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Langevin model for real-time Brownian dynamics of interacting nanodefects in irradiated metals
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In situ real-time electron microscope observations of metals irradiated with ultrahigh-energy electrons or
energetic ions show that the dynamics of microstructural evolution in these materials is strongly influenced by
long-range elastic interactions between mobile nanoscale radiation defects. Treating long-range interactions is
also necessary for modeling microstructures formed in ex situ high-dose-rate ion-beam irradiation experiments,
and for interpolating the ion-beam irradiation data to the low-dose-rate limit characterizing the neutron irra-
diation environments of fission or fusion power plants. We show that simulations, performed using an algo-

rithm where nanoscale radiation defects are treated as interacting Langevin particles, are able to match and
explain the real-time dynamics of nanodefects observed in in situ electron microscope experiments.
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I. INTRODUCTION

Recent in situ electron microscope observations, provid-
ing real-time visualization of dynamics of defects produced
by ultrahigh-energy electron irradiation,'> or showing mi-
crostructural evolution occurring under ion beam*=¢ irradia-
tion, have revolutionized our understanding of how proper-
ties of metals and alloys change in the extreme radiation and
thermal environments of a fission or a fusion power plant.
The key feature of in situ electron microscopy is its ability to
exhibit the time-dependent dynamics of migration, interac-
tion, and transformation of radiation defects, and to visualize
the entire complexity of evolving defect and dislocation net-
works. For example, in situ electron microscope observations
provided evidence of violation of the Burgers vector conser-
vation law for dislocations on the nanoscale.! This gave a
vital clue needed for modeling microscopic processes re-
sponsible for the formation of unusual high-temperature dis-
location structures in iron,” and for explaining the origin of
the loss of strength of ferritic-martensitic steels’ at high tem-
peratures exceeding 500 °C.

The development of in situ electron microscope tech-
niques was partially stimulated by the application of large-
scale molecular dynamics (MD) simulations to modeling
mobile defects and clusters of defects (for example, nanodis-
location loops) in iron and other metals.'®!> A hypothesis
stating that clusters of point defects play a significant part in
microstructural evolution of irradiated materials was pro-
posed in 1990s within the framework of the “production
bias” radiation damage model.'® However, it is only recently
that in situ electron microscope observations!'~® confirmed
the fact that mobile and immobile clusters of point defects
form an integral part of the microstructure of an irradiated
material.
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Somewhat surprisingly, interpreting in situ real-time elec-
tron microscope observations remains genuinely problem-
atic. The ten orders of magnitude mismatch between the
nanosecond (107 s) time scale accessible to an MD
simulation,'%!3 and the 10-1000 s time scale of a typical in
situ electron microscope observation,'~® impedes meaningful
quantitative analysis. The need to develop a model, with
which real-time observations could be simulated and inter-
preted, does not only stem from the fact that electron micros-
copy per se is a highly quantitative technique for character-
izing materials.'”!® Recently, the question about how to
model, in real time, the evolution of an ensemble of mobile
interacting radiation defects has been brought into focus by
the rapidly growing applications of ion-beam sources to
simulating neutron irradiation damage effects in fission and
fusion materials.

In situ electron microscope observations visualize the
dynamics of microstructure corresponding to the limit of
high irradiation dose rates, approaching 10~ dpa s~
(~80 dpa per 24 h) for the ultrahigh-voltage electron irra-
diation case,’ and 6X10™* dpas™' to 8X10™* dpas™!
(~50-70 dpa per 24 h) for the in situ ion-beam irradiation
case.*~% These dose rates are similar to the 10 dpa per 24 h to
100 dpa per 24 h range of dose rates characterizing irradia-
tion conditions in ex sifu ion-beam facilities.'® In situ elec-
tron microscopy and ex situ ion-beam irradiation experi-
ments generate similar microstructures, corresponding to a
similar range of high irradiation dose rates. These dose rates
are several orders of magnitude higher than the rates associ-
ated with the irradiation environment of a fission nuclear
reactor,’ an accelerator-driven system such as the Interna-
tional Fusion Materials Irradiation Facility (IFMIF) (Ref. 21)
or a fusion power plant.??

Is there a fundamental difference between microstructures
formed in the limits of low and high dose rates? The density
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of defects generated by irradiation in a unit volume of the
material per unit time is the main quantity distinguishing
defect production under intense high-dose-rate ion-beam or
ultrahigh-voltage electron irradiation, and under low-dose-
rate neutron irradiation. This quantity is much higher for
high-energy electron or ion-beam irradiation than for neutron
irradiation. Since the frequency of interaction events in an
ensemble of moving particles is proportional to the square of
the density of particles, one should expect that various phe-
nomena associated with the presence of interaction between
radiation defects should be more pronounced in the limit of
high irradiation dose rate, and should be readily seen in in
situ electron microscope experiments. Indeed, there is ex-
perimental evidence for the effect of dose rate on microstruc-
tural evolution of irradiated materials.?3-2

In situ electron microscope observations show that simul-
taneous, as opposed to sequential, production of mobile de-
fects at high irradiation dose rates results in microstructural
evolution that is influenced by the “collective” dynamical
events involving correlated motion of several defects, lead-
ing to the formation of defect rafts, coalescence of defects,
and the eventual self-organization and spatial ordering of de-
fects. All these phenomena are routinely seen in in situ elec-
tron microscope experiments,'~® suggesting that interaction
between radiation defects does play a significant part in the
dynamics of microstructural evolution in the limit of high
irradiation dose rates.

The fact that elastic interactions between defects might
affect microstructural evolution of a material under irradia-
tion was noted by Hudson et al.?®?” who investigated, using
kinetic Monte Carlo simulations, the evolution of ensembles
of interacting defects. The kinetic Monte Carlo model devel-
oped by Hudson et al.?’ treated the effect of elastic forces
through the use of hopping probabilities biased by the spa-
tially dependent elastic fields. The study showed that while
the effect of elastic forces on the evolution of ensembles of
one-dimensionally migrating dislocation loops was indeed
significant,”® in agreement with earlier MD predictions
showing that vacancies pin the motion of glissile dislocation
loops,?®?  the elastic interactions between three-
dimensionally migrating defects do not appear to have an
appreciable effect on microstructural evolution.?” For the
treatment of a general case of long-term microstructural evo-
lution, further work is clearly needed to elucidate the role of
elastic interactions between the defects. Recent implementa-
tions of accelerated kinetic Monte Carlo algorithms for simu-
lating the accumulation of radiation damage®*3! are however
based on the assumption that defects perform unbiased (by
internal elastic fields) three-dimensional migration in the ma-
terial, and interactions between defects are described as
short-range inelastic “collisions.” These simulations do not
include the treatment of long-range elastic forces acting be-
tween the defects, and between defects and dislocations, and
moreover do not take into account the effects of one-
dimensional Brownian motion of prismatic dislocation loops
often observed experimentally.'~©

In this paper, we describe a possible alternative (to kinetic
Monte Carlo) approach to simulating the long time-scale
evolution of radiation-induced microstructures. The develop-
ment of this approach has been stimulated by the fact that

PHYSICAL REVIEW B 81, 224107 (2010)

understanding the microscopic mechanisms driving micro-
structural evolution, and matching simulations to experi-
ment, requires modeling particular microscopic realizations
of evolving defect structures, like those observed by in situ
electron microscopy. Indeed, certain properties of an irradi-
ated material, for example, its fracture toughness or thermal
conductivity, depend on the statistical characteristics of
irradiation-induced microstructure involving many defects
and dislocations, and hence represent self-averaging quanti-
ties. At the same time, validating a microstructural evolution
model requires understanding the dynamics of interaction be-
tween radiation defects, and comparing the results of simu-
lations with local experimental observations, often involving
only a few (e.g., two or three) defects, where no statistical
ensemble averaging is possible.

Bearing this in mind, in the approach described below we
treat defects as interacting objects satisfying a set of linked
Langevin equations of motion. It is known that in terms of
ensemble averaged quantities, solutions of linked Langevin
equations in the strong friction (overdamped) limit are
equivalent to the solutions of a multidimensional diffusion
equation,’?33 and hence they are equivalent to solutions
found using kinetic Monte Carlo simulations.”’” The advan-
tage offered by the Langevin-equations-based treatment is
that integrating stochastic differential equations for an en-
semble of interacting objects is computationally no more dif-
ficult than integrating them for an ensemble of noninteract-
ing particles.

There are further obvious computational advantages of-
fered by the similarity between the Langevin and the MD
integration algorithms, like the ease of parallelizing the
method. Also, by solving the Langevin equations we explic-
itly follow the trajectories of migrating defects’**> corre-
sponding to the initial conditions defined by experimental
observations whereas kinetic Monte Carlo algorithm?”3! op-
erates on the logarithmic time scale, which speeds up calcu-
lations but makes it more difficult to compare simulations
with observations. Hence, the modes of microstructural evo-
lution predicted by the Langevin dynamics model can be
matched and verified explicitly against real-time in situ elec-
tron microscope experiments. Furthermore, the speed of the
integration algorithm for Langevin dynamics is entirely in-
dependent of whether the defects migrate three or one di-
mensionally. One can easily apply the method to the treat-
ment of either limit, with the potential for generalization to
modeling reactions between the defects and between dislo-
cations and the defects.

The paper is organized as follows. We start from giving a
brief summary of in situ electron microscope observations,
which show evidence of the significant part played by the
interaction between mobile radiation effects. We then intro-
duce the simulation method, describe how to treat long-range
interactions between defects (the “Langevin particles”), and
compare the simulated trajectories of defects with experi-
mental observations. Finally, we discuss effects of interac-
tion between mobile radiation defects and pinning centers
(for example, vacancy clusters), and show that the presence
of pinning centers explains the unusual trajectories of migra-
tion of defects observed in in situ electron microscope ex-
periments on ion-irradiated materials.*~¢
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II. BROWNIAN MOTION OF INTERACTING
NANODISLOCATION LOOPS: IN SITU ELECTRON
MICROSCOPE OBSERVATIONS

In situ electron microscope observations show two dis-
tinctly different modes of microstructural evolution, and two
different types of defect dynamics, the occurrence of which
depends on the type of particles irradiating the material. The
ultrahigh-energy electron irradiation'=> produces individual
Frenkel pairs of vacancies and self-interstitial atoms, and the
resulting supersaturation of defects gives rise to the nucle-
ation and growth of small self-interstitial dislocation loops
and vacancy clusters. Ion-beam irradiation*~® generates col-
lision cascades in which self-interstitial and vacancy defects
form clusters as cascades cool down and resolidify.!!-16-3

In the case of ultrahigh-energy electron irradiation,
99.998 wt % pure bee Fe (the metal most extensively stud-
ied by in situ microscopy so far) was used for making speci-
mens. The impurity content characterizing the specimens is
fully described in the supporting online material for Ref. 2.
The specimens were rolled into 0.08-mm-thick sheets, which
were preannealed at 1073 K for 2 h in a hydrogen atmo-
sphere, and electrochemically polished. The orientation of

the specimen surfaces was set close to (11_0) to minimize the
image force acting on loops whose Burgers vectors b, defin-
ing the directions in which the loops migrate, were 1/2[111]

or 1/2[111]. High-energy electron irradiation was performed
in an ultrahigh-voltage electron microscope H-3000 (Hita-
chi) operated at an acceleration voltage of 2000 kV. The
dynamics of formation and migration of small dislocation
loops was observed under electron irradiation. In another set
of experiments, the dynamics of thermal Brownian motion of
nanoscale dislocation loops initially produced by electron ir-
radiation was observed using sample heating in an analytical
H-800 (Hitachi) microscope operated at a relatively low ac-
celeration voltage of 200 kV, at which no further radiation
damage is produced. We note here that observing the migra-
tion of dislocation loops in an electron microscope inevitably
gives rise to the electron beam itself affecting the observed
mobility of the loops.?”3 This electron-beam effect does not
significantly affect experimental observations described in
this paper, making it possible to attribute the observed mo-
bility of dislocation loops to thermal activation.

Specimen heating was performed following ultrahigh-
energy electron irradiation at temperatures ranging from 110
to 200 K. The specimens were heated to temperatures in the
range between 290 and 850 K. Bright-field imaging was used
for areas of the specimen where thickness varied between
100 to 300 nm. The observation axis was approximately

[110] for diffraction g vectors 110 and 002, with the devia-
tion parameter from the exact Bragg condition s ranging
from 0.02 to 0.06 nm~'. Images were recorded using a sili-
con intensifier target camera with the time resolution of 1/30
s. It was possible to observe dislocation loops with diameters
greater than a few nanometers.

In situ electron microscope observations show that the
dynamics of motion of loops is visibly affected by elastic
interactions between the loops. For example, Fig. 1 shows
that three mobile prismatic dislocation loops formed in pure
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FIG. 1. (Color online) A sequence of in situ electron microscope
snapshots recorded for g=002 diffraction conditions at a 200 kV
accelerating voltage, and showing the evolution of an ensemble of
three prismatic a/2[111] dislocation loops formed in nominally
pure iron by ultrahigh-voltage electron irradiation prior to the in situ
experiment. The loops perform one-dimensional Brownian motion
in the direction parallel to their Burgers vector at 7=673 K. The
loop diameters, from left to right, are 6, 6.5, and 6 nm. The pro-
jected separation between the glide cylinders for the loops on the
left (L) and in the center (C) is 23 nm, and the projected separation
between the glide cylinders for the loops in the center (C) and on
the right (R) is 41 nm.

iron under ultrahigh-voltage electron irradiation, and initially
separated by large distances, perform Brownian motion
along their glide cylinders, and eventually approach each
other closely enough so that the dynamics of loops becomes
correlated due to elastic interaction between the loops. The
loops eventually form a raft that migrates as a single entity,
then grows and gradually coalesces into a single loop.

Other examples found by in sifu electron microscope ex-
amination of specimens irradiated by ultrahigh-energy elec-
trons show processes of capture of a mobile loop by the
elastic field of another loop, followed by the coalescence of
the loops. In general, the trend seen in in situ electron mi-
croscope observations of defects migrating in high-purity
iron, and illustrated in Fig. 2, is that the motion of the defects
is highly correlated, and the typical Brownian trajectories of
defects follow each other on a ~0.1 s time scale.

For ion-beam irradiation experiments, we used high-
purity Fe (containing ~1 ppm carbon, <5 ppm nitrogen,
<10 ppm silicon, and very small quantities of other impu-
rities, which is not dissimilar to the impurity content of the
specimens used for ultrahigh-energy electron irradiation ex-
periments). The cold-rolled as-received material was an-
nealed in vacuum at 1073 K for an hour followed by slow
cooling. After this treatment all specimens had a simple fer-
ritic microstructure with a low dislocation density. Thin foils
were prepared by electropolishing and irradiated with 100 or
150 keV Fe* and Xe* ions at room temperature, and at 573
and 773 K in the Argonne IVEM-Tandem Facility.*® The
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FIG. 2. (Color online) Trajectories of motion for two interacting
d=16 nm and d=15 nm prismatic a/2(111) dislocation loops mi-
grating in pure iron foil at 7=650 K. The thickness of the foil is
approximately 250 nm and the glide cylinders of the loops are 37
nm apart, as measured using stereo microscopy. The loops were
formed by ultrahigh-energy electron irradiation followed by speci-
men annealing.

microscope was operated at 200 keV, below the threshold for
knock-on radiation damage in Fe. Dynamic observations fol-
lowed the evolution of damage over doses up to 13 dpa,
according to a SRIM calculation with a displacement energy
of 24 eV. Irradiations were paused from time to time to allow
detailed characterization of microstructures using a number
of diffraction-contrast techniques.*~® Similar detailed charac-
terization was performed at the end of the irradiation, after
the specimens irradiated at elevated temperatures had cooled
to room temperature.

The pattern of migration of nanodislocation loops in ion-
irradiated ultrahigh-purity (uhp) iron is surprisingly different
from that of loops migrating in uhp iron irradiated with
ultrahigh-energy electrons (see Fig. 2). This fact was high-
lighted in Ref. 40 (see Fig. 3 of Ref. 40, which shows how
different are the observed and simulated trajectories of defect
migration), and was noted in Refs. 4 and 6.

Figure 3 shows trajectories of migration for two nanodis-
location loops in ion-irradiated iron. The trajectories exhibit
a significant degree of correlation, similarly to the case of
three migrating loops illustrated in Fig. 1. However, as op-
posed to the case of electron-irradiated iron, the trajectories
of loops migrating in ion-irradiated iron do not look like the
characteristic “fractal” Brownian trajectories shown in Fig. 2
and predicted by MD simulations.'>35 The trajectories
showed in Fig. 3 demonstrate that the motion of loops con-
sists of a series of relatively infrequent long-range “instanta-
neous” jumps, separated by extended intervals of time, dur-
ing which the loops are pinned at certain points in the
specimen and remain effectively immobile. Here we draw
the attention of the reader again to the large difference be-
tween the time scales characterizing experimental observa-
tions (~20 s for the examples shown in Figs. 2 and 3) and
MD simulations (~10~° s for the cases investigated in Refs.
15 and 35).

In subsequent sections of the paper, we show that the
occurrence of correlated motion of loops, and the unusual
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FIG. 3. (Color online) Experimentally observed trajectories of
migration for two prismatic b=a/2[111] dislocation loops, both of
similar size d=~4 nm, performing thermally activated Brownian
motion in pure iron after the specimen was irradiated with 150 keV
Fe* ions to a dose of ~0.65 dpa. The projected distance between
the glide cylinders of the loops is 12 nm. The temperature of the
specimen is 673 K. Note the significant degree of correlation be-
tween the trajectories of motion of the loops shown in this figure.

shape of the trajectories of loops observed in experiments on
ion-irradiated materials, can be explained if we assume that
individual loops interact with other loops, and that they also
interact with the “invisible” elements of microstructure, for
example, small vacancy clusters formed in collision cascades
generated by ion irradiation.*!

We first investigate effects of migration of interacting
loops using MD simulations, and then generalize the treat-
ment to the case of Langevin dynamics of interacting de-
fects. Using the latter method, we are able to match the time
scales of experimental observations and simulations over in-
tervals of time many orders of magnitude longer than those
accessible to MD simulations. By assuming that loops inter-
act via long-range elastic forces, we simulate the trajectories
of correlated Brownian motion of the loops, and show that
those also match experimental observations. Finally, using
the isotropic elasticity expressions for the energy of interac-
tion between the self-interstitial atom loops and vacancy
clusters, we are able to simulate the unusual “pinned”
Brownian trajectories of loops found experimentally in ion-
irradiated iron and shown in Fig. 3.

III. A MOLECULAR DYNAMICS MODEL
FOR INTERACTING NANODISLOCATION LOOPS

We start our analysis with an MD investigation of how
two small prismatic dislocation loops migrate if the glide
cylinders of the loops are in close proximity to each other.
Simulations were performed using the recent “magnetic” in-
teratomic potential*? for a-Fe. Two 61-SIA (self-interstitial
atom) %(111) dislocation loops were inserted into a regular
30X20%X 60 cell [in the (x,y,z)=([110],[112],[111]) co-
ordinate system] containing 216 000 atoms with periodic
boundary conditions in all coordinate directions. These two
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FIG. 4. (Color online) Trajectories of motion, simulated
using molecular dynamics, for two interacting b=a/2[111] 61-atom
(d=1.8 nm) prismatic dislocation loops migrating in iron at
T=500 K. The centers of loops are separated in the [110] direction
by the distance [~40.5 A.

18.7 A diameter loops were inserted with their centers sepa-
rated by /~40.5 A in the [110] direction but with the same
position (y;—y,~0) along the [112] direction. This [110]
separation is comparable with the size of the loops them-
selves but is still large enough to ensure that there is no
overlap between the core regions of the edge dislocations
forming the loops so that all the interaction effects found in
simulations are attributable to the long-range elastic fields of
the loops. Note that this ~4 nm interaction distance in x

=[110] is smaller than the separation between the loops
through the x-direction periodic boundary (=8 nm), which
means that the “internal” 4 nm elastic interactions dominate.
Each loop was given a random initial position along its re-
spective z=[111] glide cylinder.

After relaxing (quenching to 0 K) the simulation cell, a
sequence of 5 ps finite-temperature simulations were per-
formed at 100 K intervals to bring the system up to the 500
K temperature corresponding to the result presented here.
The evolution of the two-loop system was simulated for a 3
ns interval at 500 K, during which the positions of the loops
were measured every 1 ps. The resulting one-dimensional
[111] trajectories of the loops generated during this simula-
tion are shown in Figs. 4 and 5. Following a method similar
to that described in Refs. 34 and 35, we calculate separate
diffusion coefficients D for the motion of the loops, and find
a value of approximately 5% 10° nm? s~! for both loops.

There are two aspects of MD simulations described here
that are difficult to relate to experimental observations (see
Figs. 1 and 3). The difference between the time scales of MD
simulations and experimental observations is on the order of
10°. Also, the diffusion coefficients for the loops derived
from MD simulations are many orders of magnitude larger
than those found experimentally.”> Hence, we do not attempt
to directly compare MD simulations and experimental obser-
vations, and instead focus on the qualitative aspects of simu-
lations that offer some insight into the origin of the effects
observed experimentally.
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FIG. 5. (Color online) Trajectories of motion for interacting
loops simulated using molecular dynamics and shown in Fig. 4 but
plotted for a shorter interval of time. Initially the loops are 5 nm
apart in the direction of their Burgers vector. Elastic interaction
brings the loops together at 7=~0.17 ns. After this moment, Brown-
ian motion of the two loops becomes strongly correlated, the loops
form a raft and migrate almost as a single entity.

The most notable feature seen in the simulations is the
correlated nature of the migration of the loops. Figures 4 and
5 show that although initially the loops were separated, in the
direction parallel to their Burgers vector (which is the direc-
tion of one-dimensional Brownian motion of the loops), by a
distance of approximately 5 nm, after just 170 ps the random
Brownian motion of the loops became strongly correlated
(see Fig. 5), and the trajectories of the loops during the rest
of the time interval spanned by the simulation closely fol-
lowed each other. The strongly correlated nature of Brown-
ian motion of the loops found in MD simulations may appear
exaggerated in comparison with experimental observations,
where loops would occasionally drift apart and separate.
However we note that the distance between the glide cylin-
ders set up in MD simulations is almost an order of magni-
tude smaller in comparison with the distances between the
glide cylinders for the loops seen in Fig. 1, and hence the
strength of elastic interaction between the loops in the MD
simulations is much larger than in observations illustrated in
Fig. 1.

The main conclusion that we derive from these simula-
tions, which illustrate the effect of interaction between the
loops on their Brownian motion, is the emergence of a col-
lective mode of motion, where trajectories of migration of
loops, while exhibiting a considerable degree of randomness,
follow each other over an extended period of time. We now
show how this conclusion can be generalized and extended
to the case of many interacting loops and much longer time
scales through the use of the Langevin treatment of dynamics
of loops.

IV. RANDOM THERMAL FORCE ACTING
ON A DISLOCATION LOOP

The fact that migration of individual self-interstitial crow-
dion defects and small dislocation loops could be rational-
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FIG. 6. (Color online) The equilibrium structure of a small dis-
location loop formed by the agglomeration of 37 self-interstitial
atoms on a (111) habit plane in bee iron (Refs. 41 and 45). The
Burgers vector of the loop is b=a/2[111], where a is the lattice
constant. Only those atoms are shown, the potential energy of
which exceeds by 0.05 eV the potential energy of an atom in a
perfect lattice. The viewing direction is slightly off the (111) axis,
which is parallel to the Burgers vector of the loop.

ized using a Langevin-equation-based treatment was dis-
cussed in Refs. 34, 35, 37, and 43. In this section we prove,
using the multistring Frenkel-Kontorova model,** that the
center of mass of a loop moves under the action of random
thermal force resulting from thermal vibrations of atoms at
the perimeter of the loop, or, in other words, that a small
dislocation loop can be treated as a particle, the coordinate of
which satisfies the Langevin equation of motion. Figure 6
shows the structure of a 37-self-interstitial-atom dislocation
loop formed in bcc iron by the agglomeration of self-
interstitial atoms on the (111) habit plane. The Burgers vec-
tor of the loop, the direction of which is parallel to the
atomic strings shown in Fig. 6, is b=a/2[111]. Each atomic
string, depending on its position in the loop, is described by
the profile of atomic displacements in the direction parallel
to the Burgers vector Ufj[n— Z;(#)/b], where n is the index of
an atom in a string, and j is the two-dimensional index of a
string in the plane normal to the plane of the loop.*** Z;(1)
is the time-dependent position of the center of the jth atomic
displacement profile, which in the case of a single self-
interstitial atom defect (a crowdion) can be identified with
the position of the defect in the crystal lattice.

By following the method described in Refs. 34, 35, and
37, we find a set of coupled equations of motion for the
coordinates of centers of displacement profiles associated
with atomic strings running in a {(111)-type direction,

d*Z(1)
dr*

m = 4mw22 [(I)n,j(t) - (I)n,j+h(t)]
nh
><sin2{ ;—T{uj[n ~ Z{(1)/a]

—Unln - Zj+h(t)/a]}} . (1)
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Here ®; (1) denotes the field of random (thermal) displace-
ments of atoms in the strings, as opposed to the regular field
of time-dependent coordinate Z;(¢), which describes migra-
tion of the center of an atomic displacement profile as a
whole. The number of equations in the set (1) equals the
number of interstitial atoms in the loop. The strings forming
the lattice surrounding the loop are assumed to be unaffected
by the elastic field of the loop [in other words, for the strings
surrounding the loop, Z;(r)=0]. However, atoms in the lat-
tice surrounding the loop still undergo random thermal mo-
tion and interact with atoms in the strings on the perimeter of
the loop.

The position of the center of mass of the loop is given by

20=-3 70, @
s i

where N; is the number of atomic strings in the loop (for
example, for the case shown in Fig. 6, N;=37). Performing
the summation over all the strings j forming the loop, and
noting that random forces acting on the neighboring strings
enter the sum with opposite signs, and hence fully compen-
sate each other, we find that the equation of motion for the
center of mass of a loop only contains terms describing ther-
mal forces acting on strings situated at the perimeter of the
loop,

d*Z
" d 2(t) = 4mw22 2 [q)n,P(t) - ‘Dn,P+h'(f)]
t n,P h'
Xsin2{ gul,[n - Zp(t)/a]}. 3)

Here the summation over P is performed over strings situ-
ated at the perimeter of the loop, where fluctuating phonon
forces are not compensated, and summation over h’ is per-
formed over strings in the lattice around the dislocation loop.
The right-hand side of Eq. (3) equals the projection (on the
direction of the Burgers vector of the loop) of the total time-
dependent random phonon force f(z) acting on the loop. It is
known that a random force acting on a particle results in the
particle performing Brownian motion. At the same time, ac-
cording to the fluctuation-dissipation theorem, the presence
of randomly fluctuating forces give rise to thermal friction.*

Applying the Einstein model for thermal vibrations of at-
oms to Eq. (3),3* we find that the correlation function of
random force acting on a loop is proportional to the length L
of the perimeter of the loop,

fOf) =28t ~1") ~ Lot -1"). (4)

Using the fluctuation-dissipation theorem, we find the coef-
ficient of thermal friction for the loop,3*

f2

Y (5)

T 2k, T
The diffusion coefficient D is related to the friction coeffi-
cient y via D=kgT/ y. This equation shows that the diffusion
coefficient for a loop treated as a function of its size varies
approximately as
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D~L", (6)

where L is the perimeter of the loop. In what follows, we use
this relation to evaluate the diffusion coefficients for loops of
various sizes by extrapolating the experimentally measured
values for diffusion coefficients found for a loop of a certain
size.>? We note that the dependence of the diffusion coeffi-
cient for the center of mass of the loop on the length of the
perimeter of the loop predicted by the Frenkel-Kontorova
model described above agrees well with results of MD
simulations,!® where it was found that the diffusion coeffi-
cient depends on the total number of self-interstitial atoms
forming the loop N; as D~N; 064" which is close to D
~ N, "% expected from Eq. (6) in the limit of large loop size.
Experlmental observations are also broadly in agreement
with the above D~ L™! law.>?

We note that even in a pure material the diffusion coeffi-
cient for a loop is strongly influenced by the presence of
impurities, which form a mobile “cloud” around the loop.
The presence of this mobile atmosphere of impurities renor-
malizes the mobility of a loop, strongly increasing the effec-
tive activation energy for migration in comparison with the
estimates derived from MD simulations.?>?

V. A LANGEVIN DYNAMICS MODEL FOR BROWNIAN
MOTION OF INTERACTING NANODISLOCATION
LOOPS

In the previous section, we showed that the center of mass
of a dislocation loop moves under the action of an effective
random force associated with the thermal motion of atoms in
the material. This effective fluctuating thermal force induces
stochastic Brownian motion of loops observed in in situ elec-
tron microscope experiments!'~® and in MD simulations.!%-1>
Similarly, two nanodislocation loops formed in close prox-
imity of each other, and interacting via long-range elastic
forces, perform correlated Brownian motion, as illustrated in
Figs. 4 and 5.

The diffusion equation for a system of N interacting par-
ticles has the form*’

P g PP 1 [aul[aopP
—=2D; st =l sl D
7/ — arfart  kgT| ar || ort

where a, B=(x,y,z), P=P(r,,r,,...,ry) is a N-dimensional
probability distribution function, Df‘ﬁ is the diffusion matrix
for particle 7, and 7 is the absolute temperature. The function
U=U(r;,r,,...,ry) describes the interaction between the
particles, and the gradient of this function F{'=-dU/dr}
gives the a component of the force acting on particle i.

In the limit of strongly anisotropic one-dimensional diffu-
sion, describing random thermal glide of glissile nanodislo-
cation loops, Eq. (7) can be simplified as

op (&ZP 1 {au” ])
- = Di . (8)
17/ S— 922 kgT| 9z || 9z

Here D, is the diffusion coefficient for loop i, and z; is the
projection of the center of mass of the loop on the direction
of its Brownian motion. We assume that all the loops have
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the same Burgers vector, which defines the orientation of the
glide cylinders and the direction of Brownian motion for the
loops.

Equation (8) describes a relatively simple model for an
ensemble of interacting Brownian particles, which is even
simpler than models considered previously in the context of
Brownian dynamics of particles suspended in a fluid and
interacting via hydrodynamic forces.*®* In principle, the
evolution of this model could be investigated using kinetic
Monte Carlo simulations, following the method developed
by Hudson et al.”’” who introduced hopping probabilities bi-
ased by long-range elastic fields. However, since implement-
ing this approach requires synchronizing the Monte Carlo
events, which presents a potentially difficult issue for paral-
lelizing the kinetic Monte Carlo algorithm,3! here we adopt a
different strategy and instead focus on a set of differential
equations for the coordinates of the loops. To achieve this,
we map Eq. (8) onto a set of N coupled overdamped Lange-
vin equations of the form

dz; D; oU
0}

i=1,2,...,N, 9)
dt kgT 9z;

where &(r) are random variables satisfying the condition

E(NE(t)=6(t—1") and U(zy,2;,....2y) is the energy of in-
teraction between the loops. The energy of interaction be-
tween the loops is, of course, also a function of the position
of the loops in the (x,y) plane. However, since the loops do
not change their x and y coordinates, we omit explicit refer-
ence to these degrees of freedom.

The mathematical equivalence between the overdamped
Langevin Eq. (9) and the many-body diffusion Eq. (8) exists
independently of the microscopic nature of processes respon-
sible for the diffusion of loops>>! since the only parameters
entering both equations are the diffusion coefficients D; for
the particles. Hence statistical simulations of trajectories of
loops by means of the Langevin Eq. (9) are fully equivalent
to finding a time-dependent ensemble-averaged solution of a
many-body diffusion Eq. (8). The significant advantage of-
fered by the Langevin equation simulation approach is that
by solving these equations we could follow the trajectories of
the defects, and compare them with the trajectories observed
by in situ electron microscopy. This contrasts with the solu-
tions of the many-body diffusion equation, which describe
the evolving microstructure in the statistical ensemble sense.
For example, solutions of a many-body diffusion equations
cannot be directly compared with the trajectories of migrat-
ing loops observed in in situ experiments.

A. Interaction between an interstitial loop
and a vacancy cluster

To investigate the role played by the long-range interac-
tion between an interstitial loop and an immobile pinning
center (a vacancy cluster or an impurity), we use expressions
derived from the theory of elasticity. In the isotropic approxi-
mation of the theory of elasticity, the energy of interaction
between a loop and a spherical inclusion is?
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UG) AVb 1+v 1

7)=—

3T Ml—V\e"zz+(R+r)2
[Rz—rz—z2E< 4rR )
(R-r)?+7 2+ (R+1)?

* Z2+R+1?) |

Here R is the radius of the loop, functions K(k) and E(k) are,
respectively, the complete elliptic integrals of the first and
second kind, and r and z are the cylindrical coordinates, the
origin of which corresponds to the center of the dislocation
loop. AV is the relaxation volume (a quantity which has
negative sign in the case of a vacancy or a vacancy cluster),
b is the Burgers vector of the loop, b=|b ,and u and v are
the shear modulus of the material and the Poisson ratio.

Although, in principle, Eq. (10) applies equally to an in-
terstitial and a vacancy loop (where in the latter case, the
energy of interaction has the opposite sign), the fact that a
vacancy loop is a metastable configuration that has higher
energy than a spherical vacancy cluster (a void)* leads to
interstitial loops dominating the observed microstructure of
an irradiated material.® In what follows we only consider the
case of an interstitial dislocation loop that is attracted to a
vacancy cluster situated at the axis of the glide cylinder for
the loop. In the limit of large separation between the loop
and the inclusion r>R, z> R, functions K(k) and E(k) can
be expanded in the Taylor series as (note that the definition
of these functions differs from that given in Abramovitz and
Stegun’s handbook>?),

T K 9kt
Kk)=~={1+—+—=---],

2 4 64

w B3k )
Ek)=~—|1-—=——---], 11
() 2( 4 64 (1)

resulting in the far field form of Eq. (10),

() = A_Vb 1+VR21—3C()829
I TR B

(12)

where z/l=cos 0, r/I=sin 6, and I=\r*+z%.

Equation (10) acquires a particularly simple form for r
=0, corresponding to the case where the inclusion is situated
at the axis of the glide cylinder for the loop,

U()_A_V l+v @R’
R VL R I

(13)

This equation shows that the range of the force field describ-
ing elastic interaction between a dislocation loop and an in-
clusion is of the same order of magnitude as the loop radius
R.

Figures 7 and 8 show examples of the potential-energy
curves describing elastic interactions between a dislocation
loop and a single vacancy or a vacancy cluster. The discrete
points are evaluated using atomistic total-energy conjugate
gradient minimization for a 313-self-interstitial atom loop
interacting with a single vacancy situated at the center of the
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FIG. 7. Energy of interaction between a 313-atom (R
=2.2 nm) self-interstitial b=a/2(111) dislocation loop and a va-
cancy shown as a function of separation z between the center of the
loop and the vacancy. The vacancy is situated at the axis of the
glide cylinder r=0. The solid line follows Eq. (10) for AV
=-5 A3 1=0.29, and ©u=82%10° Pa.

glide cylinder, or a 10-vacancy cluster situated at the center
of the glide cylinder. The solid curves were calculated using
Eq. (10) and isotropic elastic parameters for pure iron. The
effective formation volumes AV for a single vacancy and a
vacancy cluster were chosen to fit the MD simulation data.
These values are broadly in agreement with the literature
data on formation volumes of vacancy defects,”*>5 which
themselves are subject to considerable uncertainty and fluc-
tuations. We see that, depending on the formation volume of
a vacancy defect, the magnitude of interaction between a
self-interstitial loop and a vacancy defect U(z) varies be-
tween 0.2 and 1 eV. The width of the potential wells shown
in Figs. 7 and 8 are comparable with the diameter of the
dislocation loop.

L0.2 e ............

B ™MD

Energy of interaction (eV)

S04 freeeeen N elasticity |
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FIG. 8. Energy of interaction between a 313-atom (R

=2.2 nm) self-interstitial b=a/2(111) dislocation loop and a 10-
vacancy cluster shown as a function of separation z between the
center of the loop and the cluster. The vacancy cluster is situated at
the axis of the glide cylinder r=0. The solid line follows Eq. (10)
for AV=-25 A3, ¥=0.29, and u=82X10° Pa.
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FIG. 9. Diagram illustrating the notations used in Egs. (14) and
(19).
B. Interaction between two dislocation loops

The energy of interaction between two circular dislocation
loops with parallel Burgers vectors b, and b, is given by [see
Egs. (4)—(23) of Hirth and Lothe’®]

— ubiby de(ﬁljzwdd’z{ [P(¢1)rp(¢2)]

C4m(1-v) ), 0
L0l P(d’z)]} 14)

Here r=1+p(¢,)—p(¢,) is a vector connecting points situ-
ated on the perimeter of the two loops, as shown in Fig. 9,
and p(¢,) and p(¢,) are two radial vectors in the habit
planes of the loops.

In the far field region, where |p(¢,)—p(¢,)| <[1|, we find

1 3(p-D) 3p° lﬂpJV+

P +pP BT P 25T 2r :
(15)

where p=p(p;)—p(¢p,), and the equation for the energy ac-
quires the form

~ Mblbz 2 2 5 )
=7 de, dey[(1"+21- p+ p°)(p; - p2)
m(1-v)J, 0
1 3(p-1) 3p?
= ([1+p]-p)([1+p] 'Pz)]{l_g - %_ 2_1;5
15(p - 1)?
+#+---]. (16)

Noting that

2 21
J d¢1J deé(p; - p)(py-D(py-1) =A A, sin 6,

0 0

2m 2m
f depy f de(py - D*(ps - 1= A AL sin* 0,
0 0
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2 21
f d@f dey(p; - p))* =24,A,, (17)
0 0

where Alzwp% and A2=7'rp§ are the respective areas of the
loops, we find

bb, AA
_ &1—32(8 — 24 sin® 6+ 15 sin* 6)
4da(l-v) [
bb, AA
= u%(l +6 cos® - 15 cos* 6). (18)
dm(l-v) I

The expression for the energy of interaction between two
circular loops [Eq. (18)] was derived by Foreman and
Eshelby’ using the isotropic elasticity approximation, and
reported in the literature by Barnes.’® The form of this equa-
tion is similar to that of Eq. (12). In both cases, the energy
varies as a function of distance between the defects as U
~173. We also see that the product of the Burgers vector and
the area of the loop plays the part of the effective formation
volume. Unsurprisingly, the characteristic scale of interaction
energies (a fraction of an electron volt) is similar in both
cases. For practical calculations, it is convenient to express
formula (18) in terms of two variables, the distance d be-
tween the glide cylinders of the loops and the distance z
between the habit planes of the loops. In terms of these vari-
ables, Eq. (18) can be written in the form

67° 15z*
I+ = -5
(*+d?) (+dY)

(19)

pmbiby  AA,
47(1 - v) (> +d*)>?

U(z,d) =~

Our analysis of experimental data on the statistics of migra-
tion of dislocation loops suggests that the Foreman-Eshelby
expression (18) overestimates, at least for the case of the b
=a/2(111) loops considered here, the height of potential bar-
riers for reaction between the loops. The fact that Egs. (14)
and (18) for the energy of interaction between the loops may
not be accurate is not surprising since, for example, it is
known that even at room temperature, iron is elastically
anisotropic.”® Hence the isotropic elasticity formulas (14)
and (18) should be treated as estimates for the strength of
interaction as well as for the functional form for the law of
interaction between the loops. The use of the isotropic elas-
ticity approximation (where the energy of interaction be-
tween the loops depends only on the relative orientation of
the Burgers vectors of the loops and the relative positions of
the loops, and is independent of the orientation of the Bur-
gers vector of the loop relative to the crystal lattice) has the
advantage that the functional form for the energy of interac-
tion between the loops is sufficiently simple, to enable fast
evaluation of terms in the right-hand side of Eq. (9). The
elastic anisotropy approximation does not change the general
functional form for the energy of interaction between the
loops, which at large distances between the loops varies as
(distance)™ but it introduces an element of complexity in the
angular dependence of the energy of interaction, as it was
shown for the full anisotropic elasticity case by Willis.>
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FIG. 10. (Color online) Energy of interaction between two cir-
cular (R=9.4 A) self-interstitial b=a/2(111) dislocation loops in
iron evaluated using the “exact” isotropic elasticity expression (14),
the Foreman-Eshelby expression (18), and the low-barrier model
(20), where the curve describing interaction between the loops as a
function z exhibits low potential barriers for reaction between the
loops. The elasticity calculations were performed assuming v
=0.29 and u=82X%10° Pa.

In this study, together with the original Foreman-Eshelby
expression (18), we also use an alternative form, motivated
by experiment, for the energy of interaction (the “low-barrier
model”), which we derive from Eq. (18) by modifying some
of its numerical coefficients,

ubb,  AA, 13
T 4n(1-v) (2 +d»?10
JLloe2 115
4(2+d 4+

Ulz,d) =

X

(20)

A curve calculated using Eq. (20) is shown in Fig. 10 to-
gether with the curves evaluated using Eqgs. (14) and (18).
Equation (20), where the energy of interaction between the
loops is independent of the orientation of their Burgers vec-
tors with respect to the crystal lattice, still refers to the iso-
tropic elasticity approximation.

We note that the inclusion of anisotropic elasticity effects
does not alter the general functional form of the laws de-
scribing interaction between the defects. Since in this work,
we focus on the generic new features of Brownian motion of
defects associated with the fact that defects interact, we do
not specifically investigate the role played by the anisotropic
elasticity effects.

In the next two sections of the paper, we apply the Lange-
vin dynamics method to the treatment of migration of two
and three interacting loops, and also investigate Brownian
motion of an individual loop interacting with statistically dis-
tributed vacancy clusters.
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VI. CORRELATED BROWNIAN MOTION
OF NANODISLOCATION LOOPS

In this section, we focus attention on solving Eq. (9) and
on investigating the part played by the interaction between
migrating nanodislocation loops. We find that the interaction
between migrating loops, and between loops and vacancy
clusters, acting as pinning centers for the loops, gives rise to
striking deviations in the statistics of motion of loops from
the statistics of “free” Brownian motion investigated in the
past by MD simulations'®'> and analyzed using interaction-
free Langevin dynamics equations.’*3%3743 Also, the Lange-
vin dynamics simulations described below use the effective
values of diffusion coefficients, derived from experimental
observations for freely migrating loops, which take into ac-
count the presence of intrinsic impurities.

We start by considering the case of two interacting b
=(a/2)(111) loops of diameters d;=16 nm and d,=15 nm
migrating in nominally pure iron at 7,=650 K. The diffu-
sion coefficients for the loops, derived from the values mea-
sured for a single loop, and scaled using the inverse perim-
eter length law [Eq. (6)] are D;=296 nm*s~! and D,
=315 nm? s7!. The glide cylinders of the loop are separated
by the distance /=37 nm. Using the Foreman-Eshelby ex-
pression (18), we see that the scale of elastic interaction be-
tween the loops in this case (the depth of the potential well
similar to that shown in Fig. 10) is on the order of -3 eV.
After taking into account the possible weakening of interac-
tion due to elastic anisotropy effects, we conclude that the
binding energy, holding the two loops together, is on the
order of E,~2 eV. Given that exp(—=E,/kT,) ~3 X 1071, it
is not surprising to see that in experiment the loops stay
together, migrating as two bound entities over a long period
of time, exceeding the entire duration of experimental obser-
vation ~80 s. Figure 11 illustrates this behavior, showing
the trajectories of the loops simulated by integrating the
coupled Langevin equations, and comparing them with tra-
jectories observed experimentally using in situ electron mi-
croscopy. In simulations and in observations we find a fairly
similar scale of fluctuations for the position of the center of
mass of the loops. Simulations also confirm that the strength
of elastic interaction is sufficient for holding the loops to-
gether as bound entities over the entire interval of time
spanned by the simulation (~20 s). Figure 12 shows simu-
lated trajectories of loops whose size and initial positions are
similar to that observed using in situ electron microscopy
and shown in Fig. 1. This case is more interesting and com-
plex. The loop seen on the right (R) is sufficiently far apart
from the loop in the center (C), and the binding energy be-
tween these two loops, evaluated using the Foreman-Eshelby
formula (18), is on the order of 0.06 eV. Simulations show, in
agreement with experiment, that this loop (R) is very weakly
bound to the other two, and is able to move almost freely. We
clearly see this trend already in the series of snapshots in Fig.
1, and now this observation is confirmed directly by simula-
tion. We see that the trajectory of loop R remains in the
vicinity of the other two loops for no longer that 50 s, and
then loop R gets detached from the other two, and continues
performing effectively free Brownian motion until the end of
the time interval spanned by the simulation.
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FIG. 11. (Color online) Comparison of trajectories of motion for
two interacting d=16 nm and d=15 nm prismatic b=a/2(111)
dislocation loops migrating in pure iron at 7=650 K. The glide
cylinders of the loops are 37 nm apart. The top figure shows the
trajectories of the two loops simulated using the Foreman-Eshelby
expression (18) for the energy of interaction between the loops. The
trajectories shown in the middle were simulated using Eq. (20). The
figure at the bottom shows the trajectories of the loops observed
experimentally using in situ electron microscopy.

On the other hand, the scale of elastic interactions binding
loops L and C together is on the order of 0.3 eV, which is
significantly greater than the energy of binding for loops C
and R. Figure 12 shows that not only is this energy sufficient
for capturing loop L, which comes in the field of view of the
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FIG. 12. (Color online) Simulated trajectories of Brownian mo-
tion for the three interacting dislocation loops shown in Fig. 1.
Indexes L, C, and R refer to the loops seen in Fig. 1 on the left, in
the center, and on the right. The trajectories were simulated using
the coupled Langevin equations of motion for the loops [Eq. (9)]
assuming that the energy of interaction between the loops is given
by formula (20). Simulations were performed for 7y=675 K.

microscope from a distant part of the specimen, and appears
only in the third snapshot shown in Fig. 1 but it is also
sufficiently strong for binding the loops together over the
entire interval of simulation spanning 200 s. It may appear
surprising that a binding energy as low as 0.3 eV can actually
hold the two migrating loops together over such a long in-
terval of time. Indeed, the Arrhenius exponential factor for
Ty=675 K and E,=0.3 eV is just exp(—E,/kzT) =~ 1073, and
the transition-state theory®®®! would predict that the two
loops should break apart on the nanosecond time scale. How-
ever, in the present case the prefactor derived from a
transition-state theory treatment®®®! does not apply, and in-
stead the rate of escape by diffusion from a potential well is
given by®?

) D
7~ Wexp(— EpkgT), (21)

where D is the effective diffusion coefficient and W is the
width of the potential well, which in the case of elastic in-
teraction is of the same order of magnitude as the effective
size of interacting dislocation loops. For D~ 10° nm?s~!
and W~ 10 nm, we find that the probability of the system of
two bound loops falling apart per unit time equals 7~5.7
X 1072 s7!. In other words, the two loops bound by the rela-
tively weak elastic forces are able to stay together as a single
entity for up to ~100 s. A direct simulation extending over a
much longer interval of time shows that for the case of three
interacting loops illustrated in Fig. 12 the bound state of the
two loops L and C remains stable on the time scale of
~1000 s, after which the loops separate. This relatively long
time scale of stability does not contradict our initial estimate
based on Eq. (21) since a direct Langevin simulation takes
into account the effect of the shape of the potential well on
the escape probability, not taken into account in formula (21)
derived for the case of a square well.®?
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To quantify the argument given above, we consider a set
of coupled Langevin equations for the two migrating and
interacting loops,

d D, dU(|z; -z
ﬂ:-—1M+\"’2*D1§1(Z),

dt kgT %4

d D, dU(|z1 -z [

do__ DyoUa-zb)  om o

dt — kgT 9z,

Introducing new independent variables z=z,—z, and Z
=(D,z,+D,z,)/(D,+D,), we transform Eq. (22) as

P —

dz —_ MM +\2(Dy + D,)&,(1)

dt kgT
dz DD,
—=1\/2——&1), 23
i D1+szz() (23)

where both &,(¢) and &,(7) are random &-correlated functions
of time 7, ie., &(1)E(1")=68(t—1") and &,()é,(t")=6(t-1").
According to the second of the two Egs. (23), the motion of
the effective diffusion-weighted “center of mass” of the
loops Z(t) can be separated from the relative motion of the
loops, described by their relative coordinate z(¢). This shows
that the correlated motion of loops seen in Figs. 11 and 12 is
the effect of trapping of loops by the attractive elastic inter-
action between the loops, which occurs in the moving frame
of the effective diffusion-weighted center of mass for the
system of two loops.

The position Z(¢) of the effective diffusion-weighted cen-
ter of mass of the system of two loops, on the other hand,
performs free Brownian motion entirely unaffected by the
interaction between the loops. The diffusion coefficient for
the position of the diffusion-weighted center of mass Z(),
according to the second of the two Egs. (23), is D,D,/(D,
+D,). We note an interesting fact that this diffusion coeffi-
cient, in the limit where one of the diffusion coefficients D,
or D, is significantly smaller than the other, equals the small-
est of the two, irrespective of the strength of interaction be-
tween the loops. This conclusion appears to be general, for
example, Brownian motion of a large ensemble of interacting
defects is controlled by the slowest moving particle in the
ensemble.

The loops can eventually separate from each other accord-
ing to Eq. (21) but the time scale on which this separation
occurs is fairly macroscopic. This conclusion agrees with
experimental observations shown in Fig. 1, and many other
observations of similar kind, which all exhibit extended in-
tervals of correlated motion of loops. The fact that the loops
become trapped and remain effectively immobile with re-
spect to each other over long periods of time, is significant
since this facilitates reactions between the loops, for ex-
ample, the coalescence of loops, or the formation of ex-
tended rafts of loops, also observed experimentally.'~¢

In this section, we showed that the relatively weak elastic
interactions between migrating nanodislocation loops are
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able to facilitate the formation of bound long-lived configu-
rations, where loops are trapped together and remain effec-
tively stationary in the moving center of mass frame. The
formation of these quasistable configurations increases the
probability of reaction between the loops and provides a sig-
nificant driving force for microstructural evolution, particu-
larly in the limit of high irradiation dose rate.

VII. TRAPPING OF MIGRATING LOOPS
BY VACANCY CLUSTERS

In the previous section, we investigated the effect of
trapping of two, or several, migrating dislocation loops
by their mutual elastic fields, which occurs in the moving
frame of the center of mass of the loops. In this section,
we investigate a similar effect, observed for ion-beam irra-
diation conditions,*~® where migrating dislocation loops are
trapped, in the laboratory frame, by immobile vacancy clus-
ters.

The assertion that trapping of migrating self-interstitial
loops occurs as a result of interaction between a loop and
vacancy clusters situated in the glide cylinder of the loop is
at this point a hypothesis, stimulated by the observation that
trajectories of motion of loops formed in electron- and ion-
irradiated iron are very different (see Figs. 2 and 3). If a
vacancy, or a vacancy cluster, approaches a self-interstitial
loop in the vicinity of its perimeter, the resulting annihilation
reaction gives rise to the loop changing its shape, and the
vacancy cluster disappearing. Similarly, the (repulsive) inter-
action between a loop and a vacancy cluster situated outside
the glide cylinder for the loop does not explain trapping
since the trajectories of migrating loops investigated for this
case by Hudson et al.?® resemble those shown in Fig. 2. The
fairly long (up to 10 s) time scales characterizing trapping
of defects found in observations, are difficult to explain
using the conventional transition-state theory argument®-¢!
that applies to processes occurring at atomic scale. Indeed,
assuming an attempt frequency of v*~ 10" Hz, for T,
=675 K we find that the binding energy required for trap-
ping a loop at a lattice site for 7~ 10 s is on the order of
E,~kgTy In(7*v*) =2 eV. This fairly high energy, compa-
rable with the formation energy for a vacancy in iron, could,
in principle, be attributed to interaction with complex stable
configurations involving carbon or nitrogen impurities.%
Even after noting the slightly different levels of purity of the
electron- and ion-irradiated samples, this still does not ex-
plain why these stable impurity complexes only form under
ion irradiation, and do not form under electron irradiation.
It is probably more natural to assume that ion irradiation,
producing small vacancy clusters in the core of collision cas-
cades, generates fine vacancy-cluster microstructures, inter-
acting with, and trapping, the mobile self-interstitial disloca-
tion loops.

The potential energy of interaction between a mobile loop
and a vacancy-cluster defect is shown in Fig. 8. The energy
scale characterizing interaction between the defects for the
case shown in this figure is less than 0.9 eV. The shape and
the energy scale of curves describing elastic interaction be-
tween a dislocation loop and an immobile vacancy cluster
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Position of the loop (nm)
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FIG. 13. (Color online) Three realizations for trajectories of
motion for a d=6 nm prismatic b=a/2(111) dislocation loop mi-
grating in pure iron at 7=675 K and interacting with statistically
distributed vacancy clusters. The diffusion coefficient for the mi-
grating loop is D=1875 nm? s~!. The three realizations of trajecto-
ries correspond to three different realization of the potential-energy
landscape, corresponding to three statistical realizations of the dis-
tribution of vacancy clusters in the material.

varies, according to Eq. (10), as a function of the size of the
loop, and the position of the vacancy cluster within the glide
cylinder of the loop. Hence it is expected that a nanoscale
loop migrating in a crystal containing vacancy defects would
move under the action of a field of randomly distributed
vacancy defects, which themselves may have randomly vary-
ing size. The fact that the location and the size of vacancy
defects fluctuate causes the “external” interaction potential
felt by a migrating self-interstitial loop to be a fluctuating
function of the position of the loop. For example, we can
represent the function U(z) for an individual loop, described
by a single Langevin equation and by a set of potential wells
of varying depth and width, distributed along the trajectory
of migration for the loop.

Figure 13 shows three examples of trajectories of migra-
tion of a single d=6 nm prismatic dislocation loop migrating
in pure iron and interacting with statistically distributed va-
cancy clusters. The effective potential energy of interaction,
corresponding to case 3 shown in Fig. 13, is shown in Fig.
14. The simulated trajectories of migration of the loop
closely resemble those shown in Figs. 3 and 15, and other
similar trajectories observed earlier.*®*! The similarity be-
tween the fairly characteristic shape of trajectories found in
simulations and in experimental observations, and the simi-
larity between the time scales characterizing the trapping
events, suggest that it is the elastic interaction between the
loops and vacancy clusters formed under cascade irradiation
that likely gives rise to the unusual statistics of motion (hop-
ping) of loops observed by in situ electron microscopy for
ion-irradiated materials. Such vacancy clusters remain al-
most invisible in electron microscope images.*! The statistics
of trapping and detrapping events, and transitions between
the trapping sites seen in Fig. 13 is in good agreement with
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FIG. 14. The effective potential energy U(z) of interaction be-
tween a mobile prismatic dislocation loop and statistically distrib-
uted vacancy clusters. The statistical realization of potential energy
shown in this figure corresponds to the trajectory labeled as case 3
in Fig. 13.

the estimated residence times given by Eq. (21). We there-
fore conclude that it is the combined effect of elastic inter-
action between the loops and the vacancy clusters, and
Brownian migration of the loops, that is likely responsible
for the unusual features of migration of loops in ion-
irradiated iron shown in Figs. 3 and 15. Effects associated
with elastic long-range interaction between migrating loops
themselves are responsible for the correlated motion of loops
frequently observed in high-energy electron irradiated iron,
which is shown in Fig. 1.

VIII. CONCLUSIONS

In this paper, we developed a Langevin dynamics model
and showed that the model is able to match real-time in situ
electron microscope observations of dynamics of migration
and interaction between mobile nanoscale defects. We find
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FIG. 15. (Color online) Examples of experimentally observed
trajectories of migration for prismatic a/2(111) dislocation loops of
various size in pure iron irradiated with 150 keV Fe* ions to a dose
of ~0.65 dpa. The temperature of the specimen is 673 K.
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that diffusion of defects combined with effects of elastic
interactions gives rise to the occurrence of new modes of
microstructural evolution, involving defect trapping and cor-
related motion of defects, which in turn strongly influence
the rates of reaction and coalescence between the defects.
The Langevin dynamics approach described above is able to
model the dynamics of motion of radiation defects on real-
istic time scales (10—-1000 s), matching those of experimental
observations, as opposed to MD simulations that are only
able to address time scales many orders of magnitude
shorter.

The Langevin dynamics model appears particularly suit-
able for treating the effects of interaction between the de-
fects, which so far have proved difficult to include in kinetic
Monte Carlo simulations while at the same time offering
advantages related to the computational implementation of
the algorithm. The method will likely prove effective for
interpreting experimental data on microstructures formed by
ion-beam irradiation of materials, where the high-dose-rate
effects and various phenomena related to long-range interac-

PHYSICAL REVIEW B 81, 224107 (2010)

tions between the defects, have so far proved difficult to
address using other modeling techniques and algorithms.
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