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We discuss the quench dynamics near a quantum critical point focusing on the sine-Gordon model as a
primary example. We suggest a unified approach to sudden and slow quenches, where the tuning parameter
��t� changes in time as ��t���tr, based on the adiabatic expansion of the excitation probability in powers of
�. We show that the universal scaling of the excitation probability can be understood through the singularity of
the generalized adiabatic susceptibility �2r+2���, which for sudden quenches �r=0� reduces to the fidelity
susceptibility. In turn this class of susceptibilities is expressed through the moments of the connected correla-
tion function of the quench operator. We analyze the excitations created after a sudden quench of the cosine
potential using a combined approach of form-factors expansion and conformal perturbation theory for the
low-energy and high-energy sector, respectively. We find the general scaling laws for the probability of exciting
the system, the density of excited quasiparticles, the entropy and the heat generated after the quench. In the two
limits where the sine-Gordon model maps to hard-core bosons and free massive fermions we provide the exact
solutions for the quench dynamics and discuss the finite temperature generalizations.
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I. INTRODUCTION

The sine-Gordon �SG� model is one of the few examples
of exactly solvable models both in the classical and in the
quantum case. In the classical limit, an arbitrary initial per-
turbation splits into solitons and breathers, which are infi-
nitely long lived excitations �see, e.g., Ref. 1�. In the quan-
tum regime these solitons and breathers are quantized and
form a discrete spectrum �for each momentum state�.2,3 This
model found numerous applications in various fields of phys-
ics including statistical physics, condensed-matter physics,
atomic physics and high-energy physics. Its integrability al-
lows to solve various equilibrium and nonequilibrium situa-
tions and gain important insights into phenomena ranging
from classical and quantum phase transitions4–6 to quench
dynamics of coupled superfluids.7,8

For the purposes of this work we will keep in mind the
applications of this model to one-dimensional quantum sys-
tems. Thus a natural low-energy theory describing a one-
dimensional interacting gas of bosons or fermions is the Lut-
tinger liquid model, which is nothing but a scalar free
1+1-dimensional bosonic theory.5 The Luttinger liquid is of-
ten unstable to various perturbations opening a gap in the
system coming either from the external potential �periodic9

or disordered10� or the tunneling coupling between multiple
Luttinger liquids.11 In these situations the most relevant per-
turbations appear in the form of the lowest harmonic of the
cosine potential allowed by the symmetry6,12 leading to the
sine-Gordon Hamiltonian:

H =
1

2
� dx���x��x��2 + ���x��2 − 4� cos����x��� . �1�

In cold-atom systems this Hamiltonian can be implemented
through optical lattices,9,13 it also emerges naturally in the
context of interacting quantum wires,5,14 mesoscopic super-
conducting junctions,15 spin chains5,6 and many others.

The recent experimental developments in cold-atoms16,17

prompted a rapidly growing theoretical interest to study the
dynamics of quantum systems. A particular attention was
paid to such issues as sudden quench dynamics,18–24 thermal-
ization in integrable and nonintegrable systems25–28 and slow
dynamics in isolated systems near quantum critical
points.29–31 The latter works illustrated the universal scaling
of the density of quasiparticles generated due to nonadiabatic
transitions during the crossing of quantum phase transitions.
The universal properties of quantum critical points in equi-
librium extend to the dynamics and allow one to make uni-
versal predictions on the defects and energy generation simi-
lar to the Kibble-Zurek relations32,33 for slow dynamics near
quantum critical points.34–44

In the preceding work,45 we showed that a similar univer-
sality also persists for a sudden quench dynamics near quan-
tum critical points if the quench amplitude is sufficiently
small. There we analyzed the general scaling behavior of
different quantities following a sudden quench of the ampli-
tude � f starting from the critical point �i=0. We presented
some general arguments for the scaling of various quantities
such as the probability of exciting the system Pex, the density
of excited quasiparticles nex, the �diagonal� entropy density
Sd,46 and the heat density Q,47 with the quench amplitude and
the system size. We showed that the corresponding scaling
laws are universal and can be described by two critical ex-
ponents characterizing the quantum critical point: the dy-
namical exponent z and the correlation length exponent �.
We also argued that the scaling behavior for sudden
quenches is smoothly connected to the scaling behavior of
similar quantities for slow quenches, where the tuning pa-
rameter is turned on as an arbitrary power of time:40,48 ��t�
��tr, where � is a small parameter. In particular, in the limit
r→0 this parameter becomes the quench amplitude: �=� f.

The goal of this paper is to verify how the general argu-
ments of Ref. 45 work in practice. We will use the sine-
Gordon model as a primary example. Performing explicit
calculations based on the adiabatic perturbation theory, form-
factor approach, and conformal perturbation theory we will
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illustrate how these scalings are realized for the case of
quenching the cosine potential and highlight various subtle-
ties which can emerge due to possible ultraviolet or infrared
divergencies. In the two limits where the SG model reduces
to free massive bosons and fermions we will extend the
analysis to higher dimensions and again verify the general
predictions of Ref. 45. In these two limits we will be able to
generalize the results to finite temperatures and see how the
quasiparticle statistics affects the scaling of various quanti-
ties.

The paper is organized as follows: in Sec. II, we review
the general scaling results presented in Ref. 45 introducing a
generalized framework that allows us to describe sudden
quenches and slow quenches on the same footing. In Sec. III,
we describe the basic properties of the SG model. Then in
Secs. IV and V, we analyze the quench dynamics in the SG
model using the adiabatic perturbation theory. In Sec. VI, we
present the exact analysis of quenches in the two noninter-
acting limits of the SG model corresponding to the free mas-
sive bosons and free massive fermions. In Sec.VI D, we fur-
thermore extend this analysis to finite temperature quenches.
Finally in Sec. VII, we discuss some interesting relations
between quench dynamics, fidelity susceptibility and geo-
metric tensors.

II. GENERALIZED FRAMEWORK FOR THE ANALYSIS
OF QUENCH DYNAMICS: HIERARCHY OF

SUSCEPTIBILITIES

In this section, we will illustrate a generalized approach to
study the scaling laws of the quantities of interest after per-
forming a quench. As in Ref. 45 we consider a d-dimensional
system described by a Hamiltonian H���=H0+�V, where H0
is the Hamiltonian corresponding to a quantum critical point
�QCP� and V is a relevant �or marginal� perturbation. In par-
ticular, we consider the processes where the coupling
changes near the critical point as a power law in time:

��t� = �
tr

r!
	�t� , �2�

where � is a small parameter that we define as �� dr�

dtr �t=0 and
	 is the step function, so that the coupling starts changing
with time as tr near the critical point. On the same footing we
can consider the opposite processes, where quenches stop at
the critical point as:

��t� = �
�tf − t�r

r!
	�tf − t� . �3�

The analysis also extends to cyclic processes where the dy-
namical evolution starts and ends at the quantum critical
point. E.g. ��t�	�tr�tf − t�r / �r ! tf

r�. In all these cases � plays
the role of the adiabatic parameter such that �→0 corre-
sponds to the adiabatic limit. In particular, if the system is
initially prepared in the ground state then in the limit �→0 it
will remain in the ground state. The physical meaning of � is
quite transparent. For sudden quenches r=0, it corresponds
to the quench amplitude �=� f; for linear quenches r=1, it

describes the quench rate �= �̇; for quadratic quenches r=2,

it describes the acceleration near the quantum critical point:

�= �̈ and so. The smallness of � suggests the possibility of
using it as an expansion parameter. Relying on the adiabatic
perturbation theory one can indeed write an expansion in the
powers of �. The details of this approach can be found in
Refs. 49 and 50. We only quote the final expression for the
transition amplitude to the excited state �n
 as a result of this
process �see, e.g., Eq. �19� in Ref. 49 or Eq. �18� in Ref. 50�:


n�tf� 	 �i
�n��t�0


En�t� − E0�t�
−

1

En�t� − E0�t�
d

dt

�n��t�0

En�t� − E0�t�

+ . . .ei�	n�t�−	0�t���ti
tf = �i�̇

�n����0

En��� − E0���

− �̈
�n����0


�En��� − E0����2

− �̇2 1

En��� − E0���
d

d�

�n����0

En��� − E0���

+ . . .ei�	n���−	0������i

�f , �4�

where 	n�t�=�0
t En���d� is the dynamical phase �in general

one should also add the Berry phase term� and En is the
eigenenergy of the state �n
. We can anticipate that the criti-
cal point will dominate the dynamics so that only one of the
limits �=�i �if �i=0� or �=� f �if � f =0� should dominate the
transition amplitude. From this equation it is clear that the
lowest nonvanishing time derivative of ��t� at the critical
point dominates the asymptotics of the transition probability:

�
n�2 	 �2 ��n����0
�2

�En�0� − E0�0��2r = �2 ��n�V�0
�2

�En�0� − E0�0��2r+2 , �5�

where all the matrix elements are evaluated at the quantum
critical point. Therefore, we find that the probability of ex-
citing the system, defined with respect to the instantaneous
ground state, scales as:

Pex = �
n�0

�
n�2 	 Ld�2�2r+2�0� , �6�

where

�m��� =
1

Ld �
n�0

��n�V�0
�2

�En��� − E0����m �7�

is the generalized adiabatic susceptibility of order m. For m
=2, �r=0�, �2=� f, where � f is the fidelity susceptibility:

� f =
1

Ld �
n�0

��0����n
�2 =
1

Ld �
n�0

��0�V�n
�2

�En��� − E0����2 . �8�

Indeed, the connection between the probability of exciting
the system Pex and the concept of fidelity appears more evi-
dent if we define an adiabatic fidelity:

Fa��,t� = ����t���0�t�
� , �9�

which is the overlap between the wave function at time t and
the instantaneous ground state. This fidelity in general is sen-
sitive to the protocol through the exponent r, and it depends
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as well on the adiabatic parameter � and on the time t. When
the transitions are dominated by the vicinity of the QCP the
adiabatic fidelity becomes insensitive to t, if the latter is suf-
ficiently big. In the general case one can fix t requiring that
��t�=� f. Then the adiabatic fidelity depends on the adiabatic
parameter and on the value of the final coupling. The adia-
batic fidelity is clearly a measure of adiabaticity: Fa=1 cor-
responds to the completely adiabatic limit. Therefore, it is
natural its connection to the transition probability through:

Pex = 1 − Fa���2, �10�

which is equivalent to Eq. �6�. From the expansion Eq. �6�
we see that the generalized adiabatic susceptibility �2r+2
describes the scaling of the adiabatic fidelity. Note that in
the case of sudden quenches �r=0,�=�� the wave function
does not change during the quench hence it remains equal to
the ground state of the initial Hamiltonian. Then the adia-
batic fidelity is simply the ground-state fidelity Fa���
= ���0�0� ��0���
�. Even though in this work we focus on the
quenches starting �ending� at the QCP, the notion of adia-
batic fidelity can be extended to other situations, where, e.g.,
one crosses the critical point in time. The universal details of
the scaling behavior of the adiabatic fidelity and hence of the
generalized susceptibilities will not change since they are
only sensitive to the dynamics near the QCP itself. What will
become different are the nonuniversal ultraviolet contribu-
tions to Pex �and other quantities�, which we will discuss in
detail in the following sections.

From Eq. �6� it is clear that, knowing the scaling behavior
of the generalized susceptibility �2r+2, we can infer the scal-
ing behavior of Pex itself. Thus for r=0, � f describes the
system’s response to a sudden quench �see Refs. 45 and 51�.
For m=4 �r=1� the linear adiabatic susceptibility �4 de-
scribes the response to a linear quench and so on. Let us note
that the scaling dimension of the susceptibilities �m��� is
related to the scaling dimension of the fidelity susceptibility
via: dim��m����=dim�� f����−z�m−2�=d−2 /�−z�m−2�. If
dim��m���� becomes negative �d�2+z��m−2�� then the
susceptibility �m��� diverges at the quantum critical point.
Since dim���=1 /� the asymptotical behavior of �m��� at
small � is:

�m��� �
1

���2−d�+z��m−2� . �11�

In finite size systems this divergence is cutoff by the system
size L when the correlation length �����1 / ���� becomes
comparable to L. Thus exactly at the quantum critical point
the generalized adiabatic susceptibility scales as

�m�0� � L2/�+z�m−2�−d. �12�

For m=2 this scaling agrees with that of the fidelity
susceptibility.52,53 If the scaling dimension of �m is positive
then this generically indicates that this susceptibility has a
cusp singularity, meaning that the asymptotics Eqs. �11� and
�12� become subleading.

Combining Eqs. �6� and �12� we find that if the condition
d��2�1+z�r� is fulfilled, then Pex has the following
asymptotic behavior in the adiabatic limit:

Pex 	 �2L2/�+2zr. �13�

Since the probability Pex must always be smaller than one,
this scaling must be valid only for quenches of small ampli-
tude ����1 /L1/�+zr. The physical meaning of this require-
ment is that the correlation length of the system associated
with this velocity �����1 / ����/�1+zr�� must be big compared
to the system size ��L. Physically the length scale ����
characterizes the crossover in the response of the system
from the sudden to the adiabatic regimes similar to the
Kibble-Zurek mechanism.32,33 I.e., for excitations with char-
acteristic size �e.g., wavelength� shorter than ���� the
quenching process looks adiabatic, while for excitations with
size larger than ���� it looks sudden. For linear quenches
�����1 / ����/�1+z�� indeed reproduces the characteristic
Kibble-Zurek length scale.32,33

Let us point that the crossover to the regime with Pex���
	1 occurs precisely when the characteristic length scale ����
becomes of the order of the system size. This can be ex-
plained using a simple symmetry argument, which is easier
to understand for sudden quenches r=0. In this case the
quench corresponds to projecting the ground state in the
critical state on the new basis. The quantity 1− Pex defines
the probability that the system remains in the ground state
after the quench. But if ����L the new ground state has a
well-defined symmetry absent at the critical point. Thus the
probability to remain in the ground state should be close to
zero. Similar considerations apply to slow quenches, r�0.
Thus for quenches of higher rate ����1 /L1/�+zr �but still slow
compared to the other microscopic scales of the system� the
probability of exciting the system is close to one and is no
longer a good quantity to characterize the system response
�such as the overlap of two ground states becomes very close
to zero and thus not very informative�. We argued45 that in
this case, the physically relevant and meaningful quantity to
look at is the density of generated excitations nex �quasipar-
ticles if we are dealing with nearly integrable models�. In-
deed, the physical reason why the global probability of ex-
citation rapidly approaches unity is that exciting even a
single quasiparticle makes the new state orthogonal to the
initial state. Yet physically we anticipate that exciting a
single quasiparticle in the system should not change drasti-
cally the properties of the system. In particular, it should not
affect the probability to excite the next quasiparticle. Since
we are typically dealing with few body operators by per-
forming a quench, we couple only to the many-body states
characterized by few quasiparticles. Thus it was argued that
the density of generated quasiparticles should scale as:

nex � �2L2/�−d+2zr �14�

for ����1 /L1/�+zr and

nex � ���d�/�z�r+1� �15�

in the opposite limit. Note that the second scaling has a much
wider domain of applicability than the first one since there is
no requirement on vanishing quench amplitude with the sys-
tem size. In particular, for r=1 the result Eq. �15� agrees with
the Kibble-Zurek scaling predicted earlier in Refs. 29 and 30.
Also for nonlinear quenches r�1 the scaling Eq. �15� agrees
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with the results of Refs. 40 and 48, noting that �= �1 /��r in
the notations of Ref. 40. Let us also point out that, as we will
illustrate here for the specific case of the sine-Gordon model
�Sec. V�, for d��2 the nonanalytic asymptotic with ��� or L
in the scaling for nex and Pex survives but becomes sublead-
ing. The leading asymptotic is then analytic and it comes
from the excitations of nonuniversal high-energy states.

The density of excitations is a very simple and intuitive
object, however it is not always well defined. Unless we deal
with long lived quasiparticles or other e.g., topological exci-
tations, in nonintegrable systems nex is not conserved in time
after the quench because of various relaxation processes. For
the same reason nex is not a readily observable quantity.
Hence, one needs to characterize the response of the system
by other means. The two natural quantities, which can be
defined for any Hamiltonian system, are the �diagonal�
entropy46 and the heat �or the nonadiabatic part of the energy,
which is also the excess energy above the new ground state
of the quenched Hamiltonian47�. Because both quantities are
extensive, it is convenient to deal with their densities:

Sd = −
1

Ld�
n

�
n�2log�
n�2, �16�

Q =
1

Ld�
n

�En − E0��
n�2 = �
n�0

En�
n�2. �17�

Here the index n enumerates the many-body eigenstates of
the Hamiltonian in the final state and �
n�2, as written above
in Eqs. �4� and �5�, is the probability of the transition to the
n-state due to the quench. The scaling of the entropy is very
similar �up to possible logarithmic corrections� to the one of
Pex and nex. The advantage of the entropy over Pex is that it
is well behaved and meaningful for large amplitude quenches
����1 /L1/�+zr, where Pex→1. The scaling of the heat is dif-
ferent from that of nex because of the term En−E0 in Eq.
�17�. If the quench ends at the critical point then one finds
that the scaling of the heat is described by �2r+1 :Q
��2�2r+1 so that

Q � �2L2/�−d+z�2r−1� �18�

for ����1 /L1/�+zr and

Q � ����d+z��/�z�r+1� �19�

for ����1 /L1/�+zr.
Let us note that the susceptibilities �m are directly related

to the connected parts of the correlation functions G����
= �V�� ,��V�� ,0�
− �V�,� ,0�
2 by a simple generalization of
the expressions obtained in Ref. 52:

�m��� =
1

Ld�m − 1�!�0

�

�m−1G����d� . �20�

For local perturbations V=�xV�x� it is obvious that if G���
decays sufficiently fast at large � then �m is a non-negative
number well defined in the thermodynamic limit L→�. For
the sine-Gordon model we wrote the explicit expressions of
�1 and �2 in Eqs. �54� and �55�. Using the Lehmann’s rep-
resentation of the correlation function we can define the gen-

erating functions for the susceptibilities �m���:

I�
� =
1

Ld�
0

�

G����e−
�d� =
1

Ld �
n�0

��n�V�0
�2

En��� − E0��� + 

,

�21�

such that

I�
� = �
m

�− 
�m�m��� . �22�

This characteristic function clearly contains the information
about the scalings laws of the quantities discussed in this
work for all possible power law quenches.

Let us say a few words about the scaling in the regime
where the relevant adiabatic susceptibility has only a cusp
singularity. In this case the leading asymptotics of �m��� at
�→0 is given by a nonuniversal constant, which in turn
defines the leading response of the system to the quench.
Thus one can expect the scaling for the quantities nex, Sd, Q
to be analytic in �. Instead of Eq. �14�, we anticipate:

nex � �2�2r+2�0� . �23�

Similarly for the heat �in the case of a quench ending at the
QCP� we expect Q��2�2r+1�0�. As we will show below the
nonanalytic behavior of these quantities with � survives, but
becomes subleading and thus hardly identifiable either nu-
merically or experimentally.

It is interesting to note that these scaling results extend to
the situation of gapless systems even in the absence of the
critical point. Thus, if we are dealing with gapless bosonic
theory then one simply needs to take the limit �→� in the
expressions above. It is clear from Eqs. �11� and �12� that for
m�2 the susceptibility �m can still diverge in low enough
dimensions if dz�m−2�. This divergence is actually the
origin of the strong nonadiabaticity in low-dimensional gap-
less systems54 �see also Ref. 55�. Thus the existence of the
quantum criticality is not really needed to have a nonanalytic
scaling of various observables with �. Following Ref. 55 let
us make the following observation. In the limit �→� in low
dimensions the scaling of the three quantities nex, Sd, and Q
is only sensitive to the quench time but not to the actual
quenching protocol. For instance for dz�2r−1� the scaling
of the heat is Q�����d+z�/zr�1 /��d+z�/z, where ���� f /��1/r is
the quench time required to change � from the initial value
�i=0 to some fixed final value � f. Thus the scaling of Q with
� is not-sensitive to the power r with which the tuning pa-
rameter is quenched. On the other hand for d�z�2r−1� the
situation is opposite. The scaling of the heat Q��2�1 /�2r is
very sensitive to the power with which the coupling � is
turned on �off�. This suggests that the optimum quench pro-
tocol, which gives the smallest excitation level in the system
for a given quench time �, corresponds to the crossover
power r= 1

2 � d
z +1�. Higher powers of r are to be avoided be-

cause of the growth of the prefactor with r.48 This argument
extends the predictions of Ref. 48 to generic gapless systems.

III. SINE-GORDON MODEL

The SG-model is described by the Hamiltonian:
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H =
1

2
� dx���x��x��2 + ���x��2 − 4� cos����x��� ,

�24�

where ��x� and ��x� are conjugated fields. Since this model
is exactly solvable a great amount of facts is known about it.
It is conventional to introduce the parameter � �Ref. 56�

� =
�2

8� − �2 . �25�

The spectrum of the SG Hamiltonian Eq. �24� depends on the
value of � �or ��. We will be primarily interested in the
regime of 0�28� since in this range for a finite � the
system is in a gapped phase, while for �=0 it corresponds to
the gapless Luttinger liquid. Therefore the system in this
regime undergoes a quantum phase transition at �=0. Fur-
thermore, for 4��28� �1���, so called repulsive
regime, the spectrum of the SG Hamiltonian consists of soli-
tons and antisolitons. At fixed small � and �2=8� the sys-
tems undergoes a Kosterlitz-Thouless transition to the Lut-
tinger liquid regime, where the cosine term is irrelevant. The
point �2=4� ��=1�, known as Toulouse point, maps to the
free massive fermionic theory; at this point solitons and an-
tisolitons correspond to particles and holes. For 0�24�
�0�1�, so called attractive regime, the spectrum in addi-
tion to the solitons and antisolitons contains their bound
states called breathers. The number of different types of
breathers depends on the interaction parameter � and is equal
to the integer part of 1 /�. We denote a breather by Bn with
n=1,2 , . . . , �1 /��. In the small � �or �� limit the SG model is
well described by the Gaussian approximation, where one
expands the cos���� term in the Hamiltonian Eq. �24� to the
quadratic order in �. In this limit there is only one massive
excitation, corresponding to the lowest breather B1. Solitons
�kinks�, antisolitons �antikinks�, and breathers are massive
particle-like excitations. The soliton and antisoliton mass in
terms of the parameters of the Hamiltonian Eq. �24� was
computed in Ref. 2:

Ms = ����
1

1 + �
��

�� �

1 + �
� �

�1+��/2
2�� �

2
�

����1 + �

2
� . �26�

Breathers mass is related to the soliton mass via:

MBn
= 2Ms sin���n

2
� . �27�

Note that for weak interactions �small �� the lowest breather
masses are approximately equidistant, MBn

�n, which sug-
gests that these masses correspond to eigenenergies of a har-
monic theory. There is a direct analogy between the breathers
in the sine-Gordon model and the energy levels of a simple
Josephson junction.8 In the Josephson junction �which is de-
scribed by the Hamiltonian Eq. �24� without the first gradient
term� the energy levels also become approximately equidis-
tant if the interaction �charging� energy is small. Let us note
that because the SG theory is explicitly relativistic invariant

the dynamical exponent z is equal to 1. The soliton mass Ms
identifies the characteristic energy scale of the system, there-
fore we expect for it a universal behavior around the critical
point: Ms����z�, that defines the critical exponent � for this
theory �from Eq. �26��

� =
1 + �

2
�28�

or �=4� / �8�−�2�, which can be continuously varied be-
tween 1/2 and �.

We will focus on sudden quenches of the parameter �,
��t�=� f	�t� and we will illustrate how the general scalings
laws for the density of excited quasiparticles �Eqs. �14� and
�15�� can be obtained for this model. As we discussed in the
previous section and in Ref. 45 these scaling laws are closely
related to the scaling of the fidelity susceptibility � f. This
susceptibility can be expressed as an integral of the correla-
tion functions. For the SG model the latter can be accessed
from two limits: the infrared limit �IR� describing long dis-
tance properties, and the ultraviolet limit �UV� correspond-
ing to short distances. The approach based on the form fac-
tors is well suited to analyze the former IR limit. To deal
with the UV limit one can rely on the conformal perturbation
theory, which is based on the fact that at short distances the
SG model �as well as many other IR-massive models� is free
and conformal �it effectively reduces to the Luttinger liquid
theory�. These two approaches are complementary and can
be used depending on the physics of interest. As we will
show below for d�2 �or �2 since d=1� the former form
factors approach reproduce the correct scalings of Pex and
nex, while for ��2 one should use the conformal perturba-
tion theory. Similar story is valid for heat but the IR and UV
dominated domains are defined according to whether �d
+z��=2� is bigger or smaller than 2. In general, it is rather
difficult to relate the results from the two formalisms: in
order to get the UV physics from the form factors expansions
one has to sum up the large �if not infinite� number of con-
tributions �see Ref. 3 and the following Sec. IV and V�. The
converse is also true. We will analyze both the UV and IR
contributions to the excitation probability and show that their
combination indeed reproduces the correct scaling asymptot-
ics.

IV. ANALYSIS OF THE LOW ENERGY EXCITATIONS
BASED ON THE FORM FACTOR EXPANSION

Let us start from the perturbative expression for the prob-
ability of exciting the system based on the adiabatic pertur-
bation theory. Within the latter the transition amplitude to the
state �n
 is found as49


n 	 − �
0

�f

d��n����0
 . �29�

If the matrix element �n����0
 is not singular at the QCP then
this expression reduces to the result of the first order of the
conventional perturbation theory. The expression Eq. �29�
has an advantage that it symmetrically treats both initial and
the final values of the coupling � and gives convergent ex-
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pressions even when the conventional perturbation theory
breaks down. From Eq. �29� we find

Pex�� f� 	 �
n�0

�
0

�f �
0

�f

d�1d�2�0���1
�n
�n���2

�0
 . �30�

In general one has to sum over all intermediate states �n
.
However, as we argued in,45 if d�2 �i.e., �3 in the SG
model� then Pex is dominated by the low energy excitations.
Since solitons and breathers are massive, i.e., gapped for
����0, we can expect that the dominant contribution to Eq.
�30� comes from single pairs of the lowest energy excitations
�solitons and antisolitons for ��1 and B1 breathers for �
1� with opposite momenta. Therefore the probability of
exciting the system and the number of excited quasiparticles
will become identical �up to a factor of two reflecting that
one excited state creates two solitons or breathers�. In this
case we can identify the sum over the states n as a sum over
momenta k and use:


k�� f� = − �
0

�f

d���k�����0
 = 2�
0

�f

d��
�0�cos�����k


Ek���� − E0����
,

�31�

where �k
 is a short-hand notation corresponding to the
soliton-antisoliton �breather� pair with momenta k and −k
and Ek��� is the energy of such a pair. The expression for the
density of excited quasiparticles nex is therefore:

nex�� f� 	
1

L
�
k�0

�
k�� f��2 =� dk

2���0

�f

d���0�����k
�2

= 4� dk

2���0

�f

d��
�0�cos�����k


Ek���� − E0�����2

. �32�

Note that a factor of 2 should appear here, due to the fact the
excited states correspond to pair of excitations, but it is ex-
actly canceled since we are counting each pair twice integrat-
ing over all positive and negative momenta. Likewise in the
same order of approximation one can obtain the expressions
for the heat density Q:

Q�� f� 	 4� dk

2�
Ek�� f���

0

�f

d��
�0�cos�����k


Ek���� − E0�����2

,

�33�

and the entropy density:

Sd 	 −
1

2
� dk

2�
�
k�2ln�
k�2. �34�

There is an additional factor of 1/2 in the expression for the
entropy coming from the fact that particles are excited only
in pairs and the contribution of each pair to the entropy �un-
like nex� is not doubled.

As we argued earlier �see also Ref. 45� the advantage of
using intensive quantities like nex ,Sd ,Q over Pex is that the
regime of validity of the perturbation theory for them is
much bigger. Unlike for Pex the quench amplitude is not
required to vanish as some power of the system size. In Sec.
VI, we will explicitly illustrate this point for two exactly

solvable limits of the SG model: �=1 and ��1.
The adiabatic perturbation theory allows us to reduce the

computation of the dynamical response to static correlation
functions. The same is true if we are dealing with slow pro-
cesses where the coupling changes gradually in time. In this
case �see Sec. II� there is an additional dynamical phase en-
tering the transition amplitude. For example for linear
quenches ��t�=�t instead of Eq. �31� we should use �see also
Refs. 13, 49, and 57�:


k��� = �
0

�

d��
�0�cos�����k


Ek���� − E0����

�exp� i

�
�

0

��
d���Ek���� − E0������ �35�

in all expressions for nex, Q and Sd.
The matrix elements appearing in Eqs. �31� and �35� are

related to the form factors of the operator cos����. In gen-
eral the form factors represent the matrix element of a par-
ticular operator between the vacuum and the asymptotic
states �eigenstates of the Bethe ansatz� created by the
Zamolodchikov-Faddeev operators corresponding to soli-
tons, antisolitons, and breathers. Because the SG theory is
Lorentz invariant it is convenient to use the rapidity variable
�, −���, which parametrizes the energy and momen-
tum of the soliton �breather�:

E = Ms,Bn
cosh �, k = Ms,Bn

sinh � . �36�

The eigenstates of the SG model can then be labeled by
��n . . .�1
an. . .a1

, where ai= �s , s̄ ,n=1. . . �1 /��� correspond to
solitons, antisolitons, and breathers. The correlation func-
tions of an arbitrary operator O�x , t� are written as an infinite
series expansion in terms of all the asymptotic states:58

�O�x,t�O†�0,0�
 = �
n=0

�

�
�ai�
� �

i=1

n
d�i

�2��nn!
ei�j=1

n kjx−Ejt��0�O�0,0�

���n . . . �1
an. . .a1
�2. �37�

The matrix elements entering Eqs. �31� and �35� are then
explicitly related to the form factors of the operator cos����
in the two-particle asymptotic states:

�0�cos�����k
 =
1

E���
��0�cos������,− �

a2,a1

. �38�

Here, the additional factor of 1 /E��� comes from the relativ-
istic normalization of the eigenstates parametrized by �,
�� ���
=���−��� / �2��. While in Eq. �32� we used a different
normalization �k �k�
=��k−k�� / �2��. Taking into account the
relations �36� we indeed find that the normalization factor
1 / �d�k����=1 /E���.

Let us discuss the two-soliton contribution to nex first,
which is expected to be dominant for 1��3. The corre-
sponding form factors in the SG model are known in the
literature:59,60
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Fexp��i����� = �2 − �1� � �0�e�i����2,�1
ss̄

= G�G��� �
�=�

cosh��/2�exp��� + i�

2�


sinh�� + i�

�
� ,

�39�

where we kept only the relevant factors �those which depend
on either � or � f�. We point out that the summation over �
comes from considering both the possibilities for a pair of
excitations �soliton-antisoliton and antisoliton-soliton�. Also
we write both signs in the exponent of the operator e�i��

since these form factors are invariant with respect to the
change of sign. Furthermore it is known that:

G� � Ms
2�/�1+��. �40�

This result together with Eq. �38� implies that
�0�cos�����k
��Ms���−1�/��+1�P������ f���−1�/2P���, where
P��� is some function which only depends on �. Next we use
this scaling of the matrix element in Eq. �32� for finding nex.
If the integral over k �or equivalently over �� converges at
small k�Ms then we can perform the appropriate rescaling
of the variables ���→�� /� f and k→k /Ms and send the up-
per limit of integration over k to �. Then we immediately
obtain the scaling nex��Ms���� f��, which agrees with the
general prediction Eq. �15� in the case of a sudden quench. A
similar analysis of the matrix elements leads to the correct
scaling for slow quenches characterized by an arbitrary ex-
ponent r �see Ref. 13 for linear quenches�.

To analyze the convergence of the integrals we need to
find the asymptotical behavior of the matrix element in Eq.
�32� at large �. In order to do this, we look at the large �
behavior of the �-dependent piece in Eq. �39�. In particular
we find:

G�2�� → exp�� 1

2
�1

�
+ 1��, �→ �� , �41�

which could be derived from the infinite-product-gamma-
functions representation of G��� �Ref. 61� �or also, in a dif-
ferent way, see Eq. �61� in the book by F. Smirnov59�. It is
also straightforward to deduce the asymptotics of the remain-
ing part of the form factor to finally get:

Fcos�����2�� � exp���3

2
−

1

2�
� . �42�

To find the matrix element �0�cos�����k
� we need to divide
this asymptotical form by the soliton energy �see Eq. �38��
E=Ms cosh���	Ms exp��� /2	k at large � so that

�0�cos�����k
 � Ms
��−1/�+1� exp��

2

� − 1

�
 � Ms

��−1/�+1�

�� E

Ms
���−1/2��

. �43�

This result correctly reproduces the scaling in the free fermi-
onic limit of the theory ��=1�, which can be obtained by
elementary methods �see Sec. VI C�. Such scaling implies a

logarithmic singularity at �=1 for the heat density in a sud-
den quench Q��� f�2log�� f�, see Eq. �33�, which is equivalent
to the log divergence of the ground state energy. This diver-
gence is expected because for �=1 we have �= �1+�� /2=1,
which corresponds to the crossover point between the scaling
Q��� f��d+z��, expected for �2 / �d+z�, and the quadratic
scaling, expected for ��2 / �d+z�. For ��1 the integral over
k in Eq. �33� diverges at large k, i.e., the main contribution to
the heat density comes from high energies �UV limit�, where
the lowest form factors expansion is not justified and we
need to rely on the UV limit of the matrix elements discussed
below in Sec. V. As for the other three quantities: nex, Pex,
and Sd the scaling of the matrix element Eq. �43� together
with Eqs. �32� and �34� suggests that nex��� f�d�= �� f��1+��/2

holds for the whole soliton region 1��� and there is no
indication of crossover to the quadratic scaling at �=3 �cor-
responding to �=2�. This result is however misleading be-
cause it comes from the fact that the lowest order form factor
expansion does not correctly reproduce the ultraviolet as-
ymptotics of the matrix elements. As we mentioned above to
get the right UV limit one needs to perform an infinite re-
summation of the form factors which implies that the sum in
Eq. �30� should be taken over multiple soliton states. This
problem is well known in the equilibrium analysis of the UV
asymptotics of the static correlation functions.62 In the next
section we will show how the power two emerges from ana-
lyzing Eq. �30� using the conformal perturbation theory.

Likewise one can analyze the scaling of the matrix ele-
ments in the breather region ��1�. Since we have �= �1
+�� /21 we expect that the scaling of all the quantities we
are interested in Q , Pex ,nex ,Sd is dominated by low energies
where the lowest form factor expansion is justified. So for
�1 we need to repeat the analysis above with the only
difference that the states �k
 in Eq. �31� denote pairs of
breather states with opposite momenta. The form factors for
breathers have a different scaling form than those for soli-
tons. With the operator cos���� it is possible to have non-
zero form factors of a single breather Bn of the form
�0�cos�����Bn
 if n is even. Those form factors do not de-
pend on the rapidity at all �see Ref. 63 for more details�. The
first �-dependent contribution into Eq. �30� comes from ex-
citing two B1 breathers. These breathers are the only addition
to the solitons in the spectrum for 1 /2��1 and they are
also the only surviving excitations in the noninteracting
bosonic limit of the SG model �→0. Therefore, here we will
concentrate only on the scaling analysis of nex and other
observables coming from exciting pairs of B1 breathers with
opposite momenta.64 The matrix element describing this pro-
cess is found through the corresponding form factors which
were computed in Ref. 63 using bootstrap, the procedure of
fusion of several breathers:65

�0�cos�����k
 =
1

E���
�0�cos ���B1���B1�− ��


=
1

2Ms cosh �
G��2sin����

��
R�2�� , �44�

where
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� = 2 cos���
2
�2 sin���

2
exp�− �

0

�� dt

2�

t

sin t �45�

and

R��� = exp�4�
0

� dt

t

sinh�t�sinh�t��sinh�t�1 + ���
sinh2�2t� exp�8�

0

� dt

t

sinh�t�sinh�t��sinh�t�1 + ���
sinh2�2t�

sinh2 t�1 − i
�

�
� . �46�

Since the dependence of the matrix element Eq. �44� on Ms
�and hence on � f� is again found via the function G�, we
conclude that the scaling of nex �as well as Q ,Sd and Pex� on
� f is the same as in the repulsive regime, e.g., nex
��� f��1+��/2. We only need to verify that the integrals over
momenta k converge at large k. In order to do this we need to
know the asymptotics of the function R�2�� at large �. The
scaling at large rapidity for the function R��� �defined in Ref.
60� is R����FB1

2 , which does not depend on �. This satura-
tion, which is the consequence of bootstrap, is actually true
for higher order form factors as well. For example
�0�cos ���B2���B2�−��
��FB2

�2. On the other hand, because
of the bootstrap relation, this should be proportional to
�0�cos ���B4
 which is a finite number. The one-breather
form factors of the type �0�ei���Bn�0�
�FBn

can be com-
puted from the residue of the soliton-antisoliton form factors
at points �n= i��1−n���, or, equivalently from the bootstrap
�the definition of FBn

can be found in Ref. 63�. For example,
the breather B2 is a bound state of two breathers B1. Using
this bootstrap procedure we can find

FBn

exp�i��� =

G��2cot���
2
�sin��n��exp�I�− ���ei�n/2

�cot���n
2

��s=1

n−1
cot2���s

2
� ,

�47�

where

I��� = �
0

� dt

t

sinh2�t�1 −
i�

�
�sinh�t�� − 1��

sinh�2t�cosh�t�sinh�t��
. �48�

The saturation of the form factors implies that the matrix
elements �0�cos�����k
 behave as 1 /E�k� at large k ensuring
the convergence of integrals in Eqs. �32�–�34� and thus the
validity of the universal scalings. In the next section using
the conformal perturbation theory we will also show that
there are no UV issues with these scaling relations, thus the
lowest form factor expansion is indeed justified. We note that
the saturation of the breather form factors can be also under-
stood from the fact that cos���� corresponds to the trace of
the stress-energy tensor, whereas breathers correspond to the
field � itself. This saturation is thus expected for all breather
contributions corresponding to exciting more than a single
pair of breathers. In Fig. 1, we show the dependence of the
B1B1 and B2B2 breather form factors as a function of the

rapidity. Both plots indicate clear saturation with � at the
value corresponding to the square of the single breather form
factor.

V. ANALYSIS OF THE HIGH ENERGY EXCITATIONS
BASED ON THE FIDELITY SUSCEPTIBILITY AND THE

CONFORMAL PERTURBATION THEORY

The other approach for finding the scaling of Pex and
other quantities with the quench amplitude � f is based on the
analysis of the fidelity susceptibility � f, which is in turn re-
lated to the correlation functions. From Eq. �6�, we know that
for sudden quenches of small amplitude we can write:

Pex�� f� 	 L�� f�2� f�� f� , �49�

with � f defined in Eq. �8�. A more accurate analysis based on
the Cauchy-Schwartz inequality �see Sec. VII� shows that
Pex is bounded by the integral of � f as Pex�� f�
�L� f�0

�fd�� f���, still the scaling of � f�0
�f� f���d� and

� f
2� f�� f� is the same for any power-law dependence of
� f�� f�, which we typically find near the critical point. More-
over in this section we will be primarily interested in the UV
limit, corresponding to exciting high energy states, where
Eq. �49� is justified by the conformal perturbation theory.
Likewise one can obtain the expression for heat density:

Q 	 �� f�2�E�� f� , �50�

with:

�E��� =
1

Ld �
n�0

��0�V�n
�2

En��� − E0���
. �51�

The susceptibility �E is equal to the generalized adiabatic
susceptibility of order one: �E=�1 according to Eq. �7�.

For sudden quenches the wave function does not change
during the quench. Hence the total energy after the quench is
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FIG. 1. B1B1 �top� and B2B2 �bottom� breather form factor for
�=1 /41 as a function of the rapidity �. The saturation lines are
given by �FB1

�2 and �FB2
�2 respectively.
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given by the expectation value of the new Hamiltonian taken
with the initial wave function:

E+ = ��0�H0 + � fV��0
 , �52�

where H0 is the free conformal Hamiltonian corresponding to
the critical point and V=−2�dx cos����. In the conformal
limit the ground state is invariant under the uniform phase
rotation ��x�→��x�+�0, where �0 is an arbitrary phase.
Using this symmetry the second term in Eq. �52� drops out
and thus the total energy does not change during the quench.
The heat is defined as the difference between the total energy
and the adiabatic �ground state� energy of the instantaneous
Hamiltonian �Egs�� f��. Therefore we see that in our case the
heat is equal by magnitude and opposite by sign to the
change of the ground-state energy: Q=−�Egs�� f�−Egs�0��.
One can recognize that Eq. �50� indeed gives �up to the sign�
the second-order perturbative correction to the ground-state
energy. As in the case of Pex, the perturbative expression is
justified if we are interested in understanding the UV limit,
where the energy denominator �see Eq. �51�� is large.

As we argued in Sec. II, the susceptibilities �E and � f can
be expressed through the integral of the connected part of the
imaginary time correlation function G�x ,��:

G�x,�� = �0�cos����x,���cos����0,0���0
 − �0�cos����0,0��

��0
2. �53�

Namely, for a translationally invariant system we have:

�E = �
0

�

d��
0

L

dxG�x,�� , �54�

� f = �
0

�

d��
0

L

dx�G�x,�� . �55�

Let us point out that G�x ,�� is a monotonically decreasing
non-negative function of r=�x2+�2 vanishing in the limit r
→�. The non-negativity of �dxG�x ,�� follows from the Le-
hmann’s representation:

�
0

L

dxG�x,�� =
1

L
�
n�0

��0�V�n
�2exp�− ��En − E0�� . �56�

The relativistic invariance of the SG model also implies the
non-negativity of G�x ,�� itself.

The scaling of Pex and Q with � f, at small � f, is thus
related to the small � f behavior of the integrals of G�x ,��.
The long distance behavior of the correlations functions at
scales r�Ms

−1 is given by the form factor expansion and can
be analyzed by the methods of the previous section, leading
to essentially the same predictions. In particular, because at
any finite � f the spectrum of the SG model is gapped, G�x ,��
exponentially decays on a correlation length scales r	�
�1 /Ms�1 / �� f��1+��/2. The scaling dimension of the operator
cos����x ,���, entering the correlation function, is �2 /4�
=2� / �1+��, implying that the scaling dimension of G is
twice that. Thus, we can estimate the contribution to the
scaling of � f coming from � ,x�� as � f ��3 /�4�/�1+��

��� f��1+��/2−2��� f��−2. This is precisely the scaling we ob-
tained from the form factors expansion.

The primary goal of this section is to analyze the UV
�short distance� limit where the form factor expansion in the
lowest order does not reproduce the correct scaling behavior,
as we pointed out in Sec. IV. For the contribution to the
susceptibilities and thus to Pex and Q �as well as to nex and
Sd� coming from r���Ms

−1 one can use the cosine term as
a small perturbation over the free �or conformal� limit. We
note that by the uncertainty principle the short distances cor-
respond to exciting states with high energies �and momenta�
En�Ms �k�1 /��. In turn the short distance behavior of the
correlation functions is governed by power-law asymptotics
with the exponents given by the scaling �conformal� dimen-
sions of the operator cos����, �which is �2 /4�=2� / ��+1�
as previously said�. Thus, in Euclidean notations:

G�x,�� �
1

�x2 + �2��
2/4�

. �57�

While this result is natural, it is somewhat nontrivial to ob-
tain from the form factor perturbation theory since it requires
an infinite re-summation of the form factors as it is nicely
demonstrated in Refs. 3 and 66. So we can conclude that in
order to correctly reproduce the high energy contribution to
Pex and Q it is not sufficient to restrict the excited states in
Eqs. �8�, �30�, and �51� to simply pairs of solitons and anti-
solitons with opposite momenta. It appears that only in the
free fermionic point �=1 the lowest soliton-antisoliton con-
tribution to G�x ,�� correctly predicts the exponent in Eq.
�57�. We believe that in general in our out-of-equilibrium
setup it is possible to use a combination of some RG-type
computations with the form factors based approach similar to
the one in Ref. 67.

From Eqs. �54� and �55�, we see that at the critical point
�E has IR divergence at �2�4� corresponding to �1 and
� f has such divergence at �2�6� corresponding to �3. By
now we understand that this divergence simply implies that
the scaling of Q�� f� and Pex�� f� is nonanalytic in � f or the
system size in these domains. This divergence also indicates
that the main contribution to the susceptibilities, and thus to
the heat and the probability of exciting the system, comes
from small energies E�Ms, where one can reliably use the
lowest form factors expansion. Conversely for ��1 the sus-
ceptibility �E has a UV divergence, which is cutoff by the
nonuniversal short distance regularization of the SG model.
Similarly for ��3 the fidelity susceptibility � f is dominated
by short distances or high energies. This implies that in these
regimes of UV divergence, �E��� and � f��� approach non-
universal constant values as �→0 �note that these values are
strictly positive because G�x ,�� is strictly positive�. There-
fore the leading asymptotical behavior for the heat becomes
quadratic for ��1:Q��� f�2�E�0�. Likewise the scaling for
Pex becomes extensive for ��3: Pex�L� f

2� f�0�. This ex-
actly agrees with the crossover to the quadratic scaling an-
ticipated in the Sec. II, that occurs for �d+z���2 for Q and
for d��2 for Pex. This crossover is directly analogous to the
crossover between nonanalytic and analytic regimes of scal-
ing for the linear quenches in higher dimensions.54 Similar
crossover between perturbative and nonperturbative scalings
at �=3 occurs for the density of excitations and the entropy.
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While the short distance behavior of the correlation func-
tion given by the conformal limit Eq. �57� is intuitively an-
ticipated, finding corrections to this scaling due to the finite
value of the coupling � requires using conformal perturba-
tion theory.68 In the latter the starting point is the conformal
field theory �free-boson compactified on a circle of radius R
in our case�. The Hilbert space then is the Verma module—
representation space of the Virasoro algebra. The different
basis states in this approach are labeled by two integers
�n ,m� �Ref. 69� corresponding to the eigenvalues p�
=n /R�m /2R of the momenta of the left/right movers
 �z� ,  ̄�z̄�, with !�x , t�= �z�+  ̄�z̄�. The perturbed theory is
constructed by adding vertex operators V�n,m��z , z̄�
=exp�i�p+ �z�+ p− ̄�z̄��� to the free theory. The scaling di-
mensions of the chiral parts of these vertex operators are
"�= p�

2 /2 so that the scaling dimension h of V�n,m� is h
="++"−. The sine-Gordon theory Eq. �24� is considered
then as a perturbation of this free theory by the vertex op-
erators with n ,m= ��1,0�.

HSG = HCFT + V, V = − 2� f�
0

L

�V�1,0��z, z̄� + V�−1,0��z, z̄��dx

�58�

!�x,t� = �4���x,t�, R = �4�/�2. �59�

The scaling dimension of V is then �2 /4�. Since the Hilbert
space is built by the action of the vertex operators on the
vacuum state, �n ,m
=V�n,m��0,0��vac
, �higher-energy states
are built by the application of powers of the chiral compo-
nents of the Kac-Moody currents � to these states� the con-
formal perturbation theory is simply a perturbation theory in
this space, and the effect of the perturbation is an expansion
in powers of the �MsL�2−h, where h=�2 /4� is the scaling
dimension of the perturbation �so this expansion is in integer
powers of � f�. In Ref. 62 such expansion to the third power
of � f was applied to the correlation function. In particular, it
was found that

�0�ei���x,��e−i���0,0��0
 =
1

r�
2/�2��

+ C� f
2 1

r�
2/�−4

+ . . . ,

�60�

where r=�x2+�2 and C is a constant. In the repulsive regime
4��28� where this expansion was derived the second
term clearly decays slower at large r than the first leading
term indicating that the Taylor expansion in � f can break
down. This is of course anticipated because cos���� is the
relevant perturbation. Conversely at small r the first term
corresponding to the conformal limit is dominant.

If we use this expansion to compute �E according to Eq.
�54� then as we discussed above for �24� �or �1� the
first term gives IR divergence which should be fixed by using
the proper long distance asymptotics of the correlation func-
tion. On the other hand for 4��26� �1�3� the first
term gives a finite constant contribution to �E while the sec-
ond term proportional to � f

2 gives a divergence which again
has to be fixed by the proper long distance asymptotics. For
3�5 the second term gives a convergent contribution

indicating that �E has analytic expansion in � f up to � f
2 but

the following term �� f
4 is expected to give a nonanalytic

contribution and so on. Thus from the conformal perturba-
tion we can anticipate that the asymptotic expansion for the
heat in powers of � has the following structure

Q = �
0n��1+��/2�

C̃n� f
2n + B̃�� f�1+� + o��� f�1+�� , �61�

where C̃n are some nonuniversal constants which depend on

the short distance cutoff and B̃ is a universal constant deter-
mined by the low energy �long distance� contribution to �E
�and thus to the heat�. At the special points 1+�=2n the

constant B̃ is expected to have logarithmic divergence.
Similar analysis can be done for � f using Eq. �55� and the

expansion Eq. �60�. Now, we observe that the first conformal
contribution diverges at �26� ��3�. As before this di-
vergence is cutoff by using the proper long distance asymp-
totics of G�x ,�� and results in the nonanalytic scaling of
� f���. For 6��27� �3�7� the first term in Eq. �60�
gives a constant contribution to � f, while the second term
diverges and thus results in a nonanalytic contribution. For
7�11 we see that both the first and the second terms in
Eq. �60� give convergent contribution to � f, but we can an-
ticipate that the third term gives a nonanalytic correction and
so on. We can therefore anticipate the scaling for the prob-
ability of exciting the system:

Pex = L �
n=1

�1+��/4

C̆n� f
2n + B̆� f

2L4/�1+�� + o��� f�2L4/�1+��� , �62�

where as before C̆n are nonuniversal constants and B̆ is uni-
versal and also expected to have log divergence at the special
points 1+�=4n. While we can expect a similar structure of
the expansion for nex and Sd, it is harder to analyze these
quantities in the UV regime because they do not have an
explicit representation through the correlation functions. We
simply note that the crossover to the leading quadratic scal-
ing for these quantities when ��3 �with probable log cor-
rections for the entropy� is expected on general grounds as a
manifestation of the validity of usual perturbation theory ap-
plicable to the high-energy excitations, where the probability
of the transition to be excited scales as �
n�2�� f

2. Since the
low-energy excitations coming from creating soliton-
antisoliton pairs give nex ,Sd��� f��1+��/2 we expect that the
high-energy excitations will dominate precisely when �1
+�� /2�2.

One can actually analyze the energy of an arbitrary state
��
, obtained by acting with the operator � on the vacuum
��
=��0
, as a function of � f using the nonlinear integration
equation approach.70,71 The corresponding expansion in pow-
ers of � f reads:

E�

Ms
= −

�c

6l
+

2�h�
l

+ Bl + �
n=1

�

Cn���ln�2−h��, �63�

where l=MsL, B=−tan��� /2� /4 is the bulk energy in the
thermodynamic limit, c is the central charge �equal to 1 in
our case�, Cn��� are nonuniversal constants. The bulk en-
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ergy becomes infinite at the point where � is an odd integer.
At this points there is a value of n for which n�2−h�=1, i.e.,
�2=8��1−1 / �2n�� and Cn→�. The infinite contributions
from the bulk part and from the “C-part” cancel giving the
logarithmic singularity proportional to l log�l�. These expec-
tations are consistent with the findings of Refs. 70 and 71. In
particular, it was found that at the special points �2

=8��1–1 /2n�, corresponding to �=2n−1, the expression for
the ground state energy gives logarithmic singularities. Ex-
actly at these points the short distance expansion method of
Konik and LeClair62 gives the divergency of the nth order of
the perturbative expansion. Noting that for sudden quenches
the heat is related to the ground state energy and thus to �E
we see that the expansion Eq. �63� is consistent with the
asymptotical form Eq. �61� suggested above.

Note that in the attractive regime �24� , �1 the UV
asymptotics of the correlation functions always give long
distance divergent contribution to both �E and � f indicating
that the corresponding susceptibilities are determined by the
IR region where the lowest form factors expansion is accu-
rate. This confirms that the general scalings obtained in Ref.
45 �see also Sec. II� and verified in the previous section are
justified in the whole breather region.

Let us point out that a very similar analysis can be ex-
tended to slow quenches with arbitrary exponent r �see Eq.
�2��. The validity of the perturbative quadratic and extensive
scaling of Pex is determined by the convergence of the adia-
batic susceptibility of order 2r+2 �see Eqs. �6� and �7��. In
particular, for linear quenches, the relevant susceptibility
�4��� is always IR divergent in the regime of our interest,
0�28�, implying that the scaling of Pex in the case of
linear adiabatic quenches in one dimension13 remains
nonanalytic in the whole gapped regime of the SG-model
and the form factors analysis in this range is always justified.
Thus in order to analyze the crossover between analytic and
nonanalytic regimes of scaling we need to consider the gen-
eralizations of the SG model to higher dimensions. This can
be easily done in the two limits �=1 and ��1 corresponding
to free massive fermionic and bosonic theories respectively.
We will discuss these generalizations and the crossovers in
the next section.

VI. EXACTLY SOLVABLE CASES: FREE MASSIVE
BOSONS AND FERMIONS

In this section, we will focus on two limits of the SG
model where the dynamics can be analyzed exactly without
the need to rely on the adiabatic perturbation theory or other
approximations. These limits have also the advantage to have
straightforward multidimensional generalization. First we
consider the limit of ��1. In this case the cosine term in the
Hamiltonian Eq. �24� can be expanded to the quadratic order
in the phase � and the problem maps into the free scalar
massive bosonic field theory. The quench process corre-
sponds to a sudden increase of the mass starting from zero.
The quench dynamics in this regime was recently considered
in Ref. 7 from a different point of view, analyzing the corre-
lation functions and the asymptotic steady state. The other
solvable limit corresponds to �=2�� ��=1�. For this value

of � the problem deals with hard-core bosons or noninteract-
ing fermions. In the language of fermions the quench process
corresponds to a sudden turn on of a commensurate periodic
potential, which opens a gap at the fermi momentum. In the
following two sections we will discuss these limits in detail,
analyze the scalings of the density of quasiparticles, heat,
and entropy and show how those results agree with the gen-
eral scaling predictions of Sec. II. For these solvable cases in
Sec. VI D, we will be able also to extend the exact results to
quenches at finite temperatures.

A. Elementary derivation of the scaling relations using the
adiabatic perturbation theory

Before proceeding with the analysis of specific bosonic
and fermionic models we show how the scaling relations and
the crossover to the quadratic scaling can be understood if
we are dealing with a free theory. This discussion goes along
the lines with that of Ref. 29 for slow linear quenches. Using
the general discussion of Sec. II we find that within the adia-
batic perturbation theory the amplitude for creating an ex-
cited state in a sudden quench is:


n�� f� = �
0

�f

d�
�n�V�0


En��� − E0���
. �64�

If we are dealing with a free spatially uniform Hamiltonian
then the operator V must be quadratic in the creation and
annihilation operators and conserve the total momentum.
Thus acting on the vacuum state V can either leave it intact
or create a pair of quasiparticles with opposite momenta.
Hence all the intermediate states can be characterized by the
momentum label q. Thus the total probability to excite the
system is:

Pex = 1 − �
q�0

�1 − pex�q�� , �65�

where the product is taken over different pairs of two-
particle states with opposite momenta and pex�q�= �
q�� f��2 is
the probability to create the pair. In the limit when
�q�0pex�q��1 the product can be approximated by the sum
and we have:

Pex 	 �
q�0

pex�q� . �66�

Note that since each term in the sum corresponds to a pair of
quasiparticles the number of excited quasiparticles is given
by the same expression above multiplied by a factor of two,
which can be absorbed into the sum by summing over all
positive and negative momentum states. Thus

nex 	
1

Ld�
q
��

0

�f

d�
�q�V�0


Eq��� − E0����2

, �67�

where �q
 is a short-hand notation for the state with two
excited quasiparticles with momenta q and −q and Eq��� is
the corresponding excitation energy of the pair. Let us ana-
lyze the expression above using the scaling arguments �see
also Refs. 29, 49, and 57�. Near the critical point we expect
that Eq���−E0���= ���z�F�q /���, with F�x� a scaling func-
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tion. In the limit x�1 we must have F�x��xz to ensure the
scale invariance at the critical point. Similarly we write the
scaling of the matrix element:

�q�V�0

Eq��� − E0���

=
1

���
G�q/����� , �68�

where G�x� is another scaling function. The same require-
ment of scale invariance at the critical point gives that
G�x��1 /x1/� at x�1. Some examples where the scalings
and asymptotics for the matrix element and the energy were
explicitly confirmed can be found in Refs. 49 and 54. Using
these scaling results it is straightforward to find the scaling
for the density of excited quasiparticles. In particular, focus-
ing on the limit �� f��L−1/�, where the summation over mo-
menta can be replaced by the integration, and changing vari-
ables q= �� f��# and �=� f� in Eq. �67� we find that

nex 	 �� f�d�� dd#

�2��d��
0

1 d�

�
G�#/������2

. �69�

A similar expression is valid for the heat density:

Q 	 �� f��d+z��� dd#

�2��dF�#���
0

1 d�

�
G�#/������2

. �70�

We thus see that we are reproducing the scaling prediction of
Sec. II, Eqs. �15� and �19�, for sudden quenches �r=0� as
long as the limits of the integration over # can be extended
to infinity. This is only justified if the integral over # con-
verges at large #. Using the asymptotical expression for the
scaling functions G and F we see that this is the case for
d�2 if we are analyzing nex and for �d+z��2 if we are
analyzing the heat. Alternatively the integrals over the mo-
menta are dominated by the high energy cutoff and the scal-
ings of the corresponding quantities become quadratic with
� f, in accord with the predictions of Sec. II. A similar analy-
sis shows that the adiabatic perturbation theory reproduces
the correct scaling also for the entropy density Sd��� f�d�
when d�2. The same approach confirms the correct scaling
of all these quantities for small quench amplitudes �� f�
�1 /L1/�, e.g., nex , Pex��� f�2L2/�−d. The easiest way to see
this is from matching the quadratic scaling and the universal
scaling when the correlations length ��1 / �� f�� becomes of
the order of the system size. In the next two sections we will
explicitly show how these crossovers emerge from the two
free limits of the SG model.

B. Free massive bosons

Consider the SG Hamiltonian Eq. �24� when �→0. In
this limit we can Taylor expand the cosine term up to the
quadratic order in the field � and obtain a quadratic Hamil-
tonian, that in the Fourier space has the form:

H =
1

2�
q

��q�2 + $q�����q�2, �71�

with $q���=q2+2��t��2 and �q
† ,�q

†=�−q ,�−q. We point out
that here as in Eq. �24� we have set %vs=1, with vs being the
sound velocity. For each momentum q the fields �q

† and �q

are conjugates, ��q
† ,�q��= i�q,q�. Therefore, we are dealing

with a sum of independent harmonic oscillators with a time-
dependent compressibility $ �or the inverse mass�. The wave
function for this time-dependent Hamiltonian can be found
exactly, for instance in Refs. 49 and 54 this was done for the
case of an adiabatic-linear quench ���t�=�t�. Here we focus
on the case of a sudden quench and show that the exact
results agree with the general scaling predictions that have
been presented in the Sec. II. Furthermore the Hamiltonian
Eq. �71� can be easily extended to higher dimensions and
thus we are able to see how the crossover to the quadratic
scalings and the usual perturbation theory emerges as the
corresponding exponents d� or �d+z�� exceed two. We note
that in this limit of the SG model �=1 /2 and z=1. For the
free theory these exponents remain the same in all dimen-
sions.

From an experimental point of view this limit can be re-
alized in the case of merging �coupling through tunneling�
two one-dimensional Bose gases; indeed as it has been
pointed out in13 the SG Hamiltonian Eq. �24� describes the
merging process through the identification of �=�2� /K,
with K the Luttinger parameter for each Bose gas, and ��t�
proportional to the tunneling strength between the two tubes.
In the limit of weakly interacting gases K→�, hence �
→0 and the process is described by the Hamiltonian Eq.
�71�.

Let us consider a sudden quench in the Hamiltonian Eq.
�71� where � is changed in time as: ��t�=� f	�t�, where 	�t�
is the step function. It is convenient to switch to the repre-
sentation in terms of the creation and annihilation operators
a† and a, such that �a ,a†�=1, in order to work with the
number-state vectors: �n
= �a†�n /�n!�0
. In particular, for a
fixed � those operators are:

aq��� =
1

�4$����1/4 ��q + i�$q����q� , �72�

aq
†��� =

1

�4$����1/4 ��q
† − i�$q����q

†� , �73�

for each mode q, such that the Hamiltonian in this basis
becomes: H=�q

�$����aq
†���aq���+1 /2�. For uniform

quenches all q modes are independent from each other and
the dynamics of the system is factorizable. We are interested
in evaluating the effects of the sudden quench on the popu-
lation of the excited levels, therefore we want to express the
initial ground state �0q
0 before the quench ��=0� in terms of
the eigenstates ��nq
�f

� of the final Hamiltonian ��=� f�:

�0q
0 = �
n

c2n�q��2nq
�f
, �74�

where we used the fact that only even modes are excited in
the quench process because of the parity conservation. The
coefficients c2n�q� can be evaluated expressing the operator
aq�0� in terms of aq

†�� f� and aq�� f�:
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c2n�q� = �− 1�n��2n − 1�!!
�2n�!! ��$q�� f� − �$q�0�

�$q�� f� + �$q�0�
n

��2�$q�� f�$q�0��1/4

�$q�� f� + �$q�0�
. �75�

One can check that these coefficients are properly normal-
ized: �n�c2n�q��2=1. Physically each state �2nq
 represents
2nq quasiparticles with opposite and equal momenta q and
−q. Therefore the average number of excitations in each
mode is nex�q�=�n2n�c2n�q��2. We can also formally define
the probability that the mode with momentum q is excited as:

pex�q� = �
n�0

�c2n�q��2. �76�

The total probability of exciting the system Pex is found as
the complementary of the joint probability that no mode is
excited after the quench:

Pex = 1 − �
q�0

�c0q
�2 = 1 − �

q�0
�1 − pex�q�� . �77�

In the limit �qpex�q��1 we see that Pex�q�	�qpex�q�.
From Eq. �75� we find the condition pex�q��1 is satisfied

if we impose:

�$q�� f� − �$q�0�
�$q�� f� + �$q�0�

=
�q2 + 2� f�

2 − q
�q2 + 2� f�

2 + q
� 1 �78�

that implies 2� f�
2�q2. In this limit we have pex�q�

	�� f�2�4 / �8q4�. For a system with size L the lowest nonzero
momentum q is 2�

L and therefore the probabilities that
pex�q��1 for all q is equivalent to:

� f � �s =
1

2�2�2�

L
�2

. �79�

It is obvious that this condition also ensures that �qpex�q�
�1. In this limit the total probability for the system to be
excited is:

Pex 	 �
q

pex�q� 	 �
q

�4� f
2

8q4 =
L4�4� f

2

8�2��4 ��4� , �80�

where ��k� is the Riemann’s Zeta function. It is easy to check
that the coefficient multiplying L� f

2 is precisely the fidelity
susceptibility � f evaluated in the massless limit �=0. The
superlinear scaling of the excitation probability Pex /L�L3 is
consistent with the one anticipated in Ref. 45 �see also Sec.
II�: � f�0��L−d+2/�=L3.

For quenches of larger amplitude, when � f��s, as we
already discussed in Sec. II the probability of exciting the
system Pex is almost unity. This indicates that Pex cannot
differentiate between different excited states. This comes
from the fact that even if we excite a single pair of quasipar-
ticles, the state becomes immediately orthogonal to the
ground state and Pex=1. At the same time physically this
state is almost indistinguishable from the ground state since a
single pair of excited quasiparticles cannot affect any ther-
modynamic properties of the system. Let us analyze instead
that following object:

�
q

pex�q�

L
	

1

2�
�

0

�

dq �
nq�0

�c2n�q��2 	 0.036�� f�
2,

�81�

which represents the sum of probabilities of excitations of
different momentum modes. In general such object can be
defined first evaluating the two-particle density matrix in the
momentum space and then finding probability that the corre-
sponding mode is excited. To evaluate Eq. �81� we used the
fact that the sum over momenta can be converted into the
integral and for small amplitude quenches the limits of inte-
gration can be extended to �0,��. The scaling dependence in
Eq. �81� agrees with ��� f�2� f�� f�= �� f�d� and hence it illus-
trates that the fidelity susceptibility actually describes the
behavior of �qpex�q� rather than Pex. Only for infinitesimally
small quenches �� f�� ��s�, when these two objects coincide,
the fidelity susceptibility also describes the scaling of Pex.
This point can be made even more explicit if we consider a
quench starting and ending in the massive limit �i�0 and
� f =�i+���0. Then one can check that as long as ����
��i we have �qpex�q�	L����2� f��i�. At the same time a
similar scaling for Pex is only valid for �����1 /�L i.e., in
the vanishingly small interval of quench amplitudes in the
thermodynamic limit.

The sum of probabilities in Eq. �81� itself is not a physical
observable. A measurable quantity with the same scaling is
the density of created quasiparticles nex=1 /L�qnex�q�, where
nex�q�= �aq

†aq
. In the limit pex�q��1 the sum in Eq. �76� is
dominated by the first term, n=1, corresponding to the cre-
ation of one pair of quasiparticles with opposite momenta.
Thus in this limit nex�q�	2pex�q�. From this we conclude
that for the small amplitude quenches ���s we have nex
	2pex, with pex= Pex /L given by Eq. �80�. As we will see the
same relation is true if we are dealing with fermionic sys-
tems. Physically this relation comes from the fact that we are
dealing with few-body operators. Thus in the lowest order of
perturbation theory the coupling through the quench dynam-
ics leads to generating a small number of quasiparticles in
each momentum mode. If the system is noninteracting �or
more generally integrable� then the number of these quasi-
particles is conserved in time after the quench. In noninte-
grable systems nex changes in time due to scattering pro-
cesses. Therefore the scaling of nex with � f is expected to be
valid only either at times shorter than the relaxation time, or
if the generated defects are topologically protected like in the
Kibble-Zurek mechanism.32,33 We note that the scaling of the
heat is insensitive to the relaxation processes because the
energy in a closed system is conserved after the quench pro-
cess. The same is true about the �diagonal� entropy.

For finite quench amplitudes �&�s the expressions for
nex�q� and 1 /L�qpex�q� are different. In particular, it is easy
to check that

nex�q� =
��$q�� f� − �$q�0��2

4�$q�� f�$q�0�
. �82�

For q�2� f�
2 we find that nex�q�	���2�4 / �4q4�	2pex�q�. In

the opposite limit nex�q�	�2��2 /q while pex�q�	1. The
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difference between nex�q� and pex�q� happens because the
states with more than two quasiparticles per each mode are
excited for small momenta. Such states contribute differently
into the probability of excitation and the quasiparticle den-
sity. For the total density of quasiparticles we thus find:

nex 	
1

2�
�

2�/L

'

dqnex�q� 	
�2� f�

2

4�
log�� f�

2L2

2�2 � , �83�

where ' is the upper momentum cutoff. Note that this inte-
gral gives additional logarithmic dependence on both the
quench amplitude and the system size. This dependence ap-
pears because of the infrared divergence of the density of
excited quasiparticles at small q. It is very similar in nature
to the onset of the nonadiabatic regime for slow quenches54

and is due to the bunching effect. As we will argue later this
divergence disappears in dimensions higher than one where
the scalings of both nex and �qpex�q� /Ld with the quench
amplitude become identical. In one dimension the two scal-
ings agree apart from a weak logarithmic correction.

Similarly we can analyze the heat density, or equivalently
the nonadiabatic energy change in the system due to the
quench. For ��s we can find, similarly to Eq. �80�:

Q =
1

L
�
q�0

�$q�� f�nex�q� 	
1

L
�
q�0

�4� f
2

4q3 =
L2�4� f

2

4�2��3 ��3� .

�84�

In the opposite limit ���s we have:

Q 	
1

2�
�

2�/L

'

dq�q2 + 2� f�
2nex�q� 	

� f�
2

2�
log�� f�

2L2

2�2 � .

�85�

Up to the logarithmic correction in the above equation, these
results agree with the prediction in Sec. II: Q��2�E��� with
�E����L2/�−�d+z� for ��s and �E��������d+z��−2 for ���s.
We point out that if we consider an opposite process where
we start with a small initial coupling �i and end at the critical
point, then the expression for nex will remain the same, while
the expression for the heat for ���s will change because the
energy is now evaluated at the critical point. This will re-
move the extra logarithmic divergence and we will simply
get Q��i�

2.
Finally let us consider the density of the �d-� entropy

generated in the quench. Like Pex it gives the measure of the
excitation of the system, however, it is explicitly extensive
and has well defined scaling properties both for ��s and
���s. Unlike nex, the entropy �like the heat� can be defined
for any system, integrable or not. Because all momentum
modes are independent we find that Sd=1 /L�q�0sq, where

sq = − �
n&0

�c2n�q��2log��c2n�q��2� . �86�

For ���s the entropy of each mode is dominated
by the lowest excitation: sq	−�c2�q��2log�c2�q��2 � =
−pex�q�log pex�q�, therefore:

Sd 	 −
L3�4� f

2

8�2��4 ��4�log� �� f�2�4L4

8�2��4  . �87�

We note that for ��s the argument of the logarithm is
smaller then one so the entropy is positive as it should. In the
opposite limit ���s we find:

Sd 	 0.14�� f�
2. �88�

So we see that the entropy has the same scaling as nex and
1 /L�qpex�q�.

A similar analysis can be done also in the case of a linear
quench, r=1 and �=�. As it has been shown in Ref. 49, the
scalings for the density of excited quasiparticles: nex��1/3

and for the heat, Q��2/3, in the case of quenches with rate
��1 /L3 agree with the predictions in Eqs. �15� and �19�.
Similarly it is easy to check the correct scalings in the other
regime, ��1 /L3. For instance in this regime using the ex-
pression for the number of excitation per mode q �see Eq.
�103� in Ref. 49�, we obtain:

nex =
1

L
�

q

nq =
1

L
�

q

��2��2

16q6 =
L5��2��2

16�2��6 ��6� , �89�

confirming the general scaling Eq. �14�, which for �=1 /2,
d=1, z=1, and r=1 gives nex�L5�2.

Generalization to higher dimensions. Let us note that the
Hamiltonian Eq. �71� can be analyzed in any spatial dimen-
sion. The quench process simply describes the response of
the free bosonic theory to a sudden turn on of the mass term.
Since all the momentum modes are independent from each
other the expressions for c2n�q�, pex�q�, nex�q�, and sq remain
the same. The only difference with one dimension is that we
have to sum over all modes in the d-dimensional space. This
introduces an additional density of states factor (�q��qd−1

into all the expressions. Let us focus only on quenches with
���s. It is easy to check that for 1d4 one can rescale
the momentum q=�2� f�

2# and set the limits of integration
over # to �0,�� when analyzing 1 /L�qpex�q�, nex, and Sd.
This follows from the fact that at large q we have pex�q�
�1 /q4 so the integrals over momenta converge and the up-
per cutoff can be sent to infinity. Likewise in all dimensions
larger than one there are no infrared divergencies in all the
integrals so the lower limit of integration over q :qmin
	2� /L can be sent to zero. Then for all these quantities we
get the same desired scaling, e.g., nex	Cd�� f�

2�d/2, where
Cd is a number which depends only on the dimensionality.

Similarly for the heat for d�3 we get Q	 C̃d�� f�
2��d+1�/2.

Above four dimensions �three dimensions for the heat� the
integrals over momentum become ultraviolet divergent. So
for d�3 the leading contribution to heat will be determined
by the large momentum asymptotic of the transition prob-
ability:

Q 	 2
� f

2�4

8
� ddq

�2��d

q

q4 	 C�� f
2�4��'�d−3, �90�

where '�� is the high-momentum cutoff and C is a non-
universal constant. A similar expression is valid for nex
	1 /L�qpex�q� and for the entropy above four dimensions
with the cutoff entering in the power 'd−4. For the entropy
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there is an additional logarithmic factor log�� f
2�4 /'4�. In

three �four� dimensions heat �density of quasiparticles� ac-
quire an additional logarithmic dependence on the quench
amplitude: Q�� f

2�4 log�' / �� f�
2��. This divergence indi-

cates the crossover from quadratic to universal leading as-
ymptotics. In Sec. V, we already discussed how similar loga-
rithmic corrections show up in heat in one dimensional SG
model when K=1 for Q �K=3 /2 for nex�.

Using the free bosonic theory it is also easy to verify that
for 3d5 the first subleading asymptotic in the expansion
of Q in powers of � f is nonanalytic and cutoff independent.
This follows from the fact that:

Q =� ddq

�2��d
�q2 + 2� f�

2�nex�q� −
� f

2�4

4q4  +� ddq

�2��dq
� f

2�4

4q4

	 C� f
2�4�'�d−3 + B�� f�

2�d+1/2. �91�

Since nex�q�−� f
2�4 /4q4�−� f

3�6 /2q6 the first integral in the
above equation is ultraviolet convergent below five dimen-
sions and we can use the rescaling q=�2� f�

2# and send
limits of integration over # to �0,��. We can continue and
get the asymptotical expression for the heat in high dimen-
sions similar to Eq. �61�

Q = �
2n��d+1�/2�

Cn�� f�n + B�� f��d+1�/2 + o�����d+1�/2� .

�92�

We note that this analytic expansion goes in both even and
odd powers of � f �unlike Eq. �61�� where only even powers
of � appear. This has to do with the fact that for the massive
bosonic theory �unlike the SG model� �→−� is not a sym-
metry of the Hamiltonian. Moreover, the theory is well de-
fined only for ��0. As in Eq. �61�, we find logarithmic
corrections when nonanalytic and analytic powers coincide,
i.e., when �d+1� /2 becomes an integer. A very similar ex-
pression holds for nex with the only difference that in Eq.
�92� one needs to replace d+1 with d. We point out that for
small amplitude quenches ��s the expansion Eq. �92� will
remain valid with the first nonuniversal analytic terms being
unaffected, while in the last nonanalytic terms one needs to
substitute �� f��d+1�/2 to � f

2L3−d. Therefore, above three dimen-
sions for quenches of small amplitude the nonanalytic cor-
rection to the heat becomes subextensive. The same is true
for the density of quasiparticles where the nonanalytic term
scales as � f

2L4−d.

C. Free massive fermions

Another important application of the SG Hamiltonian Eq.
�24� to physical systems feasible in cold atoms experiments,
is given by the description of the loading process of a one-
dimensional Bose gas into a commensurate optical lattice. In
this case � is related to the Luttinger parameter through: �
=2��K, and the amplitude of the optical lattice V�t� is di-
rectly proportional to �.9,13 This process can be studied ex-
actly in the Tonks-Girardeau regime �TG-gas�, i.e., when K
=1. In this case the repulsive interaction between the bosons
is infinitely strong and the particles behave as impenetrable
spheres �hard-core bosons�. It is well known that in this limit

the system can be mapped into an equivalent system of free
spinless fermions.72 Therefore the dynamical problem of
loading hard-core bosons into a commensurate optical lattice
can instead be approached with the much simpler analysis of
free massive fermions in a periodic potential. We note that
this fermionic limit also describes the transverse field Ising
model via the Jordan-Wigner transformation.6 Then the
quench dynamics is performed by suddenly change the trans-
verse field starting at the critical point.

To understand the dynamics in the TG-gas limit, we need
to solve the Schrödinger equation describing free fermions in
a periodic commensurate potential with time dependent am-
plitude V�x , t�=V�t�cos�2qfx�, where qf =� /a is the Fermi
momentum and a is the lattice spacing, which is also equal to
the inverse particle density. In the TG-limit the sound veloc-
ity vs=v f /K is equal to the Fermi velocity v f. It is convenient
to work in units such that a=1, v f =1 and %=1. The free
fermion Hamiltonian becomes equivalent to the SG Hamil-
tonian Eq. �24� if we additionally restrict the analysis to the
two lowest bands of the Brillouin zone and linearize the
spectrum close to the Fermi momentum. Then for each mo-
mentum the loading process is described by a Landau-Zener
Hamiltonian73 �see also Ref. 31 for the discussion of the
equivalent transverse field Ising model�:

Hk 	 �V�t�/2 k

k − V�t�/2  , �93�

where we defined the momentum k=q−qf, so that is mea-
sured from the Fermi momentum. By matching this spectrum
with the one of the SG model we find that �=V / �4��. The
extra factor of 4� appears because of the details of the
bosonization procedure.74,75

The Hamiltonian Eq. �93� can be diagonalized on the ba-
sis of its eigenvectors: �+k
 and �−k
, with respectively posi-
tive and negative energy. To study the probability of exciting
the system due to a sudden quench of the coupling V :V�t�
=Vf��t�, we need to evaluate the overlap of the initial ground
state �−k
0 with the final excited state �+k
Vf

. Therefore
pex�k�= �Vf

�+k �−k
0�2. In particular we find:

pex�k� =
1

2

Vf
2 + k2 − Vf�k� + �Vf − �k���Vf

2 + k2

Vf
2 + k2 + Vf

�Vf
2 + k2

. �94�

This transition probability has the following asymptotics:
pex�k�	Vf

2 / �4k2� for k�Vf and pex�k�	1 /2 for k�Vf. As in
the previous case of free bosons, the elementary excitation
correspond to the creation of particle-hole pairs moving with
opposite momenta �recall that annihilating a particle in the
lower band can be viewed as creating a hole there with an
opposite momentum�. However, unlike with bosons, we can-
not create more than one pair for each momentum state due
to the Pauli exclusion principle. This means that 1 /L�kpex�k�
and nex are always identical up to a factor of two. As in the
bosonic case the crossover scale Vs can be defined from the
requirement that �kpex�k��1, which gives Vs�4� /L �or
equivalently �s�1 /L�. For VVs the total probability to
excite the system is small so that Pex��kpex�k�. This char-
acteristic scale agrees with the expected one �s�L−1/� from
the analysis of the system close to the quantum critical point,
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since in this case �=1. Using the explicit asymptotics for the
excitation probability pex�k� at small amplitudes Vf we find
that in this case:

Pex

L
	

nex

2
	

Vf
2L

48
=
�2

3
� f

2L . �95�

For large quenches Vf�Vs we find that:

nex 	 4�
−�

0 dk

2�
pex�k� =

Vf

�
= 4� f . �96�

We see that as in the case of bosons nex has the correct
scaling nex��� f�d� for ���s and nex�� f

2L2/�−d for ��s in
agreement with Eqs. �14� and �15�, respectively.

Likewise one can evaluate the heat density Q
=2 /L�kpex�k��k2+Vf

2 /4. For ��s we find:

Q =
2

L
�

k

�k2 + Vf
2/4pex�k� 	

Vf
2

2�
log�L/2� = 8�� f

2 log�L/2� ,

�97�

and in the opposite limit ���s:

Q =
Vf

2

8�
log�2�/Vf� = − 2�� f

2 log�2� f� . �98�

This scaling of heat agrees with the general expectations of
Eqs. �18� and �19� and the results obtained in the previous
sections using the adiabatic perturbation theory. Since we
have �d+z��=2, there is an additional logarithmic correction
indicating the crossover from quadratic to nonanalytic scal-
ing in the leading asymptotic of the scaling of Q with � f.
Note that the difference in scaling between ��s and �
��s only appears in the logarithmic term.

Finally we can evaluate the entropy density. Let us explic-
itly quote only the result for ���s:

Sd = −
1

L
�

k

��pex�k�log�pex�k��� + �1 − pex�k�log�1 − pex�k����

=
Vf

2
= 2�� f . �99�

The scaling of the entropy is thus again in accord with the
exact solution. It is easy to check that for ��s the entropy
density scales as S�� f

2L log�� fL�, i.e., it is superextensive.
As in the bosonic case, these predictions can be also

checked in the case of slow quenches. In Ref. 49, it has been
shown that for the linear quench ��t�=�t one finds nex���
for ��1 /L2, in agreement with Eq. �15�, while for �
�1 /L2 one can find that �see Eq. �108� and Appendix A in
Ref. 49 for the expression for nq�:

nex =
1

L
�

k

nk =
1

L
�

k

4�2

k4 =
4L3�2

�2��4 ��4� , �100�

which confirms the scaling nex�L3�2 given by Eq. �14�.
Generalization to higher dimensions. Like in the case of

bosons one can extend the analysis to higher dimensional
free fermionic models. For example, the two-dimensional
generalization of the free fermionic theory describes com-

mensurate fermions in the honeycomb lattice, which are re-
alized in graphene.76 Such lattices can be also in principle
realized in cold atoms using multiple laser beams.77 The
quench process corresponds to the distortion of the lattice,
which opens a gap in the spectrum. Quench dynamics in
similar setup was recently analyzed in Ref. 43 and 78.

Unlike in the bosonic limit, where �=1 /2, here we have
�=1. This implies that we expect that the quadratic scaling
for the quasiparticle density and entropy emerges above two
dimensions and for the heat above one dimension. This is
indeed the case since the excitation probability at large mo-
menta scales as pex�k��1 /k2 �versus 1 /k4 in the case of
bosons�. To understand the general structure of the heat den-
sity above one dimension we can more closely examine the
expansion of the transition probability pex�k� at large k. In
particular, from Eq. �94� we find:

pex�k� 	
Vf

2

4k2 −
3Vf

4

16k4 +
5Vf

6

32k6 + . . . . �101�

As we see the expansion is in even powers of Vf which
reflects the symmetry of the problem with respect to Vf →
−Vf. For 1d3 we can rewrite the heat as

Q 	 2M�
−�

0 ddk

�2��d
�k2 + Vf

2/4�pex�k� −
Vf

2

4k2
+ 2M�

−�

0 ddk

�2��d

Vf
2

4k
, �102�

where M is the number of independent light cones in the
system �M =2 for graphene�. The second contribution gives a
nonuniversal quadratic term, while in the first integral we
can rescale the variables k→Vf# and send the limits of in-
tegration over # to �0,��. This contribution thus gives the
nonanalytic term �Vf��d+z��. A similar analysis can be ex-
tended to higher dimensions and as a result we get the fol-
lowing expansion:

Q = �
1n��d+1�/2�

Cn�� f�2n + B�� f�d+1 + o����d+1� . �103�

The coefficients Cn are nonuniversal �cutoff dependent�
while the coefficient B is universal and can be obtained from
the low energy description of the system. Similar consider-
ations can be applied to the density of quasiparticles result-
ing in the expression similar to Eq. �103� with d+1→d. For
small amplitude quenches ��s only the universal term in
the expansion above gets modified with �� f�d+1→� f

2L1−d. As
we already mentioned in the points where the power of the
nonanalytic term crosses the one of the analytic contribution
�d+1=2n� there are additional logarithmic corrections to the
heat.

D. Finite temperature quenches

Let us extend the analysis of these thermodynamic quan-
tities to the case of a finite initial temperatures. We suppose
to perform the same quench process but now preparing the
system initially in a thermal state at temperature T. We will
assume that the system is isolated during the dynamical pro-
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cess. For instantaneous quenches this assumption is gener-
ally always satisfied. For slow quenches this assumption is
only valid if we are interested in the time scales shorter than
the relaxation time with the thermal bath. This is the usual
requirement in order to be in the adiabatic limit in conven-
tional thermodynamics79 and it is usually well satisfied in
cold atoms. We note that other studies have addressed the
case of systems where the contact with a thermal bath during
the dynamical process is essential.80 The advantage of focus-
ing on the setup where the temperature enters only through
the initial conditions and does not affect the equations of
motion is that one can expect that the scaling of various
quantities will remain universal. We note that finite tempera-
ture dynamics in this setup were studied earlier in Refs. 49
and 54 for slow linear quenches and in Ref. 19 for sudden
quenches.

1. Free massive bosons

For the case in consideration of a system of independent
harmonic oscillators �see Eq. �71��, a finite initial tempera-
ture leads to the occupation of the eigenmodes according to
the Bose-Einstein distribution:

nT�q� =
1

exp���$q�0�� − 1
=

1

exp��q� − 1
. �104�

This initial occupation enhances the transition probabilities.
In Ref. 54 it was shown that for an arbitrary time dependence
of ��t�, the mode occupation with momentum q at finite
temperature is related to the one at zero temperature via:

nex
tot�q� = nex�q�coth��$q�0�

2T
 + nT�q� = nex�q�coth� �q�

2T


+ nT�q� . �105�

where nex
tot�q� is the total number of excited quasiparticles

during the dynamical process, that is indeed equal to the
initial thermal population of this mode �nT�q��, plus the num-
ber of particles generated in the identical process at zero
temperature multiplied by a hyperbolic cotangent factor.
Therefore we can define the excitations nex

T �q� created only
by the dynamical process at a finite temperature as the dif-
ference nex

tot�q�−nT�q�. It is immediately clear that the hyper-
bolic factor gives an enhancement of the transitions since at
T�q it scales as 2T /q�1. The result Eq. �105� can be seen
either from the thermal average of the energy of each mode q
as it was recently pointed out in Ref. 19, or writing the initial
thermal state in the Wigner form, as shown in Ref. 54.

Let us now analyze how this additional factor affects the
scaling of the quantities of interest. To simplify the discus-
sion we will focus only on the heat density. We will also
assume that the temperature is large compared to both the
energy associated with the quench amplitude T��� f�

2 and
the finite size quantization T�1 /L. Otherwise we will return
to the zero temperature asymptotics.

For ��s by simple modification of Eq. �84� we find

Q 	
2T

L
�
q�0

�4� f
2

4q4 =
TL3�4� f

2

2�2��4 ��4� . �106�

In the opposite limit ���s instead of Eq. �85� we find:

Q 	
2T

L
�
q�0

2� f�
2

q2 	
1

6
TL� f�

2. �107�

For small quenches the result Eq. �106� is fully consistent
with the scaling prediction of the Eq. �18�: Q�� f

2L2/�−d.
While for larger quench amplitudes we get a deviation. In-
stead of Q��� f�d�=��� f� we get the scaling Q��� f�L. The
origin of this discrepancy is the infrared divergence of the
sum in Eq. �107� at small momenta. This divergence is simi-
lar to the one appearing in linear quenches, which leads to
the nonadiabatic regime.54 As it is easy to check this diver-
gence disappears in higher dimensions and the predicted
general scaling is restored. Indeed for 2d4 and for �
��s one can substitute the summation over momenta in the
general expression for q by an integration, change the vari-
ables q=�2� f�

2# and extend the limits of integration over #
to �0,��. This immediately implies that Q�T�� f�

2�d/2.
Above four dimensions the integral over momenta becomes
ultraviolet divergent. In this case the transitions are domi-
nated by high momenta for which the initial thermal occupa-
tion is not important �if the temperature is much smaller than
the high-energy cutoff: T�� in our units� and we are back
to the zero temperature nonuniversal result �90�. It is easy to
check that in this case �as at zero temperatures� the universal
nonanalytic correction to Q becomes subleading thus instead
of Eq. �92� we find:

Q = �
2n�d/2�

Cn�� f�n + BT�� f�d/2 + o����d/2� . �108�

To summarize the finite temperature results for the
bosonic systems we see that the substitution d→d−z always
predicts the correct finite temperature scaling of the heat for
��s. In the opposite limit ���s this substitution d→d
−z also works in two dimensions and above but fails in one
dimension. The same applies to the density of generated qua-
siparticles.

2. Free massive fermions

It is also straightforward to obtain the finite temperature
asymptotics in the fermionic case. Since in this case we are
dealing with a sum of independent two-level systems, at fi-
nite temperature each upper �+k
 and lower �−k
 level is oc-
cupied according to the Fermi distribution:

fk
� = �exp�� �k�

T
 + 1�−1

,

where we used the convention that the Fermi velocity is one
so that the energy of the two states )��k�	�k. It is well
known that for the two-level system the transition probability
satisfies the detailed balance, i.e., the transition probability
from the top to the bottom level is the same as for the oppo-
site process �for systems with more than two levels the de-
tailed balance is generally not true, see e.g., Ref. 47�. There-
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fore the number of additionally excited particles in the
dynamical process gets corrected as:

nex
T �k� = nex�k��fk

− − fk
+� = nex�k�tanh� �k�

2T
� . �109�

This expression is similar to the one for the bosonic case Eq.
�105�, with now the hyperbolic tangent factor replacing the
cotangent one. Contrary to the bosonic case therefore, the
effect of the finite temperatures is to suppress the transitions
since �tanh�x��1. At high temperatures T�k the suppres-
sion factor is approximately �k� / �2T�.

As in the case of bosons let us focus on the scaling of
heat. Note that the main contribution to Eqs. �97� and �98�
even at zero temperature comes from high energies k�'.
Therefore in the leading order in � f the temperature will not
significantly modify the expression for the heat except
changing the cutoff in the logarithm:

Q 	 8�� f
2 log��/T� . �110�

This scaling is valid both for ��s and ���s. This is in-
deed an anticipated result because the universal power �d
+2z��=3 is bigger than two. The next subleading correction
in � f remains universal though and scales as � f

2 /L for �
�s and �� f�3 /T for ���s. It is straightforward to check that
this general structure of the expansion extends to higher di-
mensions so that for ���s instead of Eq. �103�, we find:

Q = �
1n��d+2�/2�

Cn�� f�2n + B̃�� f�d+2 + o����d+2� . �111�

The nonuniversal coefficients Cn are temperature indepen-

dent �for T�'� while the universal coefficient B̃ is different
from the zero-temperature one. We thus see that the finite
temperature effects result in changing d→d+z in the univer-
sal part of the expression for heat. It is easy to check that the
same is true for the density of excited quasiparticles.

VII. QUANTUM GEOMETRIC TENSORS AND FIDELITY
SUSCEPTIBILITY. MAZUR INEQUALITIES

A. Quantum geometric tensors: Generalizations

In the discussion above, we only considered situations
where � was a single component coupling. In principle one
can extend the analysis to more general setups where � is a
M-component vector in the parametric space. Within the
adiabatic perturbation theory it is easy to generalize the ex-
pression for the transition probability to the many-body state
�n
 due to a sudden quench in the multicomponent case:

�
n����2 	 �� d��
�n����H�0


En���� − E0����
�2

, �112�

where the contour integral is taken over an arbitrary path
connecting the initial and final couplings. For sudden
quenches the precise path is clearly unimportant. Next we
will use the Cauchy-Schwarz inequality, which for arbitrary
square integrable functions f�x� ,g�x� states that

�� f�x�g�x�dx�2

�� �f�x��2dx ·� �g�x��2dx . �113�

Choosing g�x�=1 and f�x� to be the integrand in Eq. �112�
we find:

Pex = �
n�0

�
n����2 � M�

=1

M

�
�
0

�


d�
�Q
,
���� , �114�

where Q
,
��� are the diagonal components of the quantum
geometric tensor Q
,���� defined in Ref. 52. This tensor and
its rescaled counterpart �q
�=L−dQ
�� has definite scaling
properties close to the quantum critical point:

q
���� � �����Q
,� �115�

where, according to Ref. 52:

�
�
Q

ª �
 + �� − 2z − d . �116�

We remind that � is the correlation length critical exponent,
which can in principle depend on the direction of the quench
in the � space, and z is the dynamical critical exponent. For
a single-component, �
 is the scaling dimension of the op-
erator V=��H. Assuming that V is nonzero in the limit �
→0 from the scale invariance of the action we find that
�
=d+z−1 /�, which using Eq. �116� reproduces the correct
scaling of the probability to excite the system Pex����2L2/�.
Note that the diagonal components of the geometric tensor
give the fidelity susceptibilities � f discussed earlier �see also
Ref. 51 for the review�. These observations suggest a close
relation between the scalings of Pex with the quench ampli-
tude, the quantum geometric tensors and the fidelity suscep-
tibility characterizing the static ground state properties of the
system. A similar analysis shows the connection between the
heat and the energy susceptibility �E �see Eq. �51��.

The importance of the geometric tensor becomes clear in
the contest of multiparametric dynamics, when several pa-
rameters involved in the model can depend on time. In this
case the integrals in the expressions for the physical quanti-
ties should be replaced by the line integrals in the parameter
space. One can define a “response” in terms of one parameter
by driving another parameter. The corresponding susceptibil-
ity of this response is described by the real parts of the non-
diagonal matrix elements of the quantum geometric tensor.
Moreover, the imaginary part of the geometric tensor is re-
sponsible for the Berry phase which may appear as a result
of adiabatic evolution in this multiparameter space. We are
going to come back to these questions in the future.

B. Integrable perturbations and ergodicity

It is interesting to note that the Cauchy-Schwarz inequal-
ity, although it gives simply an upper bound, it appears to be
exact for the scaling functions we derived here. On the other
hand for some type of perturbations away from the QCP’s
�the so-called integrable perturbations� it seems possible to
formulate a lower bound as well. It is known81 that for the
models which have integrals of motion, the time averages of
the correlation functions have a lower bound and therefore
their dynamics can be nonergodic.56 In particular, if the
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quantities Ai�i=1, ¯m� are the integrals of motion, �H ,Ai�
=0∀ i, defined such that �Ai
=0, then the dynamical correla-
tion function of the operator X�t� is bounded from below as:

lim
T→�

1

T
�

0

T

�X�t�X�0�
dt & �XA
 · �AA
−1 · �XA
 ,

�117�

where �AA
 is the m�m matrix with elements �AiAj
. Pro-
vided that this matrix can be diagonalized by some unitary
transformation and that the Hamiltonian is identified with

one of the operators Ai, say H�A1, we obtain �ÃiÃj
 / �Ãi
2


=�ij, where the notation Ã stands for the transformed opera-
tor, and therefore81

lim
T→�

1

T
�

0

T

�X�t�X�0�
dt &�
k=1

m
�XÃk
2

�Ãk
2


&
�XH
2

�H2

. �118�

We implicitly assume that our Hamiltonian is defined in such
a way that �H
=0.

The sine-Gordon model represents an integrable deforma-
tion �perturbation� of the conformal field theory. Therefore it
has many �infinite number� integrals of motion. Taking
X�t���0

Lcos����x , t�� we obtain a lower bound for the time
average of the energy susceptibility

�E
�t� = lim

T→�

1

T
�

0

T �
0

L

dxG�x,��d� . �119�

By the Mazur inequality Eq. �118� this susceptibility has a
lower bound, which is nonzero. I.e., �E can either be finite or
diverge. The Mazur inequalities above can be also directly
generalized for other time averages of the susceptibilities like
� f

�t� defined in Eq. �55� as well as higher order adiabatic
susceptibilities.82

VIII. CONCLUSION

In this work, we analyzed the quench dynamics starting
�ending� at the quantum critical point focusing on the sine-
Gordon model. We derived the universal scalings of such
quantities as the probability of exciting the system �Pex�,

density of excited quasiparticles �nex�, entropy and heat den-
sities �Sd and Q� with the quench amplitude. These scalings
are fully determined by the critical exponents z and � char-
acterizing the quantum critical point and agree with general
expectation presented in.45

In particular for the type of quenches where the tuning
parameter changes as a power law near the quantum critical
point: ��t�	�tr /r!, we showed that the scalings of Pex, nex,
and Sd are associated with the singularities of generalized
adiabatic susceptibilities �2r+2��� of order 2r+2 �see Eq.
�7��, while if the quench ends at the critical point the scaling
of Q is associated with the singularity of �2r+1. We note that
for r�0 it is sufficient to have gapless systems, not neces-
sarily quantum critical point, in order to observe these sin-
gularities.

For the two limits where the elementary excitations in the
system are characterized by free bosons or fermions �for the
sine-Gordon model these limits correspond to a particular
choice of �, see Eq. �24�� we generalized our results for the
finite temperature quenches. We showed that the structure of
the singularities remains the same except that in the scaling
relations for the density of quasiparticles and heat one needs
to substitute the dimensionality d→d−z for bosons �simul-
taneously multiplying Q , nex by the temperature� and for
d→d+z for fermions �simultaneously dividing Q , nex by
the temperature�. This changes are a direct manifestation of
the statistics of the quasiparticles: bunching of bosons en-
hancing nonadiabatic effects and antibunching of fermions
suppressing the transitions. We believe our results can be
directly tested both numerically and experimentally, espe-
cially in setups realizable with cold atoms.
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