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We study by exact diagonalization the localization properties of phonons in mass-disordered harmonic
crystals of dimension d=1,2 ,3. We focus on the behavior of the typical inverse participation ratio Y2�� ,L� as
a function of the frequency � and of the linear length L of the disordered samples. In dimensions d=1 and
d=2, we find that the low-frequency part �→0 of the spectrum satisfies the following finite-size scaling
LY2�� ,L�=Fd=1�L1/2�� in dimension d=1 and L2Y2�� ,L�=Fd=2��ln L�1/2�� in dimension d=2, with the fol-
lowing conclusions: �i� an eigenstate of any fixed frequency � becomes localized in the limit L→+�; �ii� a
given disordered sample of size Ld contains a number Ndeloc�L� of delocalized states growing as Ndeloc�L�
�L1/2 in d=1 and as Ndeloc�L��L2 / �ln L� in d=2. In dimension d=3, we find a localization-delocalization
transition at some finite critical frequency �c�W��0 �that depends on the disorder strength W�. Our data are
compatible with the finite-size scaling LD�2�Y2�� ,L�=Fd=3�L1/���−�c�� with the values D�2��1.3 and �

�1.57 corresponding to the universality class of the localization transition for the Anderson tight-binding
electronic model in dimension d=3.
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I. INTRODUCTION

Since its discovery 50 years ago,1,2 Anderson localization
has remained a very active field of research �see, for in-
stance, the reviews3–9�, and has been recently realized in ex-
periments with atomic matter waves.10,11 According to the
scaling theory,12 there is no delocalized phase in dimensions
d=1,2, whereas there exists a localization/delocalization at
finite disorder in dimension d�2. However the notion of
Anderson localization is not limited to quantum electrons
models, but also applies to classical waves in disordered
media4,13 including acoustic waves �see, for instance, Refs.
14–17, and references therein�, electromagnetic waves �see,
for instance, Refs. 18 and 19, and references therein�, and
hydrodynamical waves.20 Among the classical disordered
models that are expected to display Anderson localization,
the oldest problem is the phonon problem in the presence of
random masses coupled by fixed spring constants, which has
been introduced by Dyson21 even before Anderson’s paper.1

After studies concerning the one-dimensional case �see the
review22 and references therein�, an analysis of disordered
elastic media via a nonlinear sigma model23 has predicted
results similar to the scaling theory of Anderson
localization:12 all finite-frequency phonons are localized in
dimension d�2, whereas there exists a finite critical fre-
quency �c�0 in dimension d�2 that separates delocalized
modes ���c from localized modes ���c. However, in
contrast to electron models where many numerical studies
have checked in detail these predictions and more refined
properties such as multifractal properties at criticality �see
the review9�, the same effort to characterize the statistics of
eigenstates has not been done for the phonon problem. In
particular, in dimension d=3, the numerical studies we are
aware of find that almost all states are delocalized, whereas
localized states appear only near band edges.24–27 In addi-
tion, the universality class of the transition does not seem
completely clear: the reported numerical values of the critical

exponents are sometimes the same as for the Anderson elec-
tron transition24 but are sometimes different.25,26 The aim of
the present paper is thus to revisit the problem of phonon
localization in dimension d=1,2 ,3 and to study the proper-
ties of the eigenstates inverse participation ratios �IPR� �see
definition below in Sec. II�, which have proven to be very
appropriate order parameters of Anderson transitions for
electronic models �see the review9�

The paper is organized as follows. In Sec. II, we introduce
the phonon model and the notations for the useful observ-
ables. Our numerical exact diagonalization results are de-
scribed in the remaining sections. In Sec. III, concerning the
one-dimensional case, the finite-size scaling analysis in the
low-frequency region is in agreement with the power-law
divergence ����	1 /�2 of the correlation length near zero
frequency.22,23 In Sec. IV, concerning the two-dimensional
case, the finite-size scaling analysis in the low-frequency re-
gion is in agreement with the essential-singularity divergence
ln ����	1 /�2 of the correlation length near zero
frequency.23 Finally in Sec. V, concerning the three-
dimensional case, the finite-size scaling analysis around the
finite critical frequency is compatible with the universality
class of the Anderson transition for the Anderson tight-
binding electron model in dimension d=3. Our conclusions
are summarized in Sec. VI.

II. MODEL AND OBSERVABLES

A. Scalar phonon problem in a crystal of random masses

In dimension d=1,2 ,3, we consider Ld random masses mr�
whose positions r�= �n1 , . . . ,nd� at rest form an hypercubic
lattice �ni=1,2 , . . . ,L�. These masses are coupled by spring
constants Kr�,r��=1 if r� and r�� are neighbors on the hypercubic
lattice so that each mass in the bulk has �2d� neighbors. We
consider the following harmonic Hamiltonian for the scalar
displacements ur��t�:
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H = �
r�

mr�

2
u̇r�

2 + �
r�,r��

Kr�,r��

2
�ur� − ur���

2. �1�

The scalar assumption is very standard to simplify the
analysis27 and means physically that longitudinal and trans-
verse vibrations are decoupled. Equivalently, the model can
be defined by the equations of motion,

mr�ür� = − �
r��

Kr�,r���ur� − ur��� . �2�

To avoid the free motion of the center of mass of the system,
we have chosen to consider the fixed boundary conditions
u=0 on the lines ni=0 and ni=L+1 surrounding the hyper-
cube.

Finally, to avoid the peculiarities introduced by a binary
distribution of the disorder,27,28 we have chosen to consider
the continuous flat distribution for the random masses mr�,

P�m� =
1

W

�1 � m � 1 + W� �3�

so that W represents the disorder strength. The numerical
results presented in this paper correspond to the two cases
W=1 and W=20.

B. Eigenmodes analysis

Since the equations of motion of Eq. �2� are linear, the
dynamics can be analyzed via the eigenmodes of oscillations
in ei�t: the eigenvalues �p

2 and the associated eigenmodes
ap�r�� satisfy

mr��p
2ap�r�� = �

r��

Kr�,r���ap�r�� − ap�r���� . �4�

It is more convenient to perform the similarity
transformation,21

ap�r�� =
�p�r��
�mr�

�5�

to reduce the problem to the diagonalization of a symmetric
operator,

�p
2�p�r�� = 	�r�� Kr�,r��

mr�

�p�r�� − �

r��

Kr�,r��

�mr�mr��

�p�r��� . �6�

As stressed in Ref. 27, this form is analog to an Anderson
tight-binding model with on-site energies ��r��= ��r��

Kr�,r��
mr�

� and

hoppings
Kr�,r��

�mr�mr��
, but as a consequence of correlations through

the random masses, different physical properties can occur.
In particular, the eigenvalues are positive Ep=�p

2 0 in the
phonon problem, whereas E=0 is the center of the band in
usual Anderson tight-binding models. It is convenient to
work with the orthogonal basis �p of eigenvectors of Eq. �6�
normalized to

��p��p = �
r�

�p
2�r�� = 1. �7�

This means that the phonons eigenmodes of Eq. �5� are nor-
malized according to

1 = �
r�

mr�ap
2�r�� . �8�

C. IPR

To characterize the localization properties of the phonon
eigenmodes ap�r�� introduced above in Eq. �4�, we consider
the IPR,

Y2��p,L� �
�

r�
ap

4�r��

��
r�

ap
2�r���2 �9�

that represents an order parameter for Anderson localization
transition:9 at a given frequency �, localized eigenstates cor-
respond to a finite value in the limit L→+�,

Y2
loc��,L� 	

L→+�
Y2��,�� � 0, �10�

whereas delocalized states correspond to the following
power-law decay:

Y2
deloc��,L� 	

L→+�

1

Ld . �11�

Note that for phonons, the standard definition of the IPR
Y2 is Eq. �9� in terms of the modes ap�r�� �Ref. 27� that are
normalized with Eq. �8�, whereas in electronic tight-binding
models, the IPR are defined in terms of the orthogonal basis
�p �Ref. 9� normalized with Eq. �7�. Since the random
masses appearing in the normalization of Eq. �8� remain
bounded �see the distribution of Eq. �3��, we believe that the
choice of the ap or of the �p to compute the IPR should of
course affect their precise numerical values, but should not
change their scaling properties with the system size L. In
particular, the localization and delocalization criterions of
Eqs. �10� and �11� should give the same results for the two
definitions. In the following, all numerical results correspond
to the definition of Eq. �9�.

D. Average over the disordered samples of a given size

In practice, for each size L in dimension d, we generate a
certain number nS�L� of disordered samples containing Ld

random masses. The exact diagonalization of each sample �
�via the standard Numerical Algorithms Group �NAG� diago-
nalization routine F02FAF that computes all the eigenvalues
and all the eigenvectors of a real symmetric matrix� yields
the Ld eigenmodes ap

� that are ordered by their frequency
�p

��� in ascending order 0��1
�����2

���� ¯ ��Ld
���. For each

index p=1, . . . ,Ld, we have computed the typical frequency

�p
typ�L� � eln �p

���
�12�

and the corresponding typical IPR,
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Yp
typ�L� � eln Yp

����L�, �13�

where Ā denotes the average of the observable A over the
disordered samples ���. The integrated density of states is
then obtained as

N��� =
1

Ld �
p=1

Ld


��p
typ�L� � �� �14�

with the boundaries values N�0�=0 and N�+��=1. The para-
metric plot ��p

typ�L� ,Yp
typ�L�� with p=1,2 , . . . ,Ld allows to

obtain the behavior of the IPR Y2
typ�� ,L� as a function of the

frequency � and of the length L.

III. LOCALIZATION PROPERTIES OF PHONONS IN
DIMENSION d=1

In this section, we present our numerical results obtained
in dimension d=1 for the following sizes L and the corre-
sponding number ns�L� of disordered samples

L = 102,2 � 102,5 � 102,103,2 � 103,3 � 103,4 � 103,

5 � 103,

ns�L� = 2 � 107,47 � 105,43 � 104,4 � 104,

3 � 103,103,350,150. �15�

A. Density of states

We show in Fig. 1�a� the integrated density of states N���
of Eq. �14� for two disorder strengths W=1 and W=20. As
shown in log-log scale in Fig. 1�b�, we find the linear behav-
ior already present in the pure case

N��� �
�→0

C�W�� �16�

and the disorder strength W is only present in the numerical
prefactor C�W�. We have also checked that the lowest fre-
quency mode scales as �1�L�	1 /L.

B. Typical inverse participation ratio Y2
typ(� ,L)

To analyze the localization properties of eigenstates, we
show in Fig. 2 the typical inverse participation ratio
Y2

typ�� ,L� of Eq. �13� as a function of the frequency � for
various sizes L. In the high-frequency domain where the data
of all sizes collapse, the eigenstates are localized. In the low-
frequency domain where all sizes give different results, as
shown more clearly in log-log scale in Fig. 2�b�, eigenstates
are delocalized on the whole disordered sample. We find
moreover that the data for the very different disorder
strengths W=1 and W=20 merge in the low-frequency re-
gion for each size L: this means that the lowest frequencies
eigenstates are delocalized in the same way independently of
the disorder strength W.

C. Finite-size scaling analysis of the low-frequency modes

We show in Fig. 3 that our data are compatible with the
following finite-size scaling for the low-energy modes,

Y2
typ��,L� �

1

L
Fd=1�L1/��� with � = 2. �17�

This means that to each frequency �, one can associate a
correlation length ���� diverging as the power law,

���� 	
�→0

1

�2 �18�

in agreement with Refs. 22 and 23. An eigenmode of fixed
frequency � will be delocalized on samples of small lengths
L����� with an IPR of order,
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FIG. 1. �Color online� Integrated density of states N��� of Eq. �14� for phonons in d=1. �a� N��� for various sizes 100�L�5000 and
two disorder strengths W=1 and W=20. �b� Same data in log-log scales to display the low-frequency behavior of Eq. �16�.
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Y2
typ��,L� �

L�����

1

L
Fd=1�0� �19�

but will be localized on samples of large lengths L�����
with an IPR of order �using Fd=1�x�	x� at large x�

Y2
typ��,L� �

L�����
�2 =

1

����
. �20�

The conclusion is thus that for any fixed frequency �, the
corresponding eigenmodes will become localized in the limit
L→+�.22,23 However if one is interested into the set of
eigenstates of a sample of a given size L, the conclusion is
that frequencies �L−1/2 correspond to localized eigen-

modes, whereas a certain number Ndeloc�L� of eigenmodes
corresponding to frequencies ��L−1/2 are delocalized. From
the linear behavior in � of the integrated density of states of
Eq. �16�, one obtains that the fraction of delocalized states
scales as the pseudocritical value ���L��L−1/2,

Ndeloc�L�
L

	 ���L� � L−1/2. �21�

So the number of delocalized eigenstates in a sample of size
L grows as
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FIG. 2. �Color online� Typical inverse participation ratio Y2�� ,L� as a function of the frequency � in d=1 for various sizes 100�L
�5000. �a� Y2

typ�� ,L� as a function of � for the disorder strength W=1. �b� ln Y2
typ�� ,L� as a function of ln� for two disorder strengths W=1

and W=20.
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FIG. 3. �Color online� Finite-size scaling analysis of the typical IPR Y2
typ�� ,L� of the low-frequency eigenmodes in d=1 according to Eq.

�17�: the rescaled variable y=LY2
typ�� ,L� is plotted as a function of the reduced variable x=L1/�� with the value �=2. �a� Data collapse in

log-log scale for W=1. �b� Data collapse in log-log scale for W=20.
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Ndeloc�L� 	
L→+�

L1/2 �22�

in agreement with the interpretation given in Ref. 22. Note
that this property of phonons in dimension d=1 is very dif-
ferent from the Anderson electronic problem, where the
whole set of eigenstates of a given sample become localized
at large sizes. Physically, this difference is essential if one
considers the dynamical properties since the dynamics can
be expanded on the basis of eigenmodes: in the Anderson
electronic problem, the localization of the whole set of
eigenfunctions imply the exponential localization for the dy-
namical problem starting from any localized initial condi-
tion, whereas in the phonon case, the presence of these low-
frequency delocalized modes for any size prevents the
exponential localization in the dynamics.

IV. LOCALIZATION PROPERTIES OF PHONONS IN
DIMENSION d=2

In this section, we present our numerical results obtained
in dimension d=2. for the following sizes L and the corre-
sponding number ns�L� of disordered samples,

L = 10,20,30,40,50,60,70,80,

ns�L� = 2 � 107,7 � 105,77 � 103,7500,1800,500,250,200.

�23�

A. Density of states

We show in Fig. 4�a� the integrated density of states N���
of Eq. �14� for two disorder strengths W=1 and W=20. As
shown in log-log scale in Fig. 4�b�, we find the same behav-
ior as in the pure case

N��� 	
�→0

�2 �24�

and the disorder strength W is only present in the numerical
prefactor. We have also checked that the lowest frequency
mode scales as �1�L�	1 /L.

B. Typical inverse participation ratio Y2
typ(� ,L)

We show in Fig. 5 the typical inverse participation ratio
Y2

typ�� ,L� of Eq. �13� as a function of the frequency � for
various sizes L. In the high-frequency domain where the data
of all sizes collapse, the eigenstates are localized. In the low-
frequency domain where all sizes give different results, as
shown more clearly in log-log scale in Fig. 5�b�, eigenstates
are delocalized on the whole disordered sample. As in di-
mension d=1, we find moreover that the data for the two
disorder strengths W=1 and W=20 merge in the low-
frequency region for each size L: this means that the lowest
frequencies eigenstates are delocalized in the same way in-
dependently of the disorder strength.

C. Finite-size scaling analysis of the low-frequency modes

We show in Fig. 6 that our data are compatible with the
following finite-size scaling for the low-energy modes,

Y2
typ��,L� �

1

L2Fd=2��ln L�1/��� with � = 2. �25�

This means that to each frequency �, one can associate a
correlation length ���� diverging as the following essential
singularity:

ln ���� 	
�→0

1

�2 �26�

in agreement with Ref. 23. As in dimension d=1, the con-
clusion is thus that any fixed frequency mode � becomes
localized in the limit L→+�.23
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FIG. 4. �Color online� Integrated density of states N��� for phonons in d=2. �a� N��� for various sizes 10�L�80 and two disorder
strengths W=1 and W=20. �b� Same data in log-log scales to display the low-frequency behavior of Eq. �24�.
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However if one is interested into the set of eigenstates of
a sample of a given size L2, the conclusion is that frequencies
� �ln L�−1/2 are localized, whereas a certain number
Ndeloc�L� of eigenstates with frequencies �� �ln L�−1/2 are
delocalized. From the behavior in � of the integrated density
of states of Eq. �24�, one obtains that the fraction of delocal-
ized states scales as the square of the pseudocritical value
���L���ln L�−1/2,

Ndeloc�L�
L2 	 ����L��2 � �ln L�−1. �27�

So the number of delocalized eigenstates in a sample of size
L2 grows as

Ndeloc�L� 	
L→+�

L2

ln L
. �28�

V. LOCALIZATION-DELOCALIZATION TRANSITION OF
PHONONS IN DIMENSION d=3

In this section, we present our numerical results obtained
in dimension d=3 for the following sizes L and the corre-
sponding number ns�L� of disordered samples,

L = 8,10,12,14,16,18,

ns�L� = 35 � 104,45 � 103,5500,1500,300,300. �29�
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FIG. 5. �Color online� Typical IPR Y2
typ�� ,L� as a function of the frequency � in d=2 for all eigenmodes of samples of sizes 20�L

�80. �a� Y2
typ�� ,L� as a function of � for W=1. �b� ln Y2

typ�� ,L� as a function of ln � for two disorder strengths W=1 and W=20.
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FIG. 6. �Color online� Finite-size scaling analysis of the low-frequency modes in d=2 for 30�L�80 according to Eq. �25�: y
=L2Y2

typ�� ,L� as a function of z= �ln L�1/�� with the value �=2. �a� Data collapse in log-log coordinates for W=1. �b� Data collapse in
log-log coordinates for W=20.
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A. Typical inverse participation ratio Y2
typ(� ,L)

We show our data for the typical IPR Y2
typ�� ,L� in Fig.

7�a�: in the high-frequency part of the spectrum, the data
collapse for the various sizes L corresponds to localized
states with a finite value Y2

typ�� ,���0 �see Eq. �10��. We
show in Fig. 7�b� the same data after the appropriate rescal-
ing L3Y2

typ�� ,L� to detect the delocalized states �see Eq.
�11��: the data collapse in the low-frequency part of the spec-
trum corresponds to delocalized states.

B. Finite-size scaling analysis of the localization transition

In dimension d=3, one expects that there exists a
localization-delocalization transition at some finite frequency
�c�0.23 The IPR is then expected to follow the following
finite-size scaling:

Y2
typ��,L� �

1

LD�2�Fd=3�L1/��� − �c�� . �30�

The exponent D�2� governs the power-law decay of the IPR
exactly at criticality,

Y2
typ��c,L� 	

1

LD�2� . �31�

For the transition of the Anderson tight-binding electronic
model in d=3, it has been measured numerically �see Ref. 9,
and references therein�

DAnderson�2� � 1.3. �32�

As shown in Fig. 8�a�, if we rescale our data using this value,
we obtain that the curves LD�2�Y2

typ�� ,L� for various L cross
around the value ln�c�W=20��−0.1 corresponding to

�c�W = 20� � 0.9. �33�

The integrated density of states at this value is around
N��c�W=20���0.66 �data not shown� so that the critical

point is sufficiently inside the spectrum to have enough lo-
calized states and delocalized states on both sides �this is not
the case for any value of the disorder strength as explained
below in Sec. V C�.

In addition, if we now rescale our data in terms of the
reduced variable L1/���−�c� with the value of the correla-
tion exponent that has been measured numerically for the
Anderson tight-binding electronic model in d=3 �see Ref. 9,
and references therein�

�Anderson � 1.57 �34�

we obtain a good data collapse as shown in Fig. 8�b�. Our
conclusion is thus that the localization transition of phonons
in d=3 is governed by the same universality class as the
Anderson tight-binding electronic model in d=3.

C. On the importance to consider strong enough disorder W
to observe the transition

Up to now, we have described our results in dimension
d=3 for the disorder strength W=20, for which we have
found a clear localization transition at some finite frequency
�c�W=20� �Eq. �33�� well inside the spectrum. However, as
in dimensions d=1 and d=2, we have also studied the dis-
order strength W=1: the corresponding data for the typical
IPR Y2

typ�� ,L� shown in Fig. 9 indicate that here all states of
the spectrum are actually delocalized. This does not mean
that there is no critical frequency �c�W=1�, but that this
critical value is not accessible, because it is higher that the
maximal frequency �max of the spectrum where the density
of states reaches its asymptotic value N��max�=1. Our con-
clusion is thus that to observe the localization transition, one
should consider sufficiently strong disorder W to ensure that
the corresponding critical value belongs to the spectrum

�c�W� � �max�W� . �35�

We have found that this condition is satisfied for W=20 but
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FIG. 7. �Color online� Typical IPR Y2
typ�� ,L� as a function of the typical frequency in d=3 for all eigenmodes of samples of sizes 8

�L�18 for W=20. �a� ln Y2
typ�� ,L� as a function of ln �: the collapse in the high-frequency region corresponds to localized states. �b�

ln�L3Y2
typ�� ,L�� as a function of ln �: the collapse in the low-frequency region corresponds to delocalized states.
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is not satisfied for W=1. Changing the value of W allows to
move the critical value �c�W� inside the spectrum.

VI. CONCLUSION

To characterize the localization properties of eigenstates
for phonons in the presence of random masses in dimension
d=1,2 ,3, we have studied numerically the behavior of the
typical inverse participation ratio Y2�� ,L� as a function of
the frequency � and of the linear length L of the disordered
samples. In dimensions d=1 and d=2, we have found that
the low-frequency part �→0 of the spectrum satisfies the

following finite-size scaling LY2�� ,L�=Fd=1�L1/2�� in di-
mension d=1 and L2Y2�� ,L�=Fd=2��ln L�1/2�� in dimension
d=2. We have moreover explained that the loose statement
“all eigenstates are localized in dimensions d=1,2” should
be stated with some care for phonons: it is true that an eigen-
state of any fixed frequency � becomes localized in the limit
L→+� but one should also be aware that a given disordered
sample of fixed length L contains a certain number Ndeloc�L�
of delocalized states growing as Ndeloc�L��L1/2 in d=1 and
as Ndeloc�L��L2 / �ln L� in d=2. These low-frequency delo-
calized modes are expected to play a major role in the dy-
namical properties on large distances and, in particular, in the
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FIG. 8. �Color online� Finite-size scaling analysis of the localization transition in d=3 for the disorder strength W=20. �a�
ln�LD�2�Y2�� ,L�� as a function of ln � for the sizes 8�L�18 with the value D�2�=1.3: the crossing determines the critical point
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heat transport problem where the disordered sample is con-
nected to heat baths at the boundaries �see, for instance, Ref.
27�.

In dimension d=3, for strong enough disorder strength W
�W=20 in our case�, we have found a very clear localization-
delocalization transition at some finite critical frequency
�c�W��0. We have shown that our data are compatible with
the finite-size scaling LD�2�Y2�� ,L�=Fd=3�L1/���−�c�� with
the values D�2��1.3 and ��1.57 corresponding to the uni-

versality class of the localization transition for the Anderson
tight-binding electronic model in dimension d=3. We have
also found that for too small disorder strength �namely, W
=1 in our case� the critical point �c�W� can be higher that the
maximal frequency of the spectrum so that all eigenstates are
actually delocalized. The choice of too small disorder
strengths seems to be the reason why localized states were
found only very near band edges in previous numerical
studies.24–27
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