.5

2

Ω
s/ω

0

γ = 0
γ = 0.25

∆
0
/ω

0

FIG. 1. Mode frequencies as function of Ru content x. At zero
coupling � �dashed lines� flat rattling mode and increasing singlet-
triplet CEF excitation cross around xc�0.65. A finite coupling �
leads to anticrossing vibronic modes �	 �upper mode� and �


�lower mode� around xc.
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H = �
n

�an
† bn

† an bn ��
�

2
− iĝ0 0 − iĝ0

iĝ0
�0

2
− iĝ0 0

0 iĝ0
�

2
iĝ0

iĝ0 0 − iĝ0
�0

2

��an

bn

an
†

bn
†
� .

�8�

Here we defined g̃0=g0�2M�0�−1/2 and ĝ0=bQg̃0.

III. VIBRONIC EXCITATIONS

The eigenstates of the model Hamiltonian in Eq. �8� are
the local vibronic modes of Pr3+, i.e., mixed rattling phonon
and singlet-triplet CEF excitations. The mode mixing be-
comes strong close to the crossing of ��x� with �0 at xc. The
formation of vibronic modes therefore should influence
physical properties, in particular, close xc. To calculate the
vibronic modes we express the model Hamiltonian in 2�2
block form,

H = �
n=x,y,z

��n
† �n ��D1n D2n

D3n D4n
���n

�n
† � , �9�

where �n
†= �an

†bn
†� and D3n=D2n

† . The D matrices are the
2�2 blocks in Eq. �8�. This quadratic form can be diagonal-
ized by a generalized Bogoliubov or paraunitary transforma-
tion 
 �Ref. 32� with the property 
I
†= I, where I
=diag�11−1−1�. In the following the mode degeneracy in-
dex �n=x ,y ,z� will be suppressed. Applying the paraunitary
transformation we get D
−1= I
−1L where the column vectors
w���=1–4� of 
−1 are the eigenvectors of the equation �ID
−��1�w�=0 corresponding to the eigenvalue �� determined
by the secular equation det�D−��I�=0. Furthermore L
=diag��+ ,�− ,−�+ ,−�−�. The vibronic eigenvalues can be
obtained as

�� = 
�0 � R�1/2,

�0 =
1

2
��0

2

4
+

�0
2

4
� ,

R =
1

2
���0

2

4
−

�0
2

4
�2

+ 4ĝ0
2�0��1/2

. �10�

The �transposed� eigenvector column w� of 
−1 correspond-
ing to eigenvalue ���� ,�=1–4� is given by

w�
T = ���1,−

2iĝ0
�

2

��

2
+ ����0

2
− �� ,−

�

2
− �

�

2
+ �

,

−

2iĝ0
�

2

��

2
+ ����0

2
+ ��� �11�

with a normalization constant,

����2 =
��

2
+ ��2��0

2
+ ��2��0

2
− ��2

4
�

2
������0

2
+ ��2��0

2
− ��2

+ 4ĝ0
2�

2

�0

2
� . �12�

The paraunitary transformation defines the vibronic normal
mode coordinates � via �=
−1�, where �= ��† ,��
= �a†b†ab� are the original boson coordinates. Like the latter,
the vibronic normal modes fulfill the bosonic commutation
relations 
�� ,���

† �= I���. Explicitly we write �†

= �	† ,
† ,	 ,
�. They diagonalize the Hamiltonian in Eqs.
�8� and �9� finally leading to

H = �
n

�	�	n
†	n +

1

2
� + �

n

�
�
n
†
n +

1

2
� , �13�

where the triply degenerate �n=x ,y ,z� normal-mode fre-
quencies �s

n=�s�s=	 ,
� are given by �	=2�+ and �


=2�−. The relation between the noninteracting � bosons and
the new normal-mode coordinates � is explicitly given by

�an

bn

an
†

bn
†� =�

w�1

1 w�2

1 w�3

1 w�4

1

w�1

2 w�2

2 w�3

2 w�4

2

w�1

3 w�2

3 w�3

3 w�4

3

w�1

4 w�2

4 w�3

4 w�4

4
��	n


n

	n
†


n
†� , �14�

where the matrix elements w�j

k are obtained from Eqs. �11�
and �12� using the eigenvalues in Eq. �10�.

IV. DYNAMICAL SUSCEPTIBILITIES AND STRUCTURE
FUNCTIONS

With the above closed solution all interesting susceptibili-
ties and dynamical structure functions of the model may be
calculated analytically. The dipolar structure function is pro-
portional to the INS cross section and is therefore the most
direct means to observe the vibronic modes. Furthermore
they may influence the NMR rate which is obtained from the
dynamical dipolar susceptibility. The dynamics of quadru-
pole moments and the phonon spectral functions may be ob-
tained in a similar way.

A. Dipolar susceptibility and INS spectral function

Using the representation in Eq. �3� for the dipole operator
the dipolar susceptibility may be expressed as
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�D��� = ibD
2�

−�

�

dtei�t�
�a + a†�t,�a + a†�0�	
H�t� , �15�

where 
H�t� is the Heaviside function. Applying the parauni-
tary transformation we obtain

a + a† = uD	�	 + 	†� + uD
�
 + 
†� �16�

with uDs�s=	 ,
� given by

uDs
2 =

�s

�

��0
2 − �s

2�2

��0
2 − �s

2�2 + �2��0
, �17�

where we defined �=4ĝ0=4bQg0�2M�0�−1/2. This leads to
the dynamical dipolar susceptibility

�D��� = − bD
2 �

s

uDs
2 Ds��� , �18�

where Ds��� is the retarded Green’s function of normal-
mode bosons according to

D	��� = i�
−�

�

dtei�t�
�	 + 	†�t,�	 + 	†�0�	
H�t�

=
2�	

�� + i��2 − �	
2 �19�

and a similar equation for D
���. The corresponding spectral
function is given by

Ŝs��� = −
2

1 − e−��Ds���� . �20�

Using the fluctuation dissipation theorem Ŝs�−��
=e−��Ŝs��� ��=1 /kT� the total dipolar spectral function cor-
responding to Eq. �18� is then obtained as

SD��� = 2�bD
2 �

s

�s

�

��0
2 − �s

2�2

��0
2 − �s

2�2 + �2��0

�
�ns + 1���� − �s� + ns��� + �s�� . �21�

Here ns= �e��s −1�−1 is the Bose distribution function. When
we include a constant finite linewidth �s for the 	 ,
 bosons
the delta functions have to be replaced by Lorentzians. Then
at zero temperature we obtain

SD��� = 2�bD
2 �

s

�s

�

��0
2 − �s

2�2

��0
2 − �s

2�2 + �2��0
·

�s/�
�� − �s�2 + �s

2 .

�22�

Finally, using Ds��0�=−�2 /�s� we obtain the zero-
temperature static dipolar susceptibility as

�D�� = 0� = �2bD
2

�
��

s

��0
2 − �s

2�2

��0
2 − �s

2�2 + �2��0
�

2bD
2

�
.

�23�

Therefore the static dipolar susceptibility of the vibronic sys-
tem for ��0 is unchanged from the dipolar Van Vleck sus-
ceptibility of the uncoupled ��=0� singlet-triplet CEF states
because the formation of vibronic modes involves only the

quadrupolar CEF excitations. The result in Eq. �22� together
with Eq. �10� gives the frequency and x ,� dependence of the
dipolar spectral function which may be compared with INS
results. This will be further discussed in Sec. IV C.

B. Quadrupolar susceptibility and rattling phonon spectral
function

The dynamical quadrupolar susceptibility, the phonon
Green’s function, and their associated spectral function may
be obtained in a completely analogous way. Using the
bosonic representation of quadrupolar operators in Eq. �5�
we have

�Q��� = − ibQ
2�

−�

�

dtei�t�
�a − a†�t,�a − a†�0�	
H�t� .

�24�

Again replacing the a bosons with 	 ,
 bosons by the
paraunitary transformation we get

a − a† = uQ	�	 − 	†� + uQ
�
 − 
†� , �25�

where now we have a slightly different

uQs
2 =

�

�s

��0
2 − �s

2�2

��0
2 − �s

2�2 + �2��0
. �26�

Similar as before the quadrupolar spectral function is ob-
tained as

SQ��� = 2�bQ
2 �

s

�

�s

��0
2 − �s

2�2

��0
2 − �s

2�2 + �2��0

�ns + 1���� − �s�

+ ns��� + �s�� �27�

and for finite boson linewidth and in the limit T=0 we like-
wise obtain

SQ��� = 2�bQ
2 �

s

�

�s

��0
2 − �s

2�2

��0
2 − �s

2�2 + �2��0
·

�s/�
�� − �s�2 + �s

2 .

�28�

Furthermore the static zero-temperature quadrupolar suscep-
tibility may be obtained as

�Q�0� = �2bQ
2

�
��

s
� �

�s
�2 ��0

2 − �s
2�2

��0
2 − �s

2�2 + �2��0

. �29�

The prefactor is the quadrupolar Van Vleck susceptibility of
the uncoupled singlet-triplet states. The quantity in Eq. �29�
depends on � and therefore on the mode splitting, contrary to
�D�0�. It is, in principle, accessible in ultrasonic experiments
where it determines the velocity or elastic constant change
for T→0. The latter is given by �c44�T→0�=−g44

2 �Q, where
g44 is the magnetoelastic coupling constant of the c44 trans-
verse mode propagating along �001� direction.31

Now we consider the retarded propagator of the rattling
phonon which is defined by
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Dr��� = − i�
−�

�

dtei�t�
�b + b†�t,�b + b†�0�	
H�t� . �30�

Applying the paraunitary transformation we may express

b + b† = u	�	 − 	†� + u
�
 − 
†� , �31�

where us= i�us� and the modulus is now given by

�us�2 =
�0

�s

�2��0

��0
2 − �s

2�2 + �2��0
. �32�

This leads to a spectral function of the rattling phonon propa-
gator,

Sr��� = 2��
s

�0

�s

�2��0

��0
2 − �s

2�2 + �2��0

�
�ns + 1���� − �s� + ns��� + �s�� . �33�

Including the finite linewidth �s for the normal modes we
obtain the zero-temperature limit,

Sr��� = 2��
s

�

�s

�2��0

��0
2 − �s

2�2 + �2��0
·

�s/�
�� − �s�2 + �s

2 .

�34�

The rattling phonon spectral function in Eq. �34� is comple-
mentary to the dipolar and quadrupolar spectral function. In
our localized model they are momentum independent. How-
ever in the INS cross section the latter is multiplied by the
square of the electronic form factor F�Q� of the 4f shell
which decreases with �Q� while the former is multiplied by
�Q�2. Therefore the dipolar excitation may be seen at small
and the rattling phonon part at large total momentum trans-
fer.

C. Numerical results for spectral function and static
susceptibilities

The basic feature of the vibronic mode formation is
shown in Fig. 1. At the crossing of the bare ��=0, dashed
lines� rattling mode �0�x� and �0�x� a repulsion takes place
for finite magnetoelastic coupling � and anticrossing mixed
modes �full lines� �	 �upper mode� and �
 �lower mode� are
formed. Their splitting increases with coupling strength. At
the crossing where �0�xc�=��xc� we have �=�	−�
�� as
long as � /�0�1. For �=0.25 the splitting is still moderate
enough to be compatible with the mode energies determined
from specific-heat analysis.19 The determination of the mode
splitting and �s�x� �s=	 ,
� requires the investigation of the
dynamical magnetic and phononic structure function in INS
experiments. The former should be proportional to SD��� and
the latter to Sr���. These functions are calculated from Eqs.
�22� and �34�, respectively, and are shown in Fig. 2. Away
from the anticrossing region SD��� has appreciable intensity
only around the bare CEF excitation ��x� and Sr��� only
around the bare rattling phonon frequency �0. In the anti-
crossing region SD,r��� have equal intensity at both split
modes �s�x�. Observation of this feature by future INS ex-
periments would directly confirm the vibronic mixed mode
formation in Pr�Os1−xRux�4Sb12.

The static dipolar and quadrupolar susceptibilities
�D,Q��� are also accessible in experiments. However the
former does not show an effect of the mode coupling � but
remains the unrenormalized singlet-triplet Van Vleck suscep-
tibility 
Eq. �23��. Therefore no information on the mode
splitting can be gained from it. The behavior of �D�x� �T
→0� using a constant matrix element bD in comparison to
experimental data from Ref. 6 is shown on the top of Fig. 3.
Up to x�0.4 the behavior is in agreement however for larger
x the experimental values show no further decrease. This
may be in part due to the increasing relative importance of
higher levels when the singlet-triplet ��x� increases �Fig. 1�.
Furthermore if the tetrahedral CEF part increases with x the
dipolar matrix element bD
d will also increase leading to a
larger �D at higher x. There is evidence from the supercon-
ducting pair-breaking behavior discussed in the next section
that this is indeed the case. The quadrupolar ��5-type� sus-
ceptibility may be obtained from the T=0 suppression of the
appropriate �c44� symmetry elastic constant. The suppression
gets larger for increasing vibronic coupling � at small x.
Therefore, measuring �c44�T→0;x� may be used as an indi-
rect means to determine the coupling strength.
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FIG. 2. Contour plots of dipolar SD��� �left� and rattling phonon
Sr��� �right� spectral functions. For better visibility of the vibronic
effect we choose the coupling constant �=0.3 and a linewidth
�s /�0=0.15.
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FIG. 3. The top panel shows the calculated T=0 dipolar suscep-
tibility �which is independent of vibronic coupling �� in comparison
to experimental values from Ref. 6. Bottom panel shows the
��-dependent� T=0 quadrupolar susceptibility. It is proportional to
the T=0 elastic constant reduction �c44.
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V. SUPERCONDUCTING PAIR FORMING AND PAIR
BREAKING BY VIBRONIC EXCITATIONS

The effective pairing interaction for the formation of Coo-
per pairs in skutterudites consists of three contributions: �i�
harmonic phonons, �ii� local CEF excitations, and �iii� low-
energy rattling �anharmonic� phonons. The former two have
been included in the model for La1−yPryOs4Sb12 �Ref. 11�
�y=Pr concentration� and the latter were proposed for the
pyrochlore superconductor KOs2O6 in Ref. 29. However the
NMR relaxation,16 ultrasonic experiments,17 and specific-
heat measurements19 have indicated that rattling phonons are
also present in La-, Pr-skutterudite compounds and therefore
may contribute to the effective pairing mechanism. In fact
the INS experiments in CeRu4Sb12 have shown28 the exis-
tence of a flat optical-phonon mode at �0=6 meV within the
acoustic-phonon band which shows little hybridization with
the latter. The flat optical mode was interpreted as a �Ce-�
guest �rattling� mode within the rigid cage structure formed
by Sb12 icosahedrons. This mode is anharmonic and the ef-
fective frequency �e�T� is temperature dependent. Around
Tc, however, this may be neglected since �e�T� has reached
its low-temperature asymptotic value �0. In the case of
La1−yPryOs4Sb12 �x=0� which was studied in Ref. 11 one has
���0, therefore the interaction of rattling phonon and
singlet-triplet excitation may be neglected. This may not
hold in Pr�Os1−xRux�4Sb12 for general x because ��x� crosses
�0 at xc
0.65. Therefore, the nonadiabatic vibronic spectral
function should be used in modeling the effective pairing
interaction for arbitrary Ru content x. We mention that
“nonadiabatic” refers to the localized 4f electron-phonon in-
teraction, not to the conduction electron-phonon term.

Experimentally it was found early in Ref. 6 that Tc�x� has
a minimum close to xc�0.65. Therefore, the question arises
whether this is tied to a suggested vibronic mode splitting or
to a different origin. The most convenient starting point for a
theoretical description is the Tc

0�x� background variation in
La�Os1−xRux�4Sb12 which is determined by the harmonic and
rattling phonon mechanism. The microscopic model behind
will not be further specified. The symmetry of the supercon-
ducting order parameter in the skutterudites is presumably of
�anisotropic� extended s-wave type.9,11 For the present pur-
pose we ignore the superconducting gap anisotropy. The
presence of 4f states in Pr�Os1−xRux�4Sb12 leads to a scatter-
ing of conduction electrons from singlet-triplet CEF excita-
tions. This modifies the pair amplitude and changes the back-
ground Tc

0�x� of the La compound to a renormalized Tc�x�.
This process is due to exchange and aspherical Coulomb
scattering of conduction electrons from the 4f shell given
by11

Hsf = − Iac �
qk,n�

fn�q�Oqnck�
† ck+q�

− �gJ − 1�Iex �
qk,n�

�n
���Jqnck�

† ck+q��. �35�

Here Oqn=�qOn�i�exp�iqRi� �n=yz ,zx ,xy� and Jqn
=�qJn�i�exp�iqRi� �n=x ,y ,z� are quadrupolar and dipolar
operators, respectively. Furthermore gJ=4 /5 is the Landé
factor and fnq= q̂yq̂z , q̂zq̂x , q̂xq̂y are quadrupolar form factors

�q̂=q / �q��. The principal effect of Hsf on superconducting
properties of 4f compounds with CEF splitting has been in-
vestigated in Ref. 33. It was found that for singlet supercon-
ductors aspherical Coulomb �quadrupolar� scattering which
supports pair formation and enhances Tc

0 because On 
Eq.
�5�� is even under time reversal. In contrast the exchange
term leads to pair breaking and reduces the background Tc

0

because Jn is odd under time reversal. For the case of having
only a twofold Kramers degenerate ground-state level the
latter is described by the well-known Abrikosov-Gorkov34

theory. The modified Tc�x� of Pr�Os1−xRux�4Sb12 includes
both effects because the singlet-triplet excitations have dipo-
lar as well as quadrupolar character due to the tetrahedral
CEF �Sec. II�. In the present case their magnetoelastic inter-
action with rattling phonons leads to vibronic excitation
modes with modified dipolar and quadrupolar matrix ele-
ments. Generalization of the expressions for pure CEF sys-
tems in Refs. 11 and 33 to vibronic excitations leads to an
equation for the renormalized Tc given by

−
8

�
�Tc

Tc
0�ln�Tc

Tc
0� = �Q�

s

uQs
2 ��s�F� �s

2Tc
�

+ �D�
s

uDs
2 ��s�G� �s

2Tc
� . �36�

Here uDs
2 ,uQs

2 are given by Eqs. �17� and �26�. The dimen-
sionless vibronic pair forming and breaking strengths �Q�x�
and �D�x� for the quadrupolar and dipolar conduction elec-
tron scattering channels due to Hsf are given by

�Q�x� = y�̂Q�x�
bQ

2 �x�
bQ

2 �0�
1

tc
0�x�

,

�̂Q�x� =
2�NFIac

2 �f2	
Tc

0�0�
3bQ

2 �0� ,

�D�x� = y�̂D�x�
bD

2 �x�
bD

2 �0�
1

tc
0�x�

,

�̂D�x� =
2�NFIex

2 �gJ − 1�2

Tc
0�0�

3bD
2 �0� , �37�

where y is the Pr content. In the present case of
Pr�Os1−xRux�4Sb12 we have y=1. Furthermore NF is the con-
duction electron density of states �DOS� of
La�Os1−xRux�4Sb12 at the Fermi level and tc

0�x�
=Tc

0�x� /Tc
0�0� the normalized background transition tempera-

ture of La�Os1−xRux�4Sb12 �y=0� with Tc�0�=0.74 K. The
quadrupolar and dipolar matrix elements bQ ,bD are given in
Appendix A and �f2	 is the Fermi-surface averages of the
quadrupolar form factors �independent of n�. The functions
F, G in Eq. �36� which correspond to pair formation and pair
breaking, respectively, in principle, depend explicitly on tem-
perature via the thermal occupation of excited vibronic
levels.33 However in the present case we have ��x� /2Tc

0�x�
�1 and therefore �s�x� /2Tc

0�x��1 for all Ru concentrations
x. Then we may use the low-temperature limit for F, G in
which case we have, defining xs=�s /2Tc,
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F�xs� = −
1

xs
+ S1�xs� ,

G�xs� =
1

xs
− S1�xs� + S2�xs� = − F�xs� + S2�xs� . �38�

Here, S1,2�xs� are combinations of digamma functions de-
rived in Ref. 33 and given in Appendix B for completeness.
The dimensionless �Q�x� ,�D�x� parameters in Eqs. �36� and
�37� depend on the Ru content x via three factors: �i� the
quadrupolar and dipolar matrix elements bi�x� �i=Q ,D�
which are determined by the x-dependent CEF parameters
xCF�x� and yCF�x� �Appendix A� �ii� The dimensionless inter-
action constants �̂i�x� depend on x through conduction elec-
tron DOS NF and possibly also through the interaction
strengths Iac , Iex. �iii� The background normalized transition
temperature tc

0�x�.
A model for these Ru concentration dependences is

needed as input to calculate the Tc�x� for the Pr compound
from Eq. �36� or Tc�x� /Tc

0�x� normalized to the
La�Os1−xRux�4Sb12 value. The model for bi�x� �i=Q ,D� and
�̂i�x� is described in Appendix A. The background Tc

0�x� is
determined experimentally only for the stoichiometric cases
�x=0,1�. The interpolation in Fig. 5 is used for intermediate
concentrations. The resulting x dependence of pair-forming
and pair-breaking parameters �Q�x� and �D�x� obtained from
Eq. �37� is shown in Fig. 4 and fit procedure and parameters
are explained in Appendix A and in the caption. The de-
crease in �Q is mostly due to the increase in tc

0�x�
=Tc

0�x� /Tc
0�0� �dashed-dotted curve in Fig. 5�. On the other

hand �D has to increase with x in order to achieve the cross-
over from Tc enhancement 
Tc�0� /Tc

0�0�=2.5� at x=0 to Tc
depression 
Tc�1� /Tc

0�1�=0.34� at x=1. This observed cross-
over from pair forming to pair breaking by CEF excitations
is only possible if the dipolar scattering strength increases
with x. This is in part due to the increase in the tetrahedral
CEF parameter yCF �Appendix A� since for small yCF the
dipolar matrix element d
yCF

2 shows a strong increase with
yCF. The latter is compensated by the tc

0�x� increase leading

to an almost flat �D�x� for large x. The associated crossover
from Tc�x� /Tc

0 enhancement to reduction obtained from Eq.
�36� is shown in Fig. 5 with an almost flat reduction factor at
large x. Altogether, because the background Tc

0�x� strongly
increases with x, the renormalized Tc�x� exhibits a minimum
for intermediate concentrations �bottom Fig. 5�. The experi-
mental values from Ref. 6 are shown for comparison
�squares�. The Tc�x� curve was calculated for �=0 and mod-
erate �=0.15 with only small difference, especially for larger
x �around the minimum region�. The precise form of �Q�x�
and �D�x� cannot be determined presently because no reliable
information on CEF parameters and matrix elements for in-
termediate x is available. However, the crossover from
mainly pair forming at small x to pair-breaking behavior at
large x �Fig. 4� is robust. We conclude that the vibronic split-
ting does not play an essential role in the Tc�x� minimum
formation. This is due to the fact that for x�xc close to the
crossing region already �s�xc� /2Tc�1 where the pair-
breaking functions S1,2�xs� �Appendix B� vary slowly with
xs. Therefore, the coupling ��0 hardly affects Tc for larger
x. Its effect would be much bigger if the mode crossing
would appear at energies comparable to Tc, i.e., �s�x� /2Tc
�1. In the case of Pr�Os1−xRux�4Sb12 this is not possible
because already for x=0 we have �0 /2Tc

0=5.4.
One may conclude that the Tc�x� minimum is not directly

linked to the crossing of rattling phonon mode and CEF ex-
citation found in Ref. 19. It is rather a combined effect in-
volving the crossover from Tc /Tc

0 enhancement to reduction
and the increase in the background Tc

0�x�. In this scenario the
observed Tc�x� minimum also does not imply or suggest a
symmetry change in the order parameter from below to
above the Ru concentration at the minimum.

0 0.2 0.4 0.6 0.8 1
x [Ru]

0

5

10

15

20

25
ρ D

ρ Q

FIG. 4. Crossover from pair forming �Tc�Tc
0� at x=0 with �Q

��D to pair breaking at x=1 with �Q��D �Tc�Tc
0�. At x=0

�D /�Q=1 /7 as in Ref. 11 which produces the experimental en-
hancement Tc /Tc

0=2.5. At x=1 �D /�Q=1.43 is adjusted to the ex-
perimental depression Tc /Tc

0=0.34.
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T
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FIG. 5. Dependence of critical temperature on x �Ru content�.
Top: dashed-dotted line shows interpolated Tc

0�x� curve for
La�Os1−xRux�4Sb12. Only Tc

0�0�=0.74 K and Tc
0�1�=3.58 K �full

circles� are experimentally known values. Full line shows the cal-
culated renormalization factor Tc�x� /Tc

0�x� �with �=0�. Note that
Tc

0�0��Tc�0�=1.85 K but Tc
0�1��Tc�1�=1.20 K. Bottom: Tc�x�

for Pr�Os1−xRux�4Sb12. Full line is obtained from top panel. The
experimental Tc data �squares� are taken from susceptibility results
in Ref. 6. The minimum is due to a decreasing Tc�x� /Tc

0�x� and an
increasing Tc

0�x�. Dashed line ��=0.15� shows that effect of vi-
bronic level splitting on Tc�x� is small.
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VI. SUMMARY AND CONCLUSION

In this work the possible nonadiabatic effects of CEF
singlet-triplet excitations and rattling phonons of rare-earth
guests in the host cages of Pr�Os1−xRux�4Sb12 have been in-
vestigated. This is suggested by specific-heat experiments of
Miyazaki et al.19 which show a crossing of triplet excitation
and rattling phonon energies at an intermediate Ru content.

It has been proposed that a magnetoelastic coupling be-
tween the singlet-triplet excitations and the local rattling
modes should lead to vibronic splitting and mixed-mode for-
mation around the crossing point. These features can be de-
tected in the spectral functions measured by INS experi-
ments. It should also be observable in the low-temperature
depression of the symmetry elastic constant as function of
Ru concentration which measures directly the quadrupolar
susceptibility of the vibronic excitations. On the other hand
the magnetic susceptibility is not affected by the mode split-
ting. Its comparison with experiment indicates an increase in
dipolar matrix elements for increasing x and possibly the
influence of the higher lying triplet �4

�1�.
The superconducting Tc�x� behavior of Pr�Os1−xRux�4Sb12

shows an enhancement at small and reduction at larger Ru
concentration compared to the background Tc

0�x� of
La�Os1−xRux�4Sb12. It also exhibits a minimum at intermedi-
ate concentration. The analysis presented here suggest that
this behavior is the result of a crossover between primarily
quadrupolar pair formation and mainly dipolar pair-breaking
mechanism originating in the singlet-triplet excitations. The
vibronic coupling has little influence on the existence of the
minimum �Fig. 5� because of the large singlet-triplet splitting
for x�0.65 in comparison to Tc. The minimum is rather a
combined effect of a decreasing enhancement factor and the
increasing background Tc

0�x�. An essential feature of the
model is a growing dipolar �magnetic� character of the triplet
for larger Ru content which may be due to an increase in the
tetrahedral crystal-field part. For a better determination of the
model parameters it would therefore be important to deter-
mine the CEF parameters for intermediate Ru content by INS
experiments. The experimental knowledge of Tc

0�x� of
La�Os1−xRux�4Sb12 in the whole Ru concentration range
would also allow further improvement of the model.
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APPENDIX A

In this appendix we summarize basic properties of the
tetrahedral CEF model and interaction model needed in the
analysis. The CEF potential in tetrahedral symmetry is given
in Ref. 21. Aside from an overall scale W it is determined by
two parameters xCF�x�, yCF�x� which characterize fourfold
cubic and tetrahedral contributions, respectively. These pa-
rameters will depend on the Ru content x. The same is then
true for dipolar and quadrupolar matrix elements bD

2 �x�
= �20 /3�d2�x� and bQ

2 �x�= �140 /3�
1−d2�x�� which depend
on a mixing parameter d given by22

d2�x� =
1

2
�1 −

3 + 2xCF�x�

3 + 2xCF�x��2 + 1008yCF�x�2� . �A1�

It is a measure of the tetrahedral CEF since d=0 for yCF=0.
In this model the singlet-triplet �1-�4

�2� splitting is given by22

��x� = 2W
36 − 58xCF�x�� − 4W�
3 + 2xCF�x��2

+ 1008yCF
2 �x��1/2. �A2�

For PrOs4Sb12 �x=0� we use xCF�0�=0.45 and yCF�0�=0.1.22

In PrRu4Sb12 �x=1� the CEF splitting is much larger. This
suggests that xCF�1� is close to zero according to Ref. 35.
Furthermore for x=1 the dipolar matrix element bD

2 and
hence yCF has to increase. Therefore, we use the set xCF�1�
=0.0 and yCF�1�=0.2. It leads to comparable intensities for
the �1→�4

�2� �84 K� and �1→�4
�2� �145 K� transitions in

qualitative agreement with INS results in Ref. 36. Further-
more the CEF scale factor in Eq. �A2� is given by W
�1.9 K leading to ��0�=8 K and ��1�=84 K. For general
x, an interpolation between values at x=0,1 is employed
according to

xCF�x� = xCF
0 �1 − x� + xCF

1 x + xCF
2 x�1 − x� �A3�

and similar for yCF�x�. The interpolation parameter sets
�xCF

0 ,xCF
1 ,xCF

2 �= �0.45,0 ,0� and �yCF
0 ,yCF

1 ,yCF
2 �= �0.1,0.2,0.1�

have been used for calculating d2�x� from Eq. �A1� and then
bi

2�x� �i=Q ,D� needed in Eq. �37�. These CEF parameters
also reproduce the experimental ��x� behavior.

For the calculation of pair-forming and pair-breaking
functions in Eq. �37� one needs the dimensionless interaction
constants �̂i�x� �i=Q ,D� in addition to the CEF matrix ele-
ments. The former are obtained by a similar interpolation as
in Eq. �A3� with the parameter sets ��̂Q

0 , �̂Q
1 , �̂Q

2 �
= �22.34,22.34,0� and ��̂Q

0 , �̂Q
1 , �̂Q

2 �= �3.2,10.3,6.0�. The
�̂i

0,1 are chosen such that for x=0,1 the absolute value of
Tc�x� corresponds to the experimental one in Fig. 5. Finally
the �̂i

2 are adjusted to obtain the minimum position and value
of Tc�x�.

APPENDIX B

The functions S1,2�x� in Eq. �38� were derived in Ref. 33
and are given here for completeness,

S1�x� =
4x

�4Re�
n=0

�
1

�n +
1

2
�

1

�n +
1

2
−

ix

�
�2�
�1 + n −

ix

�
�

− 
�1

2
�� ,

S2�x� =
8

�3 Im�
n=0

�
1

�n +
1

2
−

ix

�
�2�
�1 + n −

ix

�
� − 
�1

2
�� ,

�B1�

where 
�z�=d ln ��z� /dz is the digamma function.37
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