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We present elastic properties, theoretical and experimental, of Pu metal and Pu-Ga ��� alloys together with
ab initio equilibrium equation of state for these systems. For the theoretical treatment we employ density-
functional theory in conjunction with spin-orbit coupling and orbital polarization for the metal and coherent-
potential approximation for the alloys. Pu and Pu-Ga alloys are also investigated experimentally using resonant
ultrasound spectroscopy. We show that orbital correlations become more important proceeding from �→�
→� plutonium, thus suggesting increasing f-electron correlation and a corresponding softening of the elastic
moduli. For the �-Pu-Ga alloys we find a softening with larger Ga content, i.e., atomic volume, bulk modulus,
and elastic constants imply a weakened chemical bonding with addition of Ga. Our measurements confirm
qualitatively the theory but uncertainties remain when comparing the model with experiments.
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I. INTRODUCTION

Plutonium metal and alloys provide great challenges for
theoreticians and experimentalists alike. Theoretically, com-
plex crystal and electronic structures combined with electron
correlations greater than most metals and strong relativistic
effects make Pu very difficult to tackle. On the experimental
side, Pu is chemically toxic and radioactive, causing safety
and other regulatory concerns that make it demanding to
work with. Consequently, theory and experiment have been
able to highlight some facets of this material but not reveal
the complete physical picture.

Elasticity constitutes one of the core properties of any
material, one that is paramount for engineering issues. It is
related to strength and other mechanical properties. On a
fundamental material science level, elastic moduli provide a
very detailed representation of the chemical bonding and
thus reflects characteristics of the electronic structure. The
latter is particularly important when evaluating and contrast-
ing different theoretical models. In the case of Pu �and pre-
sumably Pu containing alloys� dynamical mean-field theory1

is claimed to describe the electron-correlation effects, while
on the other hand, total-energy calculations obtained from
density-functional theory �DFT� appears consistent with
many ground-state properties.2–4 Here we are comparing
DFT adiabatic single-crystal elastic constants with resonant
ultrasound spectroscopy �RUS� polycrystal elastic moduli in
an effort to validate the DFT model for Pu and �-Pu-Ga
alloys electronic structure. We note that single crystal and
polycrystal bulk moduli are the same within 2% while
single-crystal Kroner average of shear moduli also agree
with similar accuracy.5 Our study is complementary to other
investigations6 of the electronic structure, many of which
were reviewed recently by Moore and van der Laan.7

We are applying DFT to examine equilibrium equation of
state and single-crystal elastic constants of the six known
phases of Pu metal �� ,� ,� ,� ,�� ,�� and �-Pu-Ga alloy
�0–10 at. % Ga�. In Fig. 1 we show the Pu phases and in-
dicate their crystal type and number of independent elastic

constants. In parallel with the theory we are presenting reso-
nant ultrasound spectroscopy measurements on polycrystal
�, �, and � plutonium as well as some �-Pu-Ga alloys. The
experimental data are important for understanding materials
properties but they are also essential in corroborating the
DFT approach and any other theoretical model. For semi-
empirical techniques the development of interatomic poten-
tials can be constrained by the presented experimental elastic
constants and in some cases, where data are missing, our
DFT predictions.

In Sec. II we describe technical details of the computa-
tions including our theoretical model for the studied Pu sys-
tems. This is followed by Sec. III in which we briefly de-
scribe our elastic-moduli measurements. Next, calculated
crystal stabilities and equilibrium equation-of-state data of
the various phases are presented in Sec. IV. Our theoretical
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FIG. 1. �Color online� The experimental phase diagram of Pu.
The type of crystal and number of independent elastic constants are
indicated.
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and experimental results for the elastic moduli are given in
Sec. V and we provide concluding remarks in Sec. VI.

II. COMPUTATIONAL

The electronic structure and total energy are obtained
from density-functional calculations which require the crys-
tal geometry and the atomic number �94 for Pu and 31 for
Ga�. As is dictated by DFT, the electron exchange and cor-
relation energy functionals and associated potentials have to
be assumed and we use the so-called generalized gradient
approximation �GGA� for this purpose.8

For pure Pu in its complex phases we are adopting an
all-electron technique that has proven to be robust for the
actinides in the past.9 The linear muffin-tin orbitals �LMTO�
method does not constrain the shapes of the charge density or
potential and the method is thus referred to as a full-potential
LMTO �FPLMTO� method.10

Electron correlations play an important role in Pu and
Pu-rich alloys. Within the framework of DFT it has been
shown that calculations including spin polarization, spin-
orbit �SO� coupling, and orbital polarization �OP� in con-
junction with GGA can produce realistic total energies for all
phases3 but the high-temperature body-centered-cubic �bcc�
� phase. We have argued that antiferromagnetic order for the
�, �, and � phases and magnetic disorder for the higher
temperature phases best represent plutonium within the as-
sumptions of the DFT model.11,12 Following this recipe we
calculate the total energy as a function of strain and extract
the elastic moduli. For �-Pu the effects of orbital polariza-
tion on the elastic properties were suggested to be small13

when they were evaluated at the same atomic volume, cor-
responding to the equilibrium of the SO+OP treatment. Nev-
ertheless, the elasticity of all phases are evaluated at the
equilibrium volume of the full �SO+OP� theory for both the
SO and SO+OP approximations.

Spin-orbit coupling is implemented in a first-order varia-
tional procedure14 for the valence d and f states, as was done
previously,2 and for the core states the fully relativistic Dirac
equation is solved. The orbital polarization is accomplished
as described in detail.15 The energy of the orbitals with the
spin, orbital, and magnetic quantum numbers �� , l ,ml� are
shifted an amount proportional to L�ml. Here L� is the total
orbital moment from electrons with spin �. This self-
consistent parameter-free technique attempts to generalize
Hund’s second rule for an atom to the condensed matter and
enhances the separation of the ml orbitals caused by the spin-
orbit interaction. Hence, the OP can be viewed as an ampli-
fication of the SO.

The axial ratios of all lower symmetry phases �� and �
monoclinic, � orthorhombic, and �� tetragonal� are varied
�optimized� to produce the lowest total energy. Internal co-
ordinates are kept fixed at their measured values.16 The
monoclinic phases have 13, the orthorhombic 9, tetragonal 6,
and cubic phases 3 independent elastic coefficients that cor-
respond to specific strains of the lattice. Small strains
��max 1–2 %� are applied and the total-energy response fit-
ted to a fourth-order polynomial allowing for the extraction
of the second-order coefficient that is proportional to the cor-

responding elastic modulus. All applicable strains and equa-
tions for this scheme were presented earlier.13,17 We are ig-
noring lattice relaxation during the distortions due to
technical limitations of our computations. In the case of �
uranium this simplification was determined to be
acceptable17 but could possibly influence the calculated elas-
tic coefficients.

The calculations of random substitutional alloys
��-Pu-Ga� are best performed within the coherent-potential
approximation �CPA�.18 This procedure also conveniently al-
lows for the treatment of magnetic disorder which otherwise
is modeled by a supercell �special quasirandom structure� as
before.11 The CPA is here applied in an identical manner as
in our previous study of pure �-Pu �Ref. 19� within the exact
MTO �EMTO� method.20 The EMTO calculations are per-
formed using scalar relativistic, spin-polarized, Green’s-
function technique based on the improved screened
Korringa-Kohn-Rostoker method for which the electron po-
tential and density are precise enough to be used for the
small lattice distortions associated with elastic constants. The
details are the same as for pure �-Pu �Ref. 19� but here we
study the �-Pu-Ga alloy for concentrations 2, 4, 6, 8, and
10 at. % Ga.

III. EXPERIMENTAL

The elastic moduli are determined from measurements of
the resonance frequencies using a RUS �Refs. 21–23� system
constructed entirely of ceramics, metals, and other inorganic
materials to preclude deleterious radiolytic interactions. The
system can operate between 1.8 and 700 K. Several ap-
proaches to temperature control are taken in the presented
results but the primary measurements are made in He atmo-
sphere. Temperature is controlled to about 100 mK with an
accuracy better than 2%. The specific shapes of the samples
are mostly responsible for errors in the densities and elastic
moduli. Therefore, considerable care is taken to ensure
square and parallel shapes of the samples with dimensional
errors less than 5 �m. A detailed description of the process-
ing, impurity levels, error sources, and experimental tech-
nique has been presented previously for pure Pu �Ref. 24�
and the Pu-Ga �2.36 at. %� alloy.25

IV. CRYSTAL STABILITIES AND EQUILIBRIUM
EQUATION OF STATE

Before examining the elastic properties we study the crys-
tal stabilities and equilibrium equation-of-state properties of
the Pu phases and the �-Pu-Ga alloys. We begin with �-Pu
for which the theory is reproducing the details of the mono-
clinic structure16 very well as pointed out in our previous
publications.13,26 The calculations of the elastic constants for
the monoclinic �P21 /m� �-Pu thus assumes the measured
data for axial ratios, monoclinic angle, and atomic positions
at the theoretical equilibrium volume 20.3 Å3.

The � phase is also monoclinic with space group B2 /m
and 17 atoms in the primitive unit cell with 34 atoms per unit
cell as described in the Pu handbook.16 Due to the complex-
ity to fully relax all structural parameters, particularly in the
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context of an all-electron methodology, we are limiting our-
selves to only calculate the total energy as a function of b /a
and c /a axial ratios at the equilibrium volume obtained from
computations using the measured16 geometry. In Fig. 2 we
show the total-energy contours of �-Pu as a function of b /a
and c /a axial ratios at the theoretical equilibrium volume
�23.1 Å3�. Here the axial ratios have been scaled with their
experimental16 values �b /a=1.127 and c /a=0.847�. The to-
tal energies are obtained from our full treatment of electron
correlations �SO+OP� and the figure shows a minimum in
the energy landscape at �1.0, 1.0�, i.e., the calculations are
perfectly reproducing the measured ratios. For comparison
we also show, in Fig. 3, a similar plot at the same atomic
volume but without spin polarization, spin-orbit coupling,
and orbital polarization. In this case there is no energy mini-
mum anywhere close to the axial ratios observed for �-Pu. In
contrast, there is a downhill slope in energy toward much

smaller axial ratios suggesting a structural instability of
�-Pu. Obviously, electron correlations are very important for
the structural stability of �-Pu and must be considered in any
realistic model for the elastic constants. Spin polarization
plays a role but is likely not as essential as SO and OP.
Recent calculations27 for �-Pu show that when SO and OP
are both included the effect of spin polarization is largely
diminished.

The � phase is orthorhombic with space group Fddd and
eight atoms per primitive unit cell that is also present28,29 in
compressed americium �AmIII� close to 10 GPa. In this face-
centered-orthorhombic structure the atomic coordinates are,
contrary to the � phase, bound by symmetry. Full relaxation
of �-Pu is therefore easier to accomplish and it suffices to
optimize the axial ratios at a given atomic volume. In Fig. 4
we show a total-energy contour plot at the theoretical equi-
librium volume �23.8 Å3� of �-Pu similar to that of �-Pu in
Fig. 2. As before, the axial ratios have been scaled with
measured data16 �b /a=1.826 and c /a=3.217�. The energy
minimum occurs at about �0.96, 1.01� suggesting that the c /a
ratio is very good while the b /a is slightly underestimated
�4%�. DFT without the aforementioned electronic-correlation
effects is completely unable to model this phase �not shown�,
a fact that has been discussed in the literature previously.30,31

Both the � and � phases are cubic with structures entirely
defined by their face-centered-cubic �fcc� and body-centered-
cubic symmetries. Between them there is a small pocket of
stability for the �� tetragonal �I4 /mmm� phase, see Fig. 1.
Our calculated equilibrium volume for this phase is 24.7 Å3

and the optimized axial ratio is about 3.5% larger than the
observed16 �1.329�, see Fig. 5.

Thus, in addition to plausible total energies and atomic
densities,3 our DFT model suggests structural stability for all
Pu phases, except the � phase �see below�, with rather good
crystal parameters as well. In Sec. V we shall apply small
strains to the optimized structure of each phase for evalua-
tion of the elastic moduli.

Next, we summarize our equilibrium equation-of-state
properties for pure Pu in its six known phases together with
experimental data taken from the literature. In Table I we

FIG. 2. Equitotal-energy curves as a function of axial b /a and
c /a ratios for �-Pu obtained from the fully correlated �SO+OP�
treatment. Here the axial ratios are scaled with their measured �Ref.
16� values. The plot shows a minimum close to �1.0, 1.0� which
represents the measured axial ratios. The first five energy contours
are separated by 0.02 mRy/atom with a 0.1 mRy/atom separation
for the remaining ones.

FIG. 3. Same as Fig. 2 but here the calculations do not include
spin polarization, spin-orbit coupling, or orbital polarization. The
plot shows a drop in total energy for axial ratios smaller than 94%
of the experimental �Ref. 16� values. The actual total-energy mini-
mum for this simplified model lies outside the plotted ranges. The
first five energy contours are separated by 0.25 mRy/atom with a
0.5 mRy/atom separation for the remaining ones.

FIG. 4. Same as Fig. 2 but here for �-Pu. The plot shows a
minimum close to �0.96, 1.01� which is relatively close to the mea-
sured �1.0, 1.0� axial ratios �Ref. 16�. The first four energy contours
are separated by 0.01 mRy/atom and 0.02 mRy for the remaining
ones.
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show atomic volumes �V� and bulk moduli �B�, obtained
from Murnaghan32 fits to our total energies, for the fully
correlated treatment �SO+OP�, and with spin-orbit coupling
and spin polarization only �SO�. For the more limited treat-
ment, SO, we also evaluate B at the equilibrium volume for
the full theory �Bfix�. The calculation of Bfix will allow for a
more consistent comparison because the influence of differ-
ent equilibrium volumes is removed and the same approach

is adopted for the elastic constants below �Sec. V�. Clearly,
electron correlation plays an important role because the dif-
ference between the SO and SO+OP equilibrium volumes is
substantial for all phases. Generally, the bulk modulus ap-

TABLE I. Present FPLMTO �SO and SO+OP� and EMTO re-
sults together with experimental data �Refs. 16, 37, and 38�. Bfix is
the bulk modulus evaluated at the equilibrium volume correspond-
ing to the full electron-correlation treatment �SO+OP�.

Phase Method V B Bfix

� SO 19.0 59 25

� SO+OP 20.3 45 45

� Expt. 20.0–20.4 37–66

� SO 22.0 41 33

� SO+OP 23.1 37 37

� Expt. 22.7 34.3

� SO 22.7 38 30

� SO+OP 23.8 32 32

� Expt. 23.5 25.7

� SO 24.2 46 39

� SO+OP 24.9 41 41

� EMTO 25.5 39.6 44.2

� Expt. 25.0 29–30

�� SO 24.2 41 38

�� SO+OP 24.7 44 44

�� Expt. 24.8

� SO 23.9 21 20

� SO+OP 24.6 23 23

� EMTO 26.6 29.7 32

� Expt. 24.4
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FIG. 5. Total energy as a function of c /a axial ratio for ��-Pu.
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FIG. 6. Our measured temperature dependence, with error bars,
for the �B� bulk and �G� shear moduli for � and � plutonium.
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pears to be less dependent on the two theoretical treatments
particularly when evaluated at the same �SO+OP� volume
�Bfix�. For all phases, Table I reveals that DFT predicts
atomic volumes very close to experimental data and reason-
able bulk moduli as well. One cannot, however, expect per-
fect agreement because temperature effects are not accounted
for in the theory. This is demonstrated in Fig. 6 where we
plot with error bars our measured B and shear modulus �G,
see more below� for �-Pu ��430–480 K� and �-Pu
��480–620 K�.

The �-Pu-Ga alloy system has been modeled in analogy
with pure �-Pu as a magnetically disordered material and
with the random substitutional alloy treated within the CPA.
Although founded on the same fundamental DFT, with GGA
for the exchange and correlation functionals, the CPA is here
implemented in EMTO with no spin-orbit coupling and with
shape approximations of charge density and electron poten-
tials that are not present in the FPLMTO calculations. Con-
sequently, there are some minor differences in the obtained
data for �-Pu between the two methods, see Table I. The
principal purpose of our EMTO-CPA calculations, however,
is to investigate the influence of gallium in �-Pu. In Fig. 7 we
show in the upper panel the atomic volume as a function of
gallium content in �-Pu together with measured33 data. The
EMTO method predicts volumes about 2% greater than ex-
periments �and FPLMTO� for pure �-Pu but the Ga-
concentration dependence appears to be very similar to the
experimental data. In the lower panel of Fig. 7 we illustrate
this by plotting the scaled volume,

VPu-Ga

VPu
, as a function of

atomic percent Ga. The volume depends linearly with Ga
concentration in this studied interval where theory and ex-
periment essentially coincide.

The bulk modulus and its pressure derivative, B�, also
depends linearly on Ga content in our calculations. Figure 8
displays these properties and notice here that B increases and
B� decreases in a linear fashion. For three concentrations
�2.36, 3.30, and 4.64 at. % Ga� we measure the temperature
dependence of the bulk modulus, shown in Fig. 9. At any
given temperature there is an increase in the bulk modulus
between 2.36 and 4.64 at. % Ga in �-Pu. At 300 K the rela-
tive increase is about 2.3% while our calculations �Fig. 8�
suggest a larger increase �5.5%�. Interestingly, our measure-
ments for the 3.30 at. % Ga alloy have a lower bulk modu-
lus and this is not reproduced by our theory.

The calculated pressure derivative of the bulk modulus is
responsive to the Ga content, see Fig. 8, which is consistent
with the fact that the thermal expansion is very sensitive to
alloying. Our calculations do not, however, predict a nega-
tive B� necessary for the anomalous negative thermal expan-
sion.

V. ELASTIC CONSTANTS

The single-crystal elastic constants for �-Pu were recently
calculated13 and we follow the same procedure here to also
compute these for the �, �, �, and �� phases of Pu. For the
high-temperature � phase our disordered magnetic model11,12

predicts a negative tetragonal shear constant and thus no me-
chanical stability. We speculate that phonon anharmonicity
and entropy, not accounted for in the present model, are pro-
moting its stability before melt.

Although it was suggested13 that electron correlation, in
terms of orbital polarization, has an insignificant influence on

TABLE II. �-Pu elastic constants in gigapascal at 20.3 Å3.

Method c11 c22 c33 c44 c55 c66 c12 c13 c23 c15 c25 c35 c46

SO 120 109 86.2 43.4 50.6 43.7 −9.30 1.10 −11.5 22.1 20.2 21.9 −0.25

SO+OP 121 116 93.7 46.6 55.6 41.5 −5.2 2.9 −8.3 23.2 23.8 21.6 −2.3
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the moduli for �-Pu we choose here to investigate its impor-
tance in detail for all Pu phases. In Tables II and III we
present the monoclinic elastic constants for the � and �
phases, respectively. First we notice that orbital polarization
has a minor, but non-negligible, influence on the moduli for
the � and � phases. The six cii components have straightfor-
ward interpretations, the three first, c11, c22, and c33, corre-
spond to strains in the x, y, and z directions, respectively. The
next three, c44, c55, and c66, are related to strains causing
changes in the angles between the axes. Focusing on the cii’s,
which are more intuitive than the others, we find that they
are significantly smaller for � than � plutonium. Because
they scale inversely with the atomic volume13 a reduction is
expected following the volume expansion associated with the
�→� transition. The difference in volume suggests a de-
crease on the order of 12% while the actual reduction is
considerably greater �see below�.

The succeeding phase in Pu �Fig. 1� is the orthorhombic
�-Pu. Due to the higher crystal symmetry in �, compared to
� and � plutonium, fewer elastic constants are independent.
Still, nine strains are needed to obtain all of them and the
procedure was outlined in detail in our previous investigation
of �-U.17 The results are listed in Table IV and they show
that orbital polarization is more important for the elasticity in
the � phase compared to that of � and � plutonium. In this
sense, electron correlation appears to be stronger in �-Pu
than the lower temperature phases. In Fig. 10 we plot the
average cii for �, �, and � plutonium. In this figure we also
display the results when the average cii for the � phase is
being scaled corresponding to the lower densities �greater
atomic volumes� of the � and � phases. Clearly, the average
cii decreases more strongly with the phase transitions than a
simple volume scaling suggests. The reduced magnitude of
the elastic constants are thus driven not only by changes in
the atomic density but also by phase-specific alterations in
the character of the chemical bonds as one proceeds through
the �→�→� transitions. These variations in the electronic
structure can be interpreted as indicative of 5f-electron lo-
calization or increasing electron correlation.

The next transition takes plutonium to the cubic � phase.
Although �-Pu is stable only in a narrow range at relatively
high temperatures, it can be stabilized to room temperature
and below by adding small amounts of an appropriate metal.
One often-used additive is gallium which therefore motivates

our study on the �-Pu-Ga alloy system. First, however, we
address unalloyed �-Pu. As mentioned, a cubic system has
only three independent elastic constants �c11, c12, and c44�. As
is a common practice when calculating elastic constants for
cubic metals, we have chosen to compute the tetragonal
shear constant, c�=

c11−c12

2 together with c44 and separate c11
and c12 by using the bulk modulus �Table I� and the relation-
ship B=

c11+2c12

3 .
The theoretical elastic constants are collected and com-

pared to single-crystal data on �-Pu in Table V. First we
realize that FPLMTO and EMTO results are not identical.
Our previous report on �-Pu �Ref. 19� recognized this as well
and it is expected when the methods adopt distinct approxi-
mations. The present c44 is also slightly lower than earlier
data19 and more accurate because we apply smaller strains
�EMTO� and use more k points for the band structure
�FPLMTO�. Compared to single-crystal data, both methods
overestimate c11 somewhat while c12 and c44 are relatively
close. Also, c44 for the EMTO calculation appears too high.
Unless fortunate cancellations of errors occur in the compu-
tations, we expect the FPLMTO to be more accurate than
EMTO which does not include spin-orbit coupling and or-
bital polarization, even though the latter evidently has a rela-
tively small influence, see Table I. In addition, the nonspheri-
cal parts of charge density and potentials are treated
differently between the techniques which may cause minor
disparities in the elastic constants.

With increasing temperature, Pu returns once again to a
lower symmetry phase, i.e., the tetragonal ��. Elastic con-
stants have not been measured for this phase that is only
stable in a small sliver of the phase diagram �Fig. 1�. Nev-
ertheless, for completeness, we also present our predictions
for ��-Pu in Table VI. The tetragonal symmetry is higher
than that of the orthorhombic and six elastic constants are
independent. The equations relating strains to the orthorhom-
bic moduli17 can be used observing the fact that c22=c11,
c55=c44, and c23=c13. Table VI suggests that OP has a small
but non-negligible influence on the cij’s similar to the other
phases. For the SO+OP treatment c33�c11 and c66�c44
which may suggest a chemical bonding akin to higher �cu-
bic� symmetry even though c12�c13.

The final phase before melting, �-Pu, as we have alluded
to, does not have a positive tetragonal shear constant c� and
is therefore mechanically unstable. This fact was already

TABLE III. �-Pu elastic constants in gigapascal at 23.1 Å3.

Method c11 c22 c33 c44 c55 c66 c12 c13 c23 c15 c25 c35 c46

SO 75.1 63.1 64.3 35.8 21.4 26.5 22.0 20.6 18.1 21.3 21.4 21.8 −0.30

SO+OP 75.4 64.4 65.1 32.2 22.4 27.2 27.0 20.6 23.1 20.6 21.5 19.4 −0.95

TABLE IV. �-Pu elastic constants in gigapascal at 23.8 Å3.

Method c11 c22 c33 c44 c55 c66 c12 c13 c23

SO 91.1 67.2 74.5 28.6 14.1 27.5 8.80 22.9 16.0

SO+OP 81.0 63.7 70.5 21.6 11.9 21.7 3.15 22.6 22.6
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observed11 in the calculated tetragonal �Bain� transformation
path that displayed a local maximum for the bcc ��� phase. It
was also noted3 that the total energy for this phase is too high
to be less than 200 K above the � phase. Both these failures
of the model, we believe, are related to our low-temperature
treatment of this high-temperature phase for which entropy,
not included in our model, is absolutely essential. A similar
situation occurs for many metals including Ti, Zr, and Hf for
which a solution, based on a self-consistent ab initio lattice-
dynamics method, has recently been presented.34

Let us now return to the � phase focusing on the Ga-
stabilized system. In Fig. 11 we plot our calculated c� and c44
for �-Pu-Ga up to 10 at. % Ga. Both moduli soften with
increasing Ga content while the anisotropy ratio �

c44

c�
�, shown

in the inset, reaches a maximum �9 for 6 at. % Ga. For
pure Pu, ultrasonic35 and x-ray36 measure this ratio to be 7.1
and 6.3, respectively. Incidentally, our SO+OP FPLMTO
calculations for �-Pu �Table V� suggest a more isotropic sys-
tem with

c44

c�
�2. The stark contrast between the two sets of

calculations of this ratio lies in the fact that one overesti-
mates c� and the other c44.

Next, we attempt to compare our calculated single-crystal
elastic constants with experimental data obtained from poly-
crystal samples. The comparison necessitates an averaging
procedure for the single-crystal results. There are many ways
of approximating an effective polycrystal modulus from
single-crystal data and the Kroner average for cubic systems,

often the best compromise, produces excellent agreement be-
tween single-crystal and polycrystal data. Currently, how-
ever, this scheme is not available for the lower symmetry
phases. It is not our intention here to explore averaging tech-
niques but rather in a consistent fashion relate our theoretical
results for all Pu phases and the �-Pu-Ga system to our poly-
crystal data. As in our previous paper on �-Pu �Ref. 13� we
simply adopt the Voigt expressions for calculating the shear
and bulk modulus which we then use to obtain c̃11 through

B = c̃11 −
4G

3
, �1�

where c̃11 is calculated from the measured sound speed

through the relationship v1=� c̃11

	 . The Voigt upper bounds
for the bulk �BV� and shear �GV� moduli are, for noncubic
lattices,

BV =
1

9
�c11 + c22 + c33 + 2�c12 + c13 + c23�� �2�

and

GV =
1

15
�c11 + c22 + c33 + 3�c44 + c55 + c66� − �c12 + c13

+ c23�� , �3�

respectively. Applying Eqs. �1�–�3� together with our calcu-
lated single crystal cij, presented above, we fill the entries in
Table VII. The RUS data entered here cover the �, �, and �
phases together with room temperature �300 K� �-Pu alloyed

TABLE V. FPLMTO �SO and SO+OP� and EMTO �-Pu elastic
constants in gigapascal at 24.9 Å3 and 25.5 Å3, respectively. Ex-
perimental data �Ref. 33� is for single-crystal �-Pu.

Method c11 c12 c44

SO 61.7 27.7 35.0

SO+OP 65.0 29.0 38.0

EMTO 50.1 34.4 65.3

Expt. 36 26 31

TABLE VI. ��-Pu elastic constants in gigapascal at 24.7 Å3.

Method c11 c33 c44 c66 c12 c13

SO 61.0 49.3 39.1 31.3 35.2 25.6

SO+OP 64.7 62.0 42.1 42.2 43.2 29.6
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with 2.36 at. % Ga. The latter approximates unalloyed �-Pu
well because the elastic properties depend only very weakly
on small Ga concentrations for �-Pu in our RUS measure-
ments �not shown�. No RUS data is collected for the �� or �
phases. Elastic moduli at the lowest temperature that stabi-
lizes each phase, see Fig. 6, are compiled in Table VII. No-
tice that theory and experimental data compare relatively
well for �, �, and � taking into account that GV is an upper
bound for G. Experimental data extrapolated to zero tem-
perature are quite close to theory for the �, �, and � phases
whereas for the � phase the room-temperature data agree
better.

Our calculated �-Pu moduli can be directly compared
with the single-crystal data and they agree fairly well as dis-
cussed above. As with the polycrystal data, we expect the
agreement to improve considerably for data extrapolated to
zero temperature �not available�. A similar level of accuracy
is expected also for �� plutonium but the answer has to wait
until the measurements have been done.

VI. CONCLUSION

We report the first theoretical single-crystal elastic con-
stants for all phases of Pu metal, excluding the � phase, and
also for the �-Pu-Ga alloy system. Accompanying these are
RUS measurements for polycrystal �, �, �, and Ga-
stabilized � plutonium. All Pu polymorphs, except �, are pre-
dicted by theory to be mechanically stable having crystal

geometries close to their true observed structures. Also, the
magnitudes of the DFT elastic constants appear to be similar
to what is obtained from the RUS measurements, particularly
for the �, �, and � phases. From this and the fact that DFT
energies are consistent with the phase diagram3 one must
conclude that the electronic structure for Pu is well described
by the DFT model and the aforementioned electron correla-
tions.

The elastic properties �-Pu �and presumably ��-Pu� agree
somewhat less favorably with single-crystal or polycrystal
RUS data and it may suggest that electron-correlation effects
are treated more approximately than for the lower tempera-
ture phases. Alternatively, entropies not accounted for may
play a greater role at higher temperatures as we have already
suggested above for the � phase. Either way, key features of
the �-Pu chemical bonding are reproduced by theory includ-
ing a small tetragonal shear constant �c��, a larger anisotropy
ratio �c44 /c�� than most metals, good lattice constant, and a
good bulk modulus.

We predict a linear behavior, as a function of Ga concen-
tration, for the atomic volume, bulk modulus, and the pres-
sure derivative of the bulk modulus for the �-Pu-Ga system.
The decrease in the atomic volume with Ga content is in
excellent agreement with experiment. For B, our RUS data
indicate a substantial increase between 2.36 and 4.64 at. %
Ga, in accord with our alloy calculations, whereas for the
3.30 at. % Ga alloy B has a minimum in the RUS analysis
that is not predicted by theory. The volume behavior �Fig. 7�
is somewhat surprising because on one hand adding Ga con-
tracts the �-Pu volume closer to that of �-Pu while on the
other it stabilizes the � relative to the � phase. Our DFT

TABLE VII. Presently calculated Voigt averages of bulk and shear moduli �BV, GV, and c̃11, see text�
together with present RUS and literature data �Refs. 16, 37, and 38�. Data in parenthesis are present RUS
values extrapolated to zero temperature. All in units of gigapascal. SO and SO+OP �FPLMTO� data are
calculated at the equilibrium volume of the SO+OP treatment while EMTO results for �-Pu are evaluated at
the EMTO equilibrium volume �25.5 Å3�.

Phase Method BV GV c̃11

� SO 30.6 49.9 97.1

� SO+OP 34.4 51.3 102.8

� Expt.�poly� 37–54.4 �72� 43.5–43.7 �59� 104.6–112.8 �116.2�
� SO 36.0 26.2 70.9

� SO+OP 38.5 25.3 72.2

� Expt.�poly� 34.4 �41� 18.2 �26� 58.7 �75.7�
� SO 36.5 26.4 71.7

� SO+OP 34.6 22.2 64.2

� Expt.�poly� 25.7 �31� 16.5 �27� 47.7 �67�
� SO 39.0 27.8 76.0

� SO+OP 41.0 30.6 81.8

� EMTO 39.6 42.3 96.0

� Expt.�poly� 29.7 �38� 16.2 �20� 51.3 �64.7�
� Expt. �single� 29.0 21.0 57.0

�� SO 38.2 26.8 73.9

�� SO+OP 44.0 31.4 85.9
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model correctly captures this interesting result, which is sim-
ply due to the fact that Ga has a smaller size than Pu in the
fcc phase.

Uncertainties remain when theoretical results are related
to experimental data. �i� No temperature dependence is ac-
counted for in the theory. �ii� The comparison between
single-crystal and polycrystal moduli is imperfect due to the
necessary averaging procedure involved. �iii� Relaxation ef-
fects are ignored both when calculating the equation-of-state
properties �Table I� and for the elastic moduli �Tables II–VI�.
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