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A simple and robust fitting procedure is presented for determining the three elastic constants of a cubic
crystal from surface Brillouin scattering measurements carried out in the �100� and �110� directions in a �001�
surface. The input data utilized are the Rayleigh surface wave velocity, the Lamb shoulder threshold velocity,
and the longitudinal lateral wave velocity measured in the two directions. In fitting these velocities, use of
simple closed-form expressions is made for the secular functions determining them. Corresponding expressions

for the �010� and �101̄� directions in the �101� plane are also provided. The formulas for the Lamb shoulder
threshold, which have not previously been available in the literature, should prove to be particularly useful, as
they apply also to thin supported film structures. The procedure is applied to the determination of the elastic
constants of the ternary semiconductor alloy InAs0.91Sb0.09, yielding C11=74.4 GPa, C12=40.5 GPa, and
C44=37.8 GPa.
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I. INTRODUCTION

Extensive use is made of Brillouin scattering of light for
the measurement of the elastic constants of crystals.1–4 It is a
noncontact technique that is applicable to small samples, and
the measurements can be carried out as a function of tem-
perature and pressure. The frequency shift of the scattered
light is equal to that of the phonon created or annihilated in
the scattering, and momentum conservation determines the
phonon wave vector. Combining these data for a particular
scattering geometry yields an acoustic velocity, and from a
suitable set of measured velocities the elastic constants can
be determined. In the case of transparent media, the scatter-
ing is mediated predominantly by the elasto-optic mecha-
nism and takes place within the bulk of the medium. For
opaque media, on the other hand, the scattering takes place
near the surface of the sample, is mediated predominantly by
the surface ripple mechanism, and there is only wave vector
conservation parallel to the surface. It is surface Brillouin
scattering �SBS� from opaque samples with which this paper
is concerned.

A typical SBS spectrum2–4 for a homogeneous solid con-
sists of a continuous band known as the Lamb shoulder
which extends from a lower frequency cutoff or threshold to
high frequencies and which arises from scattering by bulk
phonons impinging on the surface. Below the cutoff and
separated from the Lamb shoulder is commonly to be ob-
served a sharp resonance pertaining to scattering by Rayleigh
surface phonons. Often a distinct dip �or a peak if there is
some elasto-optic scattering� can be discerned within the
Lamb shoulder at what is termed the longitudinal lateral
wave �LLW� velocity, which is the threshold for scattering
from bulk longitudinal phonons. There are other lateral
waves or transonic states as we will refer to them in this
paper, that could in principle be detected, but this would
require greater sensitivity and signal to noise than is nor-
mally achievable with SBS. Not uncommonly, pseudosurface
acoustic waves �PSAWs� show up in SBS spectra. These are

Rayleigh-type waves that lie within the Lamb shoulder and
through coupling to the bulk wave continuum are leaky
rather than true unattenuated surface waves.

In determining the elastic constants C�� of a crystal from
SBS spectra, measurements are usually done in more than
one direction in the crystal surface and, if necessary, on two
or more differently oriented surfaces; then an optimization
fitting procedure is invoked to determine the elastic con-
stants. In this paper we present a particularly simple and
robust scheme for recovering the elastic constants of crystals
using data pertaining to high-symmetry directions and sur-
faces for which there is decoupling between sagittally polar-
ized and shear horizontally �SH� polarized motion. The input
data for the fitting procedure are the Rayleigh velocity, the
Lamb threshold velocity, and the LLW velocity measured in
two or more directions. These are fitted using closed-form
expressions for the secular functions determining these ve-
locities. The formulas for the Lamb shoulder threshold,
which have not previously been available in the literature,
should prove to be particularly useful, as they apply also to
thin supported film structures. For such structures the Ray-
leigh velocity is dispersive and the LLW feature evolves with
the film thickness to wavelength ratio d /� �Ref. 5� but the
Lamb threshold is an attribute of the substrate and indepen-
dent of d /�. As an illustrative example, we apply the proce-
dure to determining the elastic constants C11, C12, and C44 of
a cubic crystal of the ternary semiconductor alloy
InAs0.91Sb0.09, using measurements carried out on the �100�
and �110� directions in the �001� surface.

II. SURFACE BRILLOUIN SCATTERING THEORY

We consider scattering from an anisotropic solid occupy-
ing the half space x3�0. For the 180° backscattering geom-
etry commonly used in SBS, the wave vectors of the incident
and scattered laser light ki and ks, respectively, lie in a com-
mon sagittal plane, and the incident and scattering angles �i
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and �s are equal, i.e., �i=�s. The scattering vector parallel to
the surface is in magnitude thus

k� = 2ki sin �i. �1�

The frequency shift that the light undergoes on being scat-
tered is equal to the frequency of the phonon created or an-
nihilated, i.e., ��s−�i�=�. For the Rayleigh wave peak in the
SBS spectrum, the surface phonon phase velocity v is thus
given by

� = k�v . �2�

The Lamb shoulder is associated with scattering from bulk
acoustic phonons incident from all directions on the surface
and which have wave vector component parallel to the sur-
face equal to k�. Since there is essentially no restriction on
the normal component of the wave vectors of these phonons,
their k’s and �’s have no upper limit. The lower limit to the
Lamb continuum is conditioned by the slow transverse �ST�
wave having group velocity parallel to the surface and pro-
jected wave vector k�.

The two important mechanisms for the inelastic scattering
of light by acoustic phonons are dynamic rippling of the
surface of the solid by the phonons and the modulation of the
refractive index by the fluctuating strain field of the phonons.
For opaque solids such as InAs0.91Sb0.09, into which there is
only very limited penetration of the light, surface ripple scat-
tering dominates over elasto-optic scattering. In this situation
the scattering cross section for frequency shift � and surface
scattering wave vector k� is proportional to the thermody-
namic power spectrum of the normal displacements of the
surface at that frequency and wave vector. At room tempera-
ture and above, for which kBT�	�, kB being Boltzmann’s
constant, it follows from the fluctuation dissipation theorem
that the SBS efficiency or cross section is given by2–4

I��� = D
T

�
Im�G33�k�,��� , �3�

where D is a constant that depends on the optical properties
of the medium, the scattering geometry, and the frequency
and polarization of the incident light. G33�k� ,��=G33�s�� /�,
where s� = �s1 ,s2�=k� /� is acoustic slowness parallel to the
surface, is the Fourier domain surface elastodynamic Green’s
function for normal force and displacement response, and is
given in general as the sum of contributions from three par-
tial waves which are phase matched in the surface by4

G33�s�� = i	
n=1

3
adj�B�3

�n�

det�B�
U3

�n�, �4�

where

Bl
�n� = 	

pq

C3lpqUp
�n�sq

�n� �5�

is the boundary-condition matrix, and Cpqrs is the elastic con-
stant tensor of the material, related in the usual way to the
Voigt matrix elastic constants C��.

The polarization vector U and slowness vector s= �s� ,s3�
are related by the Christoffel equations for the bulk
medium6–8

�Cijklsjsl − 
�ik�Uk = 0 �6�

in which 
 is the density. In surface Brillouin scattering k�

and hence s� is determined by the experimental setup and the
scattering geometry, and the slowness component s3 normal
to the surface for each partial wave follows from the charac-
teristic equation of Eq. �6�,

det�Cijklsjsl − 
�ik� = 0. �7�

This is a sextic equation, which in the case of the surface of
the specimen being a materials’ symmetry plane becomes a
cubic in s3

2.

A. Transonic states and Rayleigh wave for the Š100‹ direction
on the (001) surface

Figure 1�a� shows the �010� cube plane slowness section
of InAs0.91Sb0.09, i.e., the dependence of the real positive
roots s3 of Eq. �7� on s� =s1 parallel to the �100� cube axis.
The calculations have been done using the values of the elas-
tic constants determined later in this paper. This shape of
slowness surface is fairly typical of a wide variety of cubic
crystals, including the semiconductors Si and Ge, III/V com-
pounds such as GaAs and InSb and metals such as Cu and
Fe, for which

(a)

(b)

FIG. 1. �a� Positive real solutions of the slowness Eq. �7� for the
�010� cube plane of InAs0.91Sb0.09. �b� Im�G33�s1�� for this
configuration.
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�C12 + C44�2 � C11�C11 − C44� , �8�

which is Appendix A, Eq. �A6� with the replacements C66
→C44 and C22→C11. The inequality 
Eq. �8�� goes hand in
hand with the Zener anisotropy factor �=

2C44

�C11−C12� for the
medium being appreciably greater than unity. Because the
�010� plane is a mirror-symmetry plane, one of the branches,
which is labeled SH, pertains to pure T modes SH polarized
normal to the �010� plane. As can be inferred from Eq. �A1�
of Appendix A by setting C55, C66→C44 the SH curve is
circular, corresponding to constant slowness s=�
 /C44. The
other two sheets pertain to quasilongitudinal �qL� and quasi-
transverse �qT� modes polarized in the sagittal plane. In Fig.
1, T1, T2, and T3 denote extremal values of s1 or transonic
states,9 where with increasing s1 two real roots s3 coalesce
and are replaced by pairs of complex-conjugate roots or vice
versa. T3 is the limiting transonic state beyond which all the
roots s3 are complex or pure imaginary. As explained in more
detail in Appendix A, it is only when the inequality 
Eq. �8��
is satisfied that the qT curve is concave near the s1 axis and
the transonic state T3 exists. For InAs0.91Sb0.09 the left-hand
and right-hand sides of Eq. �8� are equal to 6123 GPa2 and
2723 GPa2, respectively, so the inequality is well satisfied.
For �C12+C44�2C11�C11−C44� the qT sheet is convex near
the s1 axis, there is no outward bulge, and the limiting tran-
sonic state is T2.

For calculating G33�s�� we have written a computer pro-
gram of a fairly general nature, which can be used for any
crystallographic orientation and crystal symmetry. For each
s� it solves 
Eq. �7�� for s3, and from the six solutions selects
the three which in the case of real s3 correspond to waves
with energy flux directed away from the surface and in the
case of complex s3 correspond to inhomogeneous waves
whose amplitudes fall off to zero at infinity. As a conse-
quence, the transonic states, where the partial waves change
in nature from homogeneous to inhomogeneous, are accom-
panied by distinctive features in the Green’s function. Actu-
ally, because for the configuration being considered here the
crystal surface and sagittal plane are crystal symmetry
planes, the SH polarized mode makes a zero contribution to
G33�s�� but this is not imposed a priori in the program. Fig-
ure 1�b� shows Im�G33�s1�� calculated for the above-
mentioned configuration. It is characterized by a sharp in-
tense resonance at the Rayleigh wave slowness R1 �some
damping has been introduced into the calculations to broaden
it out from a delta function and render it visible in the figure�
and the Lamb shoulder continuum extending from the limit-
ing transonic state T3 �the Lamb shoulder threshold� down to
s1=0. There is a slight kink at the transonic state T2 �it can
be more pronounced for some crystals, depending on the
values of the elastic constants� and a sharp minimum at the
longitudinal transonic state T1, also known variously as the
LLW, high-frequency pseudosurface mode, longitudinal
resonance, and leaky longitudinal surface wave. In crystals
for which �C12+C44�2C11�C11−C44� the Lamb shoulder
threshold is the transonic state is T2.

The velocities of the Rayleigh mode and transonic states
are discrete quantifiable attributes of a SBS spectrum that
one can anticipate being able to measure with reasonable

accuracy, whereas absolute intensities and their continuous
variation are much more difficult to establish. Not surpris-
ingly therefore, there have been numerous publications in
which the elastic constants of crystals have been determined
by fitting to measurements of the Rayleigh and LLW veloci-
ties for various scattering configurations. We are only, how-
ever, aware of one prior use of measured Lamb shoulder
threshold velocities in the determination of the elastic con-
stants of anisotropic solids by Carlotti et al.10 The reason for
this has most likely been the nonavailability before now of
analytical expressions for this velocity �Carlotti et al.10 in
their fitting procedure used the edge of their numerically
determined phonon power spectrum�. In the present paper we
provide expressions for the Lamb threshold and meld them
into a systematic and robust optimized fitting procedure in
which as many measurable discrete velocities as possible are
brought in. Rather than carrying out a least-squares fit to
measured velocities, we find it advantageous to use a merit
function constructed from secular equations for the discrete
velocities cast in a consistent dimensionally equivalent form.

General expressions for the transonic states and Rayleigh
mode for the �100� direction in the �010� plane of an ortho-
rhombic crystal are set out in Appendices A and B, respec-
tively, and are adapted in this and the next sections for the
cube and diagonal planes in cubic symmetry. Expressions for
the �100� direction in the �001� cube plane are obtained by
making the replacements C55, C66→C44, and C22→C11 in
Eqs. �A8� and �A9�. Thus the T1 and T2 transonic states in
Fig. 1 correspond to longitudinal and transverse waves with
wave and ray vector �which is normal to the slowness sur-
face� parallel to the �100� direction. Their phase velocities V
are determined respectively by the secular equations

HT1��,C��� = � − C11 = 0, �9�

HT2��,C��� = � − C44 = 0, �10�

where �=
V2.
The T3 transonic state corresponds to a qT wave with ray

but not wave vector in the �100� direction. Its phase velocity
V is determined by the secular Eq. �A7�, namely,

HT3��,C��� = � − E − F�2 = 0. �11�

The coefficients E and F, defined in Appendix A simplify in
this case to

E =
�C11 − C12��C11 + C12 + 2C44�

2�C11 + C44�
, �12�

F =
�C11 − C44�2

2�C11 + C44��C11 + C12��C11 − C12 − 2C44�
. �13�

The Rayleigh wave is in general a superposition of three
phase-matched evanescent waves that satisfies the free-
surface boundary conditions. Its velocity is governed by the
vanishing of the boundary-condition determinant det�B�. For
a general direction of propagation in an arbitrarily oriented
surface of an anisotropic solid, calculating this velocity ana-
lytically is not a viable option since it is known that the
secular equation could be a degree as high as 27 in the vari-
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able 
V2.11–13 It is common practice therefore to resort to
numerical methods in calculating the Rayleigh velocity.
However, in situations where the surface and sagittal planes
are materials’ symmetry planes there is considerable simpli-
fication, in that the shear horizontal mode is decoupled from
the other two sagittally polarized modes and the Rayleigh
wave is a superposition then just of the latter two. Such
two-component Rayleigh or generalized Rayleigh waves �see
Appendix B for the distinction� have been studied by a num-
ber of authors14–16 and are governed by relatively simple
secular equations. The Rayleigh velocity from Eq. �B1� Ap-
pendix B by making the replacements C66→C44 and C22
→C11 is determined by the secular equation

HR1��,C��� = � − C11

C44
�

C44 − �

C11 − �
�1/2

� �C11 − C12
2 /C11 − ��

= 0. �14�

B. Transonic states and Rayleigh wave for the Š110‹ direction
on the (001) surface

Figure 2�a� shows the �1̄10� plane slowness section of
InAs0.91Sb0.09, i.e., the dependence of the real positive roots

s3 on s� =s1 parallel to the �110� axis. This is the sagittal
plane for propagation in the �110� direction in the �001�
plane. Figure 2�b� shows Im�G33�s1�� calculated for this con-
figuration. Again, both crystal surface and sagittal plane are
materials’ symmetry planes and again there is a sheet of the
slowness which is SH polarized and makes a zero contribu-
tion in the calculation of G33�s��. Secular expressions for the
transonic states and Rayleigh wave in the �110� direction in
the �001� cube plane are obtained by making the replace-
ments C22→C11, C66→C44, C55→ �C11−C12� /2, and C11
→ �C11+C12+2C44� /2 in Eqs. �A8�–�A10� and �B1�. The
condition for the qT sheet to be concave near the s1 axis is

�C12 + C44�2 � C11�C11 + C12�/2 �15�

and with the left-hand and right-hand sides being equal to
6123 GPa2 and 4272 GPa2, respectively, this inequality is
also well satisfied for InAs0.91Sb0.09. The Lamb shoulder for
this situation does not extend to the limiting transonic state
T7 but only to the transonic state T6. The transonic state T5 is
accompanied by a slight kink in Im�G33�s1�� and the T4 tran-
sonic state, the LLW, by a sharp minimum. Beyond T6 is the
Rayleigh wave. It is supersonic with respect to T7 but is
nevertheless a true nonattenuated SAW because it is un-
coupled from the SH polarized ST bulk wave continuum.
However, when the direction is tilted away from the symme-
try direction it couples to the ST branch, acquires a small ST
bulk partial-wave component through which it can be excited
and radiate its energy away from the surface, and thereby
becomes a leaky or PSAW.

Thus, the T4 and T5 and T7 transonic states in Fig. 2�a�
corresponds to longitudinal and transverse waves with wave
and ray vector parallel to the �110� direction. Their phase
velocities V are determined, respectively, by the secular
equations

HT4��,C��� = � − C = 0, �16�

HT5��,C��� = � − C44 = 0, �17�

HT7��,C��� = � − C� = 0 �18�

in which

C =
1

2
�C11 + C12 + 2C44� , �19�

C� =
1

2
�C11 − C12� . �20�

The T6 transonic state corresponds to a qT wave with ray but
not wave vector in the �110� direction. Its phase velocity V is
determined by the secular equation

HT6��,C��� = � − E − F�2 = 0. �21�

The coefficients E and F are as defined in Appendix A with
the elastic constant replacements specified in the first para-
graph of the present section.

The Rayleigh velocity from Eq. �B1� �Appendix B� by
making the above-mentioned replacements is determined by
the secular equation

(a)

(b)

FIG. 2. �a� Positive real solutions of the slowness Eq. �7� for the

�1̄10� diagonal plane of InAs0.91Sb0.09. �b� Im�G33�s1�� for this
configuration.
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HR2��,C��� = � − C11

C44
�

C44 − �

C − �
�1/2C −

C12
2

C11
− �� = 0.

�22�

For InAs0.91Sb0.09 and other cubic crystal of comparable an-
isotropy, the Rayleigh wave in the �110� direction described
by Eq. �22� is supersonic with respect to the bulk SH wave
threshold and exists as a delta function spike in the SH con-
tinuum, which however does not feature in Im�G33�s1��. For
directions deviating from �110�, the SH continuum now does
feature in Im�G33�s1�� and the limiting transonic state is the
Lamb shoulder threshold. The Rayleigh wave now couples to
the continuum of bulk SH waves and becomes a PSAW,
acquiring a finite resonance width in the process.

In Sec. IV we make use of the simple expressions given
above for the SAW and transonic states in the determination
of the elastic constants of InAs0.91Sb0.09.

C. Transonic states and Rayleigh wave for the (101) surface

For completeness we briefly discuss here the transonic

states and Rayleigh waves for the �010� and �101̄� high-
symmetry directions in the �101� surface of InAs0.91Sb0.09.
Figure 3�a� shows the slowness section for s� parallel to the
�010� axis and Fig. 3�b� shows Im�G33�s1�� for this configu-
ration while Fig. 4�a� shows the slowness section or s� par-

allel to the �101̄� axis and Fig. 4�b� shows Im�G33�s1�� for
this configuration. In both cases the crystal surface and sag-
ittal plane are materials symmetry planes, and SH polarized
branch makes zero contribution to G33�s��. Secular expres-
sions for the transonic states and Rayleigh wave in the
�010� direction are obtained by making the replacements,
C55,C66→C44, C44→ �C11−C12� /2, and C22→ �C11+C12
+2C44� /2 in Eqs. �A8�–�A10� and �B1�. The condition for
the qT sheet to be concave near the s1 axis is

�C12 + C44�2 � �C11 − C44��C11 + C12 + 2C44�/2, �23�

which is well satisfied for InAs0.91Sb0.09.
Secular expressions for the transonic states and Rayleigh

wave in the �101̄� direction are obtained by making the re-
placements C11,C22→ �C11+C12+2C44� /2, C12→ �C11+C12
−2C44� /2, C55→C44, and C66→ �C11−C12� /2 in Eqs.
�A8�–�A10� and �B1�. The condition for the qT sheet to be
concave near the s1 axis is

�C11 − C44�2 � �C12 + C44��C11 + C12 + 2C44�/2, �24�

which for the �101̄� direction is not satisfied for
InAs0.91Sb0.09. The qT sheet is convex near the s1 direction
and the transonic state T13, which determines the Lamb
shoulder threshold, is at s1=� 2


�C11−C12� . For inequality 
Eq.
�24�� to be satisfied requires a small or negative value of C12
and thereby a value of Zener anisotropy factor appreciably
smaller than unity.

III. SURFACE BRILLOUIN SCATTERING
MEASUREMENTS ON InAs0.91Sb0.09

As an illustrative example we employ the secular equa-
tions discussed above to determine the elastic constants of a

single cubic crystal of the semiconducting alloy
InAs0.91Sb0.09.

17–19 This particular ternary alloy has become
an important focus in the development of long-wavelength
optoelectronic devices due its energy gap corresponding to a
wavelength of about 4.2 �m,20,21 which is within the infra-
red wavelength range 3–5 �m, the transmission window in
the atmosphere. Furthermore, this alloy is reported to have
high electron mobility making its application in high-speed
devices very attractive.22 To the best of our knowledge there
is no report to date on the measurement of its elastic con-
stants.

We have used SBS to measure the wave speeds of Ray-
leigh, Lamb threshold, and LLW velocities in the �100� and
�110� directions on the �001� surface of InAs0.91Sb0.09, which
we use in the next section to determine an optimal set of
room-temperature values of the elastic constants C11, C12,
and C44 of the alloy.

InAs0.91Sb0.09 specimens with dimensions of about 4
�4 mm2 were supplied by J. R. Botha. These undoped
samples with a mirrorlike finish were grown by atmospheric
pressure metal-organic vapor phase epitaxy on an InAs sub-
strate. Additional information supplied with the ternary alloy

(a)

(b)

FIG. 3. �a� Positive real solutions of the slowness equation for s1

in the �010� direction in the �101̄� plane of InAs0.91Sb0.09. �b�
Im�G33�s1�� for this configuration, displaying a sharp minimum at
T8 and a slight kink at the transonic state T9.
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showed that it was measured to be about 2.7 �m thick by
the Nomarski differential interference method, which is thick
enough to be regarded as bulk material in SBS and was lat-
tice matched to the �100� orientation of the InAs substrate,.

InAs0.91Sb0.09, in common with a number of III-V alloys,
forms a crystal with a cubic zinc-blende structure. X-ray dif-
fraction measurements were carried out on the specimen and
its room-temperature lattice constant determined to be
6.0811 Å. The density was then calculated from the lattice
constant and the total atomic weight in a unit cell to be
5.729 g /cm3. SBS measurements were commenced after the
sample’s surface was cleaned with alcohol and acetone to
maintain its mirrorlike finish.

The experimental arrangement used for SBS measure-
ments is described in Comins.3 In brief, measurements were
done at room temperature using an argon-ion laser of wave-
length 514.5 nm operated in a single axial mode for illumi-
nation. The laser light was focused onto the sample by a 120
mm focal length lens and the scattered light was collected
with the same lens in the backscattering geometry. The scat-
tered light was analyzed by a Sandercock-type �3+3�-pass
tandem Fabry-Pérot interferometer. The light was detected
by a silicon avalanche photodiode device. The scattering

angle �s=�i=71° used in the measurements is close to the
maximum cross section for the p-p scattering �polarization in
the sagittal plane� cross section.

Figures 5 and 6 show, respectively, the anti-Stokes side-
bands of measured SBS spectra pertaining to the �100� and
�110� directions in the �001� surface of InAs0.91Sb0.09. Super-
posed on these plots are calculated spectra based on elastic
constants C11, C12, and C44 to be determined in the next
section. Comparison shows a reasonably good agreement be-
tween measured and calculated spectra, particularly as re-
gards the Rayleigh modes and the edge of the Lamb shoul-
der. There is more uncertainty in locating positions of the
LLW minima, as is evident when comparing the “valleys” of
the measured spectra to the calculated “dips.” The transonic
states T2 and T5 are barely perceptible features even in the
calculated spectra and totally obscured by noise in the mea-
sured spectra. The discrete features we are therefore able to
use in the next section for determining the elastic constants
are the Rayleigh velocities R1 and R2, the edges of the Lamb
shoulders, i.e., transonic states T3 and T6 and LLW minima,
i.e., transonic states T1 and T4.

(a)

(b)

FIG. 4. �a� Positive real solutions of the slowness equation for s1

in the �101̄� direction in the �010� plane of InAs0.91Sb0.09. �b�
Im�G33�s1�� for this configuration, displaying no trace of the SH
transonic state T12.

FIG. 5. The measured and calculated SBS spectra for the �100�
direction on the �001� surface.

FIG. 6. The measured and calculated SBS spectra for the �110�
direction on the �001� surface.
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IV. DETERMINATION OF ELASTIC CONSTANTS
FROM VELOCITY DATA

In this section we describe the method we have used to
calculate the room-temperature values of the elastic con-
stants C11, C12, and C44 of InAs0.91Sb0.09 from the Rayleigh
wave speeds R1 and R2 and the transonic states T1, T3, T4,
and T6, measured in the �100� and �110� principal symmetry
directions, respectively. With only three parameters to vary,
this is an over-determined problem calling for optimal fitting
as defined by the minimization of a suitable merit function.
The merit function we have adopted for this purpose is

�2 = 	
i

wiHi
2��i� , �25�

summed over i=T1,T3 ,T4 ,T6 ,R1 ,R2, where wi are relative
weightings accorded to the six terms, Hi��i ;C����0 are the
secular functions determining the six velocities, cast in the
form discussed in Sec. II, and �i=
Vi

2, where Vi are the six
measured velocities listed in Table I. They represent veloci-
ties for the individual features averaged over the Stokes and
anti-Stokes sidebands of the SBS spectra. All six Hi��i ;C���
are homogeneous functions of degree 1 in �i and C��, and so
the derivatives Ki=

�Hi

��i
, which come into the weighting fac-

tors below, are dimensionless numbers. H1 and H4 represent
precisely the deviations between the measured and calculated
values of �1 and �4, respectively, and so K1=K4=1 while for
the remaining Ki there are additional terms to take into ac-
count. From the measured values of the velocities and pre-
liminary estimates of the elastic constants, the terms F�2 in
Eqs. �11� and �21� are very much smaller than the other
terms and so K3�K6�1 while for the Rayleigh wave one
finds KR1�KR2�2.5.

This approach is essentially equivalent to a least-squares
fit between measured and calculated velocities Vi

meas and
Vi

calc, respectively, in which the merit function would be
taken as

�2 = 	
i=1

6
�Vi

meas − Vi
calc�2

�i
2 �26�

and �i are the standard deviations pertaining to the measured
data. The use of Eq. �25� is, however, simpler than Eq. �26�
in that it obviates the need, in particular, to solve the Ray-
leigh Eqs. �14� and �22� and Lamb threshold Eqs. �11� and

�21�, and choose between the resulting roots. A number of
investigators have reported elastic constant determination by
optimized fitting on the basis of the secular functions for
bulk waves in anisotropic solids23–26 but we are not aware of
the secular functions for surface waves and transonic states
hitherto being used in this way.

The relative weighting factors in Eq. �25� are related to
the standard deviations in Eq. �26� by

wi = A/�Vi�iKi�2, �27�

where A= �V1�1K1�2 is a common factor set to render all
weightings normalized to wR1=1. We have set the values of
the remaining wi as follows. By fitting Lorenzian functions
to the prominent SAW and PSAW peaks we find �R1��R2
�44 m /s. The Lamb shoulder threshold and LLW velocities
on the other hand are obtained from less distinct features in
the SBS spectrum and we estimate �T1��T3��T4��T6
�2.5�R1. Using the values of the Ki established above and
setting VR1�VR2�VT3�VT6�2 mm /�s and VT1�VT4
�4 mm /�s, we are led to the following values for the re-
maining weightings: wR2=1, wT3=wT6=1, and wT1=wT4
=0.25.

With these weighting factors and measured velocities,
minimization of �2 using Mathematica yields C11
=74.4 GPa, C12=40.5 GPa, and C44=37.8 GPa and �min

2

=16.1 GPa2. The calculated velocities and their deviations
from the measured ones are listed in Table I and are all well
within the estimated experimental error in the measured data.
We have performed other minimizations keeping wR1=wR2
=wT3=wT6=1 and varying the value of wT1=wT4. A signifi-
cantly smaller value of wT1=wT4 yields poorer fits to VT1 and
VT4 and implausibly accurate fits to VR1 and VR2 while a
significantly larger value of wT1=wT4 degrades the fit to VR1
and VR2 significantly and provides implausibly accurate fits
to VT1 and VT4. This has convinced us of the reasonableness
of the weightings we have used.

Near to the optimum fit, �2 can be expressed as a qua-
dratic form in �C��, the deviations of C�� from their opti-
mally fitted values, with the coefficients being proportional
to the variances and covariances of the C��. An ellipsoid
representing the covariance tensor is shown in Fig. 7. There
is a factor of about 4.7 between the lengths of the largest and
smallest major axes, with the combination of elastic con-
stants C11−C12+C44 being the most accurately determined
and C11+C12 being the least accurately determined.27

Within the constraints of thermodynamic stability on the
elastic constants, there can be considerable variation in the
L, T, and Lamb threshold velocities, these all being depen-
dent on the elastic constants in quite different ways. The
Rayleigh velocity on the other hand tends to track the limit-
ing transonic state. For the high-symmetry directions in
InAs0.91Sb0.09 that we have been considering, the Rayleigh
velocity lies between 11% and 14% below the threshold ve-
locity. So, as has been noted before by Carlotti et al.,10 these
two velocities for a particular direction are most sensitive to
similar combinations of elastic constants. Nevertheless mea-
surements of these two velocities represent statistically inde-
pendent data and utilizing both in an optimized fitting pro-

TABLE I. The calculated velocities and their deviations from
the measured ones are shown.

Velocity, direction
Vmeasured

�m/s�
Vcalculated

�m/s�
Deviation

�%�

VR1 �100� 2010 1987 −1.14

VR2 �110� 2138 2152 0.65

V1 �100� 3482 3603 3.48

V3 �100� 2229 2204 −1.12

V4 �110� 4179 4077 −2.44

V6 �110� 2415 2456 1.70
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cedure must enhance the accuracy of elastic constant
determination.

V. CONCLUSIONS

We have shown how SBS measurements of, and secular
equations for the Rayleigh, LLW and Lamb shoulder thresh-
old velocities in the �100� and �110� directions in the �001�
surface of a cubic crystal can be successfully used in an
optimized fitting procedure to determine the three elastic
constants C11, C12, and C44. The expressions we have used
for the Rayleigh and LLW velocities have previously been
available in the literature but the secular equations for the
Lamb shoulder are established here. They should prove to be
particularly useful, as they apply also to thin supported film
structures. The sample we have carried out measurements on
and used to demonstrate this procedure is a single crystal of
InAs0.91Sb0.09. The elastic constants of this crystal, as with
many other cubic elements and compounds, comfortably sat-
isfy the inequalities 
Eqs. �8� and �15�� for which the Lamb
threshold velocities conform to Eqs. �11� and �21�. In cases
where Eqs. �8� and �15� are clearly not satisfied, then the
Lamb threshold velocities are given by the even simpler Eqs.
�10� and �18�. Usually one will have prior knowledge of
approximate values of the elastic constants of a sample, al-
lowing a decision to be made as to which of the formulas to
use. In a marginal case where there is doubt, one could do
the minimization with different combinations of these formu-
las and go by the best fit.
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APPENDIX A

We discuss the forms that the �001� symmetry plane sec-
tion of the acoustic slowness surface of an orthorhombic
crystal can take and the implications of these for the tran-
sonic states, and the related issue of the Rayleigh wave in the
�100� direction in the �010� symmetry plane surface of the
half space. The formulas we display are readily adapted to
the other symmetry planes of orthorhombic media by index
permutations and to the symmetry planes of hexagonal, te-
tragonal �see Ref. 7 regarding orientation of axes for TII�,
and cubic media by appropriate interchanges of elastic con-
stants. We assume the common situation in which in all di-
rections the longitudinal wave speed exceeds the transverse
wave speed.

Our starting point is the Christoffel secular Eq. �7� which
for the �001� symmetry plane section of an orthorhombic
medium factorizes into a quadratic equation pertaining to
pure transverse modes polarized in the �001� direction6–8

C55x + C44y − 1 = 0, �A1�

where x=s1
2 /
 and y=s2

2 /
, and a 2�2 determinantal equa-
tion which has the expanded form

�C11x + C66y − 1��C66x + C22y − 1� − �C12 + C66�2xy = 0,

�A2�

pertaining to qT and qL modes polarized in the �001� plane.
Figure 8 depicts qL and qT �001� slowness sections for

two orthorhombic media which are identical as regards C11
=90 GPa, C22=100 GPa, C66=40 GPa, and 
=104 kg /m3

but have different values C12=10 and 60 GPa. The intersec-

FIG. 7. �Color online� Covariance ellipsoid in elastic constant
determination.

FIG. 8. qL and qT �001� slowness sections for two orthorhombic
media with identical C11=90 GPa, C22=100 GPa, C66=40 GPa,
and 
=104 kg /m3, but different C12=10 GPa �the dashed curves�,
and C12=60 GPa �the solid curves�. The dot-dashed curve repre-
sents qT branch complex solutions s2 of the slowness equation. For
s1 near to sc, s2−s2�sc�� � i�s1−sc.
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tion of the slowness curves along the s1 axis sa=�
 /C11
=0.333 �s /mm and sb=�
 /C66=0.5 �s /mm are extremal
values of s1 or transonic states and because of symmetry
happen to correspond to pure longitudinal and pure trans-
verse modes, respectively. Not shown is the pure transverse
branch which intersects the s1 axis at sd=�
 /C55. In the first
case, C12=10 GPa, represented by dashed curves in Fig. 8,
the qT sheet is convex near the �100� direction, and the tran-
sonic slowness sb is a maximum. In the second case, C11
=60 GPa, represented by solid curves in Fig. 8, the transonic
slowness sb is a minimum and the qT curve is concave near
the �100� direction, bulging outward, and then curving back-
ward. There is now a second qT transonic state sc, lying
beyond sb. This limiting transonic slowness, sc is conditioned
by the vanishing of the derivative

�s1

�s2
, and so is obtained by

differentiating 
Eq. �A2�� with respect to y and setting �x
�y

=0, which yields

2C22C66y = x�C12
2 + 2C12C66 − C11C22� + �C22 + C66� .

�A3�

Substituting Eq. �A3� into Eq. �A2� we obtain the transonic
state sc as the solution of the quadratic equation

A + Bx + Dx2 = 0, �A4�

where

A = − c4
2,

B = c4c2 − c4c1 − c5c6,

D = c1c2 − c3c5,

c1 = C12
2 + 2C12C66 − C11C22 + 2C66

2 ,

c2 = C12
2 + 2C12C66 + C11C22,

c3 = C12
2 + 2C12C66 − C11C22,

c4 = �C22 − C66� ,

c5 = 2�C12 + C66�2,

c6 = �C22 + C66� . �A5�

The existence of this second qT transonic state sc requires
that the solutions of Eqs. �A2� and �A3� for both x and y be
positive. This is only the case if6,28

�C12 + C66�2 � C22�C11 − C66� , �A6�

the condition being obtained by setting y�0 in Eqs. �A2�
and �A3� and selecting the solution x=1 /C66 of Eq. �A2�.

The existence of a region of negative curvature near the s1
axis and positive curvature further out implies a point of
inflection in the slowness curve or vanishing Gaussian cur-
vature in the three-dimensional slowness surface, which
maps onto a cuspidal edge in the wave surface and caustics
in the energy flux radiated by a point or line acoustic source.

Such caustics are a prominent feature of the phonon focusing
patterns of crystals.29,30 In the main text above, Eqs. �8�,
�15�, �23�, and �24� are adapted from Eq. �A6� for particular
directions in cubic crystals. They are precisely the conditions
for the emergence of certain caustic structures in the phonon
focusing patterns of cubic crystals and correspond, respec-
tively, to Eqs. �12�, �17�, �13�, and �18� of Ref. 30 Overall,
the curvature of the slowness surface plays a crucial role in
the elastodynamics of anisotropic media.31

Equation �A4� is readily rephrased as an equation for the
transonic velocity V of rather �=
V2=1 /x, which we cast in
the form

� − E − F�2 = 0, �A7�

where E=−D /B and F=−A /B, for application in Sec. IV in
the fitting of elastic constants to measured threshold veloci-
ties. For completeness, the secular equations for the tran-
sonic states sa, sb, and sd in terms of � are, respectively,

� − C11 = 0, �A8�

� − C66 = 0, �A9�

� − C55 = 0. �A10�

APPENDIX B

There is an extensive literature on closed-form secular
equations for the Rayleigh velocity in directions on crystal
surfaces where the sagittal plane is a materials’ symmetry
plane and SH motion is decoupled from sagittal plane
motion.11–16 In this situation the Rayleigh wave is a superpo-
sition just of two sagittally polarized inhomogeneous partial
waves. A distinction is made between ordinary Rayleigh
waves and what are termed generalized Rayleigh waves. For
the former, the slowness components normal to the surface
of the half space of the two partial waves are pure imaginary
and far from the surface the displacement field therefore falls
off monotonically in an exponential way. A generalized Ray-
leigh wave, on the other hand, is characterized by being a
superposition of partial waves whose slowness components
normal to the surface are complex,32 having both real and
imaginary parts, so that the displacement field oscillates,
with an amplitude that falls off exponentially away from the
surface. The inequality 
Eq. �A6�� represents sufficient con-
dition for the Rayleigh wave to be of the generalized type
since the solutions for s2 of the slowness equation for s1
lying beyond the limiting transonic state sc have both a real
part 
to start with �s2�sc�� and an increasing imaginary part
�to start with �i�s1−sc�, as indicated in Fig. 8.

The secular equation for the Rayleigh wave in the �100�
direction on the �010� surface of an orthorhombic crystal can
be cast in the form15

� − C22

C66
�

C66 − �

C11 − �
�1/2

� �C11 − C12
2 /C22 − �� = 0,

�B1�

which applies whether Eq. �A6� is satisfied or not.
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