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Many anomalous properties of the normal and superconducting state of underdoped cuprates can be under-
stood qualitatively within a resonating valence bond spin liquid model which incorporates pseudogap forma-
tion below a quantum-critical point. It also contains band narrowing, and reduction in coherence, both effects
captured through Gutzwiller factors. The superconducting state is treated phenomenologically within the usual
BCS model with a d-wave superconducting gap. Here we solve a generalized gap equation which explicitly
incorporates the emergence of a pseudogap in the electronic structure. The magnitude of the pairing potential
is found to still be increasing as the bottom underdoped edge of the superconducting dome is approached.
Consequently, it is the Mott physics with implied reduction in metallicity which drives the superconducting
critical temperature 7, to zero. The superconducting gap contains many higher harmonics, is nonmonotonic as
the magnetic coherence length increases, although its amplitude remains finite everywhere on the Fermi
contour even in the antinodal direction where the pseudogap is largest. The superconducting gap to critical

temperature ratio increases strongly with decreasing doping.
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I. INTRODUCTION

The superconducting cuprates develop out of an antifer-
romagnetic Mott insulating state as hole doping (x) is in-
creased away from half-filling. The superconducting critical
temperature, 7,(x), as a function of x displays a domelike
behavior with T.(x) decaying on either side of an optimum
hole concentration x=x,,. While overdoped samples have
rather ordinary metallic properties, the underdoped region of
the phase diagram is anomalous. In particular, a pseudogap'
develops, one manifestation of which is a general reduction
in electronic density of states around the Fermi energy which
gets more pronounced with decreasing temperature and dop-
ing. The trend toward increasing metallicity with increasing
doping x should on its own favor superconductivity so that
pairing correlations must, at the same time, decrease as we
move to dopings greater than x,,. This idea is compatible
with a spin-fluctuation pairing mechanism for which the pair-
ing potential is expected to decrease as we move further
away from the antiferromagnetic state around x=0. The ob-
served d-wave gap symmetry is also naturally explained by
such a mechanism. Further, one can understand the drop in
T.(x) value in the underdoped regime to be the result of
decreasing metallicity as the Mott insulating state is ap-
proached, an effect that would need to overcompensate for
the increase in spin fluctuations and be able to eventually
drive the T,(x) to zero in the highly underdoped regime.

In this paper we consider the above possibility more criti-
cally and base our discussion on the microscopic model de-
veloped by Yang et al.> (YRZ). Their work involves the reso-
nating valence bond (RVB) spin liquid and provides an
ansatz for the coherent part of the electronic Green’s function
which has the very desirable property that it is sufficiently
simple, even when generalized to include a superconducting
condensation, that it can easily be used to make many pre-
dictions based on the model. Calculations have recently
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shown-? that YRZ provides a semiquantitative understand-
ing of many features previously considered anomalous and,
although simplified, captures essential features of the physics
of the underdoped regime. The situation is reminiscent of
isotropic BCS theory as applied to conventional supercon-
ductors. While BCS provides qualitative agreement, for
some purposes it is necessary’!! to generalize the work to
Eliashberg theory which explicitly includes retardation ef-
fects associated with the electron-phonon interaction. As an
example, BCS predicts universal dimensionless ratios such
as twice the gap to kg7, to be equal to 3.54. But in some
materials the measured values can be quite a lot larger.” Of
course, retardation effects are also part of the spin-fluctuation
exchange theories'? with d-wave gap symmetry. Such effects
have not yet been incorporated in the YRZ model which
involves an extension of BCS rather than Eliashberg theory.
Certainly, inelastic scattering in the cuprates is known to be
large and to lead to significant frequency and temperature
dependencies in the scattering rates.'>”'® Some attempts
to include such effects in the cuprates exist, as one example,
in the case of normal-state optical data in Ortho II
YBa,Cu;0g s, there is an analysis'” which attempts to incor-
porate not only retardation but also pseudogap effects, but
only at the level of including some reduction in the momen-
tum averaged electronic density of states around the Fermi
energy. Such models have proved useful and have provided
insight but are much less firmly rooted in microscopic theory
than is the model by YRZ. It is not at all clear how such
models can be extended to include superconductivity. In con-
ventional metals there are other sources of deviations from
isotropic BCS which have been considered. For example, the
electron-phonon interaction is very anisotropic'® and leads
directly to large gap anisotropies'®? over the Fermi surface.
But, again, these are not essential for a first understanding.
Critical elements of the YRZ ansatz are Gutzwiller factors
which give the weight remaining in the coherent part of the
complete electron Green’s function and others which renor-
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malize the underlying electronic dispersion curves. These de-
scribe the narrowing of the bands as the Mott transition is
approached. In addition, below a quantum-critical point
(QCP) a pseudogap opens on the antiferromagnetic Brillouin
zone (AFBZ). The formulation, while similar to competing
order theories?"?? such as D-density waves is quite different
in conceptualization. In YRZ the magnitude of the
pseudogap increases linearly with decreasing doping x and
provides a mechanism for Fermi surface reconstruction.
Zero-energy excitations exist only on the contours of the
Luttinger pockets. Beyond these there is a finite gap on the
momentum contours defined by the energy of minimum ap-
proach for the negative energy states which replace the fa-
miliar large Fermi surface of ordinary band theory with no
pseudogap. The presence of the pseudogap effectively re-
duces the number of electronic states at and near the Fermi
energy. An additional feature of the theory are spectral
weights associated with the Fermi contours which can be
very different from one and so, not all parts of the Fermi
contours will contribute equally to a given phenomenon. As
an example, the predicted intensity in an angular-resolved
photoemission spectra (ARPES) experiment of the backside
of the Luttinger pocket nearest to the antiferromagnetic BZ is
weak and has only recently been seen in an experiment.?
Before only arcs were observed.

To treat the superconducting state, YRZ simply add on to
their pseudogap self-energy an additional piece that retains
the usual BCS form. This piece is assumed to be unmodified
by pseudogap formation although the magnitude of the su-
perconducting gap is treated as phenomenological parameter
fixed by the assumption that twice the gap to T, ratio is six.
In this paper we want to examine the validity and/or possible
modifications that are required when pseudogap formation is
also included in the superconducting gap equation itself. A
particular focus is on what impact the existence of a finite
normal-state gap on part of the Fermi contour will have on
the superconducting gap. To do this we start by writing down
a generalized BCS gap equation which incorporates the ef-
fect of pseudogap formation on quasiparticle dynamics. For
simplicity and to be specific, the pairing potential is taken
from the nearly antiferromagnetic Fermi-liquid model**
(MMP model/form). It describes the exchange of over-
damped spin fluctuations and is particularly simple in the
static limit.>>-%7 It involves two parameters, a coupling con-
stant [g(x)] between the local spin susceptibility and the
charge degrees of freedom, and the magnetic coherence
length (¢). The MMP form is retained in most calculations
but variations in both magnetic coherence length and cou-
pling g(x) are considered. We also included a few results
when an attractive nearest-neighbor pairing interaction is
used instead, to provide a comparison. In all cases the cou-
pling g(x) is adjusted to get the measured critical temperature
T.(x) for each x with the magnitude of the pseudogap taken
from the theoretical work of YRZ. The resulting gap equa-
tion at any temperature below T<<T,(x) is solved using a fast
Fourier transform technique.?’?® Thus, no assumption need
be made about the momentum dependence of the resulting
superconducting gap solution which is solely determined by
the pairing potential and charge carrier dynamics. Our for-
malism is presented in Sec. II and solutions in Sec. III where
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the variation in g(x) with doping is given along with the gap
to critical temperature ratio, the temperature dependence of
the gap amplitude and its dependence on momentum Kk in the
two-dimensional BZ of the CuO, plane. In Sec. IV we
present the leading edge gap, or energy of nearest approach,
as the Fermi contour is approached. This quantity is just the
superconducting gap on the Luttinger pocket around the
nodal direction while it is related to an appropriate combina-
tion of superconducting gap, pseudogap, and band energies
on the remaining part of the Fermi contour around the anti-
nodal direction. We also give more comprehensive results for
the changes in the superconducting gap structure in momen-
tum space which results from increasing the magnetic coher-
ence length. The nonmonotonic nature of its variation with
angle on the Fermi contours is noted. In particular, its reduc-
tion in the antinodal region. In Sec. V we provide a summary
of our main results and draw conclusions.

II. FORMALISM

A. Normal state

As a result of complex theoretical considerations based on
a RVB spin liquid Yang et al.? proposed a simple form for
the coherent part of the electron Green’s function G(k, w, x),
namely,

(x)
Gk, w,x) = & 3 , (1)
o 6 () - Agg(lz,X)
o+ (x)

where g,(x) is a Gutzwiller factor related to correlations as-
sociated with disallowing double occupancy on the same site
in the large U limit of the Hubbard model with U the on-site
Coulomb repulsion. In Eq. (1), k is momentum in the two-
dimensional BZ of the copper oxide plane with the in plane
lattice parameter a. The usual electronic energies are €(x)
and eﬁ(x) is a second energy dispersion which gives the an-
tiferromagnetic BZ boundary for eﬁ:O, which is also re-
ferred to as the Umklapp surface. Finally, A, (k,x)
=A2g(x)[cos(kxa)—cos(kya)] is an input pseudogap calcu-
lated by YRZ and given by®

A (x) =315(0.2 - x) (2)

and with d-wave symmetry as a function of momentum k.
This input pseudogap is to be distinguished, and differs
somewhat, from the pseudogap measured in ARPES as we
will describe shortly. The band-structure dispersion curves
renormalized by the interactions are given by

€x(x) = = 2t(x)[cos(k,a) + cos(kya) | — 41" (x)cos(k,a)cos(k,a)

— 2" (x)[cos(2k,a) + cos(2k,a) ] = p,(x) (3)
up to third nearest-neighbor hopping with
1(x) = g(x)1g + 38,(x)Tx/8, (4a)
t'(x) = 8,1, (4b)
t"(x) = g,(x)1g (4c)

with the Gutzwiller factors given by

214521-2



EFFECT OF PSEUDOGAP FORMATION ON THE...

4
(1+x)? )
Here, t, t;, and 7;, are the bare band hopping parameters with
1y=—0.3t and #;=0.2ty, J is the magnetic energy of the 7-J
model taken to be J=t,/3, y=0.338 is the spin susceptibility,
and in much of this work we will take 7,=175 meV. The
Umklapp surface energy is eﬁ:—Zt(x)[cos(an)+cos(kya)].
Finally, the chemical potential w,(x) is to be determined to

2x
= d =
g:(x) ey O 8s(x)
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get the correct hole doping x based on the Luttinger sum
rule. This process was described by Yang et al.?

Yang et al.’ suggest writing Eq. (1) for the normal state in
the form

)= 2 gt(x)Wlf(x)

Eg(x)= &) - 40 + \/{

and the Luttinger weights

N,
GY(k,w,x = ) (6)
with
|
o2
5 &) ; ek(x)J + Af)g(k,x) (7a)
1 (7b)

0
O] Y PR

It is instructive to consider the normal state in the limit
when the pseudogap is set equal to zero. In this limit the
Green’s function of Eq. (6) should reduce to the ordinary
band case possibly modified by Gutzwiller factors if one so
wishes. When Agg—>0 in Egs. (7) we get

0 0
+ €k — € €k + €x

E; = * s 8
k=" 2 (8a)
+ 1 0

Wy = 5[1 *+ sgn(e + )], (8b)

where g,(x) was set equal to one. For g+ eﬁ>0, E; = € with
Wy=1 and E =-¢) with W;=0. On the other hand, if €
+6 <0, Ef=—¢ with W} =0 and E; = g with W;=1. In both
cases the weight Wy is zero for the antiferromagnetic BZ
(defined by €, =0) energy €, which (as it must) drops out of
Eq. (6) and GV(k,w,x) reduces to its usual form 1/(w— ).
Here, as everywhere else we should really replace w by
0+ i0* to get the retarded or advanced version of the
Green’s function.

Pertinent details associated with the Green’s function in
Eq. (6) are given in Fig. 1 which shows the first quadrant of
the first BZ of the CuO, plane. For convenience we intro-
duce an angle centered around the M point. The MX line
corresponds to #=0° and the MI line to §#=45°. The dashed-
dotted (black) line which connects the X with the Y point
indicates the AFBZ in this quadrant. The heavy dashed-
double dotted (blue) line represents the normal state large
Fermi surface defined by band theory as ,=0 with the dis-
persion relation €, given in Eq. (3) and 7y=175 meV. It is
for the doping x=x,,=xqcp=0.2 which defines the quantum-
critical point for which the pseudogap just becomes equal to
zero. Zero-energy quasiparticle excitations are possible along

] \/ { &)+ &) Jz + A2 (k%)

2

this line. In contrast, the heavy solid and dashed (red) lines
represent the Fermi contour for doping x=0.1 in the heavily
underdoped regime where the pseudogap has a rather large
amplitude as defined in Eq. (2). This Fermi contour is typical
for the Fermi surface reconstruction which results from the
opening of a pseudogap in the YRZ model. The Fermi con-
tour is divided into two distinctive regions. One region is
called the Luttinger pocket and is presented as the light
(blue) shaded area enclosed by the solid and dashed (red)
lines. This Luttinger area is a hole pocket. The effective
pseudogap is equal to zero on the solid and dashed (red) lines
forming its boundary and so represent a true Fermi surface
on which zero-energy quasiparticle excitations are possible.

Y (0,7) — M (x,7)
N\ 0 4
N

K

¥>-
e
P

r(0,0) k/a X (z,0)

FIG. 1. (Color online) The first quadrant of first Brillouin zone
of the CuO, plane. The dashed-dotted (black) line which connects
the X with the Y points represents the AFBZ in this quadrant. The
heavy dashed-double dotted (blue) line is the normal state Fermi
surface defined by €,=0 for doping x=0.2 for which the pseudogap
is equal to zero. The heavy solid and dashed (red) lines give the
Fermi contour for doping x=0.1 obtained from consideration of
energies of nearest approach associated with E}.
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The equation that defines this contour in k space is Ej(x)
=0 [Eq. (7a)]. The momentum on this curve Kk, can be
characterized by its magnitude and an angle # as in Fig. 1. It
is important to note that the Luttinger weight W is of the
order one only along the solid (red) line while it is smaller on
the backside of the Luttinger pocket [heavy dashed (red)
line] which, thus, is not so important in some considerations.
Nevertheless, it has recently been seen by Meng et al.?® in an
underdoped sample of Bi,Sr,_,La CuQOg,s with a critical
temperature 7,=18 K in laser ARPES. The Luttinger pocket
is connected to additional Fermi arcs, shown as solid (red)
arcs with the border lines MX and MY. These arcs develop
out of the continuation of the E,(x) branch of the energy
spectrum. Along these arcs, however, there is a finite effec-
tive pseudogap and, thus, zero-energy quasiparticle excita-
tions are not possible. The arcs are gapped and correspond
only to a Fermi contour. For the specific case shown with
x=0.1 these arcs correspond to the momentum contour
where the energy |E;| of Eq. (7a) is minimum but not zero.
The equation that needs to be solved to get the momentum
vector which defines this arc is |E(x)|=Min. along the di-
rection 6. For the entire contour we have verified that £, (x)
is negative and, hence, corresponds to occupied states. Such
energies of nearest approach (or leading edge gaps/energies)
are measured directly in ARPES experiments?® and are iden-
tified here with the empirical value of an effective
pseudogap. There are also energies of nearest approach asso-
ciated with the Ej branch of the YRZ spectrum but these
energies are large and not zero for angles corresponding to
the Luttinger pockets. For all angles 6 they define a second
momentum space contour that we will describe in detail in
Sec. IV. E;(x) on this second contour is always positive and,
s0, is not measured directly in ARPES at 7=0. The energy of
nearest approach along this second arc can be smaller than its
value for the same angle 6< 6 p on the Ej(x) branch. For x
approaching xqcp it can even have a region of zeros and a
new piece of Fermi surface emerges near the antinodal direc-
tion.

For reference in later parts of this paper we introduce
besides the angles 6 p which identifies the point in the BZ at
which the Luttinger pocket connects to the Fermi arc, 6, the
point in the BZ at which the Fermi contour crosses the
AFBZ, and 6, the point on the Fermi contour at which the
superconducting gap will have its maximum value, as will be
found later. Also, for later reference, the (yellow) shaded
circle is meant to represent the range of the MMP form for
the pairing potential when transitions through the commen-
surate magnetic vector Q=(1r, ) are considered, here shown
to be centered around the hot spot for x=0.1 defined by the
crossing of the Fermi contour with the AFBZ.

B. Superconducting state

In the superconducting state YRZ define the quasiparticle
Green’s function

. 2 W)
GS(k, w,x) = Z& ey Al 9)
L T

with the superconducting gap, A,.(k,x). It is taken to have
d-wave symmetry (as does the input pseudogap) and to vary
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with momentum Kk in the BZ according to the lowest order
harmonic, namely,

A (Kk,x) = A?C(x)[cos(kxa) — cos(k,a)] (10)

with A?C(x) its amplitude at maximum. The spectral densities
associated with the usual and Gor’kov anomalous Green’s
function which we denote by A(k,w,x) and B(k,w,x), re-
spectively, are

Ak, 0,%) = g,(0) 2 WR){[u(x) Pl - By 5(x)]

a==*

+ [0 oo+ Eg (0]} (11a)

and
W(x)A, (K,
Bk o =50 3 T g, ()
a=* k.S
- B¢ ()T} (11b)
with &[] Dirac’s &-distribution and
worp | B }
[u®(x)]"= 2[1 + Eﬁ,S(X) , (12a)
o 2 _ l _ M}
[o" () = 2{1 ) (12b)
EZ5(0) = V[EL) T + A2 (k. ). (12¢)

An important element of YRZ theory is that the application
of the above formulas to the calculation of superconducting
properties of the underdoped cuprates and comparison with
experimental results considered till now anomalous, have
provided qualitative and even semiquantitative understand-
ing of this data. To elaborate on a few examples, Valenzuela
and Bascones,? applied the theory at zero temperature to Ra-
man scattering and found that the observation®*3! that the
energy of the peak in the Raman cross section in B, sym-
metry (nodal) moves down while for B, symmetry (antin-
odal) it moves up with decreasing doping, could be traced to
the increase in pseudogap amplitude while at the same time
the superconducting gap decreases. Later work by LeBlanc
et al.% provided understanding of the distinct temperature
evolution of the two gap scales extracted from B,, (nodal)
and B, (antinodal) spectra observed by Guyard er al.’!
The effect on the Raman cross section of the Fermi surface
reconstruction which accompanies an increase in pseudogap
amplitude as doping is decreased below the quantum-critical
point at xocp=0.2 is discussed and related to the very rapid
rise in Raman derived antinodal and nodal gap ratio at a
doping somewhat below that of the QCP reported by Guyard
et al3'32 Tt also provides an explanation for the observed®®
rapid loss in the intensity of the superconducting signal in
B, with decreasing doping while this is not the case in B,,.
Specific-heat data by Lorama et al.’* and Loram et al.**
show that the jump at T, is greatly reduced in magnitude in
the deeply underdoped region of the phase diagram and that
the electronic specific-heat coefficient y which is constant in
an ordinary Fermi liquid decreases considerably as T is re-
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duced toward T,. In addition, the condensation energy shows
an anomalous decrease below its expected BCS value. LeB-
lanc et al.’ show that all these observations find a natural
explanation in YRZ. Yang et al.’ find good agreement with
recent ARPES data®-3¢ for the variation in the quasiparticle
weighting factors Wlf and for the corresponding maxima in
the energy dispersion. They also can understand the observed
particle-hole asymmetry. Carbotte et al® considered
penetration-depth data. In particular, they can understand the
long standing observation that the value of the zero-
temperature penetration depth is strongly dependent on dop-
ing at the lower end of the superconducting dome while the
slope of its linear low T dependence (characteristic of
d-wave superconducting gap symmetry) is not. Fermi surface
reconstruction and, more importantly, the appearance of the
Gutzwiller coherence factors play an essential role in under-
standing the most recent data’’ of Bi,Sr,CaCu,Og,s
(Bi2212) and their relationship to the Uemura plot.>® Under-
standing of the relationship between the YRZ approach and
other prominent theoretical models such as the nodal liquid
and Fermi surface arcs®*-*! is also provided in Refs. 6 and 8.
Illes et al.* considered optical properties and were able to
understand the two gap scales observed in the missing area
under the real part of the optical conductivity as a function of
the upper limit on the partial sum of its spectral weight ob-
served by Homes et al.*> Also the prominent “hatlike” struc-
tures found in the real part of the optical self-energy!”4344
are seen to be part of YRZ theory although another contri-
bution to these hats comes from inelastic scattering**~4° not
included in the calculations. Finally, we mention the work by
Bascones and Valenzuela’ who address the issue of the
checkerboard pattern observed in scanning-tunneling micro-
scope spectroscopy (STS) and its relationship to the autocor-
relation function associated with photoemission data. It is
possible to
use the Fourier transform (FT) of the atomic scale spacial
inhomogeneities of the STS local density of states (FT-STS)
to derive the momentum dependence of the gap. The proce-
dure involves the identification of specific vectors associated
with transitions from an octet of regions of high density
of states banana-shaped in the quasiparticle contours of
constant energy about the Fermi level. Their dependence on
energy away from the chemical potential gives the desired
gap variation as a function of momentum.*® We note in
passing and we will return to this issue later that the super-
conducting gap as a function of momentum does not follow
a simple lowest harmonic d-wave behavior*® in such a
FT-STS analysis’®*4% as is the case in some ARPES
measurements.’® Rather the curve out of the nodal direction
shows significant upward behavior. Further discussion on
STM and its relation to YRZ is found in Ref. 51.

As outlined above, the YRZ ansatz provides a first under-
standing of many of the anomalous properties of the super-
conducting underdoped cuprates which are drastically altered
from ordinary BCS behavior. It is important to realize, and as
we have already said, that in this formulation, the supercon-
ducting gap itself is treated simply as a phenomenological
parameter in Eq. (9). The magnitude of its amplitude is fixed
from consideration of the observed critical temperature T..(x)
at a given doping x and the assumption that the gap to critical
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temperature ratio 2A,.(T=0,x)/[kgT.(x)]=6 as some experi-
ments indicate. For its momentum space structure the sim-
plest lowest harmonic form of Eq. (10) is retained and its
variation with temperature is assumed to remain BCS mean
field. While this is reasonable, it is not at all obvious why the
emergence of a pseudogap in the charge dynamics which has
drastically modified the properties of this state does not also
have a major impact on the superconducting gap itself. For
example, on its dependence in k space, its variation with
temperature and on other quantities such as the value of the
gap to critical temperature dimensionless ratio. This is the
central question we wish to address in this paper. To accom-
plish this aim we start from a superconducting gap equation
generalized to include the emergence of a pseudogap which
very significantly alters the electronic structure, as discussed
in the previous section, and, consequently, the pairing pro-
cess.

Within a BCS approach which is sufficient for our pur-
poses here, the pairing potential Vy . for scattering from k to
k'’ is taken to be instantaneous and frequency independent.
The corresponding gap equation takes on the form

1
A (K, T,x) = kBT§ > Vi WF(K iw,x),  (13)
nk’

where F(k,iw,,x) is the finite-temperature anomalous
Gor’kov Green’s function with iw, the fermionic Matsubara
frequencies and () is the volume. F(K,iw,,x) is related in the
standard way to the spectral density B(k,w,x) given in Eq.
(11b). When this expression is substituted into Eq. (13) and
the sum over w, done we obtain a generalized BCS-type gap
equation of the form>?

A (K, T,x)

== 2 Vie@Wp )

!
k',a=%

A (K, T, ) {E.i’f,su)]
o tanh R
2E); () 2T

(14)

where T is the temperature and g,(x) was absorbed into the
pairing potential Vi y/(x). The effect of pseudogap formation
is built into the weighting factors W (x) in Eq. (14) as well
as in the definition of the energies Elf s(x). The linearized in
the gap A,.(k,T,x) form of Eq. (14) for T=T, gives the
superconducting critical temperature 7,(x) for a chosen value
of x and potential Vy:(x). We take the superconducting
dome T,(x) in the underdoped region to be given by

T.(x) =95.0[1—82.6(x—0.2)%] (15)

a relation previously discussed by YRZ. Thus, optimum dop-
ing corresponds to x,,=0.2 with a 7,=95 K and this also
coincides with the quantum critical point at which the
pseudogap begins to be nonzero but these two points could
easily be made different® although this is of no consequence
for the present qualitative discussion.
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III. SOLUTIONS OF THE SUPERCONDUCTING GAP
EQUATION

A. Nearest-neighbor pairing potential

YRZ assumes that the superconducting gap has a lowest-
order harmonic d-wave momentum dependence of Eq. (10).
Such a behavior can be simulated in our BCS-type approach
using a simple attractive nearest-neighbor interaction pairing
potential of the form

)
Vi =-

g U, {cos[(k, = ky)a] + cos[ (k, — k;)al}.
(16)

O’Donovan and Carbotte?® found that this form leads to so-
lutions of the BCS gap equation which vary in momentum
space according to Eq. (10) (lowest d-wave harmonic) for
the doping values of interest. In the above g(x) is a coupling
parameter which will be determined from the solution of the
linearized form of Eq. (14) to give the desired value of T,(x)
in Kelvin on the superconducting dome in Eq. (15). In this
regard our approach is different from YRZ who assumed the
gap amplitude A?C(x) to be determined from the ratio
ZAEC(x)/ [kgT.(x)]=6. Here this ratio is determined by the
solution of Eq. (14) at zero temperature and at T,.

We set U,,,=75 meV in our model calculations and Fig.
2(a) shows the superconducting dome T,(x) as solid (black)
squares accompanied by the corresponding value of g(x)
necessary to find a nontrivial solution of the linearized gap-
equation (14) for a given value of T.(x) on this dome. The
coupling parameter g(x) increases monotonically with de-
creasing doping x which corresponds to an increase in the
pseudogap amplitude Agg(x). Figure 2(b) gives the maximum
of the superconducting gap A,,,(7=0,x) at zero temperature
[solid (black) up-triangles, left-hand scale applies] and the
ratio 2A,,,(T=0,x)/[kgT.(x)] [open (red) squares, right-
hand scale applies]. This ratio varies from 4.4 for x=0.2,
almost the canonical BCS value for d-wave superconductiv-
ity, to 8.27 for x=0.1, the lowest value of doping investi-
gated. The effect of the pseudogap together with the Fermi
surface reconstruction becomes obvious. With decreasing
doping a strong relative increase in the superconducting gap
is required to allow for the experimental value of T.(x).
Thus, in contrast to YRZ, the superconducting dome for the
superconducting gap is different from the superconducting
dome described by Eq. (15). If we had not increased the
coupling g(x) with decreasing x the superconducting dome in
the underdoped regime would have ended at x ~0.12 rather
than below x=0.1 as indicated by the dashed (black) line in
Fig. 2(a).

Careful evaluation of the momentum dependence of the
superconducting gap, i.e., testing for possible contributions
beyond Eq. (10) in the superconducting gap, in the whole
CuO, plane BZ revealed that even at the lowest doping in-
vestigated the superconducting gap follows Eq. (10) within
numerical accuracy for a potential of form (16). Thus, this
simple but, nevertheless, instructive example demonstrates
that the pseudogap and the Fermi surface reconstruction
which accompanies it, has no effect on the symmetry of the
superconducting gap itself. As we will see in the next sec-
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FIG. 2. (Color online) (a) The critical temperature T,(x) in
Kelvin as a function of doping x. The solid (black) line gives the
empirical formula (15) and the solid (black) squares correspond to
the solutions of the linearized version of the gap-equation (14) with
the coupling g(x) adjusted to give the empirical T,.. The dashed
(black) curve gives T,(x) when g(x) is kept fixed at its x=0.2 value.
(b) The maximum value of the superconducting gap in the BZ
AL (T=0,x) at zero temperature as a function of doping x [solid
(black) up-triangles]. Left-hand scale applies. The open (red)
squares give the superconducting gap to critical temperature ratio
2A(T=0,x)/[kgT.(x)] as a function of doping x. Right-hand scale
applies.

tion, a different form of pairing potential can introduce
higher harmonics in the superconducting gap and the
pseudogap can enhance these contributions.

B. Spin-fluctuation pairing potential

An alternative is to use for the pairing potential the form
suggested in the work of Millis et al.>* (MMP form) based on
the nearly antiferromagnetic Fermi-liquid model with pairing
due to the exchange of overdamped spin fluctuations. The
static limit of their pairing potential is particularly simple
and sufficient for our approach here which we want to keep
as simple as possible. It has the form

x(Q)
1+&k-k'-QJ

Viewr (x) = g(x) (17)
with the antiferromagnetic commensurate wave vector Q
taken to be (7, ) and symmetry related points. x(Q) is the
static spin susceptibility which is set to 10 states/eV and g(x)
is the coupling constant taken to absorb the Gutzwiller fac-
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FIG. 3. (Color online) (a) The critical temperature T.(x) in
Kelvin as a function of doping x. As in the work of YRZ we have
taken optimum doping to fall at x=0.2 which is where the
pseudogap opens at a quantum-critical point. The solid (black) line
gives the empirical formula (15) and the solid (black) squares are
the results of our gap-equation (14) solutions with the coupling
g(x)/ty adjusted to get the empirical 7,. The dashed (black) curve
gives results when g(x)/7, is kept fixed at its x=0.2 value. (Left-
hand scale) The dashed-dotted (red) line (right-hand scale) gives the
pseudogap amplitude according to Eq. (2). (b) g(x)/7y vs doping x
for different values of the magnetic coherence length &.

tor. Finally, the magnetic coherence length ¢ is set at 2.5 in
units of the in-plane lattice parameter a unless otherwise
stated. This completely defines our gap-equation (14), with
the coupling g(x) calculated from the solution of its linear-
ized version to give the critical temperature T,.(x) according
to Eq. (15). The characteristic form in Eq. (17) which we use
for the pairing, could, in reality, be more complicated. For
example, it could be modified by the emergence of the
pseudogap. Here such possible modifications are modeled
only by changing the value of the two parameters, the cou-
pling g(x) and the magnetic coherence length & which we
would expect to increase as the doping is reduced and the
antiferromagnetic state is approached more closely. To keep
things simple no modification of the functional form of Eq.
(17) is introduced.

In Fig. 3(a) we show our results for the superconducting
critical temperature 7,(x) in Kelvin as a function of doping x.
As we did in the previous section, at each point [solid (black)
squares] the coupling g(x) in units of z, was recalculated to
get the measured 7. for that particular hole doping x given
by Eq. (15). It is an important result that, once again, we find
it necessary to increase g(x) with decreasing x from 1.34, at
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optimum doping (x=0.2) where there is no pseudogap and
the ordinary large Fermi surface of band theory applies, to
1.81y at x=0.1. If we had not increased the coupling to the
spin fluctuations with decreasing x the superconducting
dome in the underdoped regime would have ended at x
~0.14 rather than below x=0.1 as indicated by the dashed
(black) line. The picture that emerges from these results is
that the formation of the pseudogap itself reduces the ability
of the charge carriers to effectively pair, a feature consistent
with the general expectation that the approach to the Mott
insulating state reduces the metallicity of the system. To get
the measured value of T,, the size of g(x) needs to be in-
creased and this is consistent with an increase in magnetic
effects as the antiferromagnetic state is approached more.
This central result remains even when different values for the
magnetic coherence length ¢ are used as shown in Fig. 3(b).
Four values are considered é=1.5 (solid curve), £=2.5
(dashed curve), £é=3.0 (dashed-dotted curve), and £=3.5
(dashed-double dotted curve). As £ is increased the variation
in g(x) with doping x also increases but even for the smallest
& considered, there is significant enhancement of the cou-
pling as the antiferromagnetic state is approached. To include
such an effect means that in Fig. 3(b) we might want to slide
from the dashed curve which applies to £=2.5, a value taken
as characteristic of optimum doping (at x=0.2 in this work),
to the dashed-double dotted line with £€=3.5 as x is decreased
below (x=xqcp). Later we will consider the effect of increas-
ing ¢ even more and report explicitly on the case £é=10. As &
gets very large the form (17) for the pairing potential be-
comes progressively more peaked about the commensurate
magnetic wave vector Q as a function of momentum transfer
q=k’-k. In the limit £é—o which is of course unrealistic
for the superconducting cuprates, the pairing becomes
~g(x)x(Q)/ (&) multiplied by a S-distribution. We see from
this simple formula that the effective coupling must increase
to compensate for the factor ¢ which appears in the denomi-
nator.

An additional important question is how radically does
the existence of the pseudogap changes the properties of the
superconducting gap itself. This is addressed in the next sev-
eral figures. In Fig. 4(a) we show results for the zero-
temperature superconducting gap to critical temperature ratio
2A,.(0,x)/(kgT,) as a function of doping x. In our model
calculations the gap is defined over the entire Brillouin zone
as a function of momentum k. Thus the maximum gap value
in the BZ A,,,4(0,x) need not be the same as its maximum
value on the Fermi contour, Apg .(0,x). The solid up-
triangles are the results when the entire BZ is considered
while the solid down-triangles are for the Fermi contour and,
as we would have expected, these values are always the
smaller of the two. This also holds for the next-nearest-
neighbor model. We note that both these ratios vary with x
and neither is fixed at the known BCS d-wave value of 4.3. It
can be as small as ~4.0 and as large as 6.5 with the strongest
increase for x below =<0.12. More specifically, for the up-
triangles which represent the maximum gap in the BZ it is
~6.5 for x=0.1 while for the down-triangles (the maximum
gap along the Fermi surface) it is ~6.15. Both these values
are smaller than that found for the nearest-neighbor pairing
of the previous section. The corresponding values of the
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FIG. 4. (a) The zero-temperature gap to critical-temperature ra-
tio 2A,.(0,x)/(kgT,) as a function of doping x. The solid up-
triangles give the maximum gap 7=0 value A,,,(0,x) in the BZ
and the solid down-triangles correspond to the maximum gap value
Aps.max(0,x) on the Fermi surface. (b) Compares the maximum gap
value in the Brillouin zone (solid up-triangles) and the maximum
gap value on the Fermi surface (solid down-triangles) with the am-
plitude of the pseudogap Ag .(*) (dashed line) according to Eq. (2).

zero-temperature gaps are given in Fig. 4(b) in which they
are also compared with the input pseudogap amplitude
Agg(x) (dashed line). We stress again that the superconduct-
ing dome for the gap does not follow exactly that for 7,(x) of
Fig. 3(a) because the gap to critical-temperature ratio in our
work is determined by the solution of the gap equation and
varies from its classical d-wave value. The change with x in
the gap to 7. ratio reported here has its origin in the momen-
tum space behavior of the pairing potential and in the effect
of the pseudogap. This is different from what is the case in
conventional superconductors where such deviations are of-
ten related to retardation effects®!? in the pairing which has
its origin in the electron-phonon interaction and Eliashberg
theory.

In this paper we will treat only the pairing potential which
comes from the exchange of spin fluctuations. There is evi-
dence for an additional small contribution due to electron-
phonon interaction. A contribution from this mechanism at
the level of a ~10% effect was found> to be able to explain
the shift in “kink™ structure seen in the renormalized ARPES
dispersion curves in Bi2212 on oxygen isotope substitution
160 —180. Also, it is well established that energy depen-
dence in the electronic density of states>* can significantly
enhance the effect of a small phonon contribution on the
critical-temperature isotope effect. In particular, the growth
of a pseudogap® can lead to a large isotope effect for 7,
even when the phonons contribute little to the pairing.

Another quantity of interest is the temperature depen-
dence of the superconducting gap. Its root-mean-square
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FIG. 5. (Color online) Temperature dependence of the root mean
square rms[A,.(7,x)] at finite 7 normalized to its value at zero
temperature as a function of the reduced temperature 7/7T,(x) for
various values of the doping parameter x.

(rms) value rms[A,.(T,x)] at finite 7 normalized to its value
at 7=0 is given in Fig. 5 as a function of the reduced tem-
perature T/T.(x) for six values of doping as labeled. The
solid (black) curve is for x=0.2 which is a case with no
pseudogap in our model and here involves the large Fermi
surface of band theory. The other cases fall slightly below
the solid (black) curve but the trend with decreasing x is not
monotonic. First the normalized gap at intermediate reduced
temperature 7T/7T.(x), say 0.7 for definiteness, shows a de-
crease with decreasing doping. The greatest reduction is
reached for x=0.14 [dashed-dotted (blue) line] after which it
starts to increase again with the case x=0.1 [short dashed
(cyan) line] close to the x=0.2 case. These differences are,
however, never large and justify the use of a BCS tempera-
ture variation in previous papers®~® for the superconducting
gap even when there is a large pseudogap present.

Details about the momentum dependence of the supercon-
ducting gap and the modifications brought about by the
opening of a pseudogap are given in Fig. 6 as contour plots
[light solid (black) lines] which are restricted to the first
quadrant of the two dimensional CuO, BZ. The Fermi con-
tours coming from E;(x) are represented by heavy solid and
dashed (white) lines. The figure has four frames for x=0.2,
x=0.16, x=0.1, and x=0.12 arranged clockwise from the
top-left-hand corner. Comparing the cases with x=0.2 and
x=0.1 we see considerable changes in the shape of the con-
stant superconducting gap contours as we enter the under-
doped region of the phase diagram. While the case x=0.2 is
not so different from a simple [cos(k,a)-cos(k,a)] depen-
dence of ordinary d-wave BCS theory, higher harmonics are
present even in this instance as is known from previous
work.2>28 As the value of the pseudogap amplitude is in-
creased there are large changes in the shape of the gap con-
tours, and the contribution from higher harmonics to the su-
perconducting gap function become more important. It is the
form of the pairing potential given in Eq. (17) which deter-
mines the admixture of higher d-wave harmonics that enter
the superconducting gap while this effect is enhanced by the
pseudogap. Note, that here we used fast Fourier transforms
to solve Eq. (14) and did not need to make any explicit
assumption as to the harmonic content of A (k,7=0,x). Re-
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FIG. 6. (Color online) Contour diagram of the superconducting
gap as a function of momentum Kk in the first quadrant of the two-
dimensional CuO, BZ [light solid (black) lines labeled with the
actual value of the gap in meV]. The four frames are arranged
clockwise for the doping parameters x=0.2, x=0.16, x=0.1, and x
=0.12. The heavy solid and dashed (white) lines indicate the con-
tour of the Fermi surface as a function of momentum k that are
determined from energies of nearest approach associated with E} .

turning to the Fermi contours we note their evolution from a
large Fermi contour at x=0.2 to the Luttinger pockets in the
other three considered which are indicated by the heavy solid
and dashed (white) lines. As described in Sec. IT A, they are
calculated in the normal state and are curves defined in mo-
mentum space by the energy of nearest approach (NA) mea-
sured in ARPES.

More details concerning the variation in the gaps with
momentum Kk that result from our numerical solutions of the
generalized gap-equation (14) with the simple static pairing
potential in Eq. (17) are shown in Fig. 7(a) for x=0.2 and
Fig. 7(b) for x=0.1. In both cases T=0 and the magnetic
coherence length £ in Eq. (17) is fixed to the value of 2.5.
These two gap surfaces as a function of k are significantly
different from each other and are both different from the
form [cos(k,a)—cos(kya)] although this is not so easily seen
for x=0.2. When there is a large pseudogap as in Fig. 7(b) a
feature which can barely be seen in Fig. 7(a) and which is
located by a heavy (red) arrow becomes enhanced and emer-
gence as a peak, again indicated by a heavy (red) arrow, in
the top-right-hand part of this figure. These peaks do not
necessarily fall on the Fermi contours (Fig. 1) as we have
already noted in Fig. 4(b) where, for the case of the magnetic
coherence length £=2.5 the maximum gap on the Fermi con-
tour (solid down-triangles) is always smaller than the maxi-
mum gap in the BZ (solid up-triangles). In this case these
effects are not large but we will see later when we consider
larger values of ¢ that they can be greatly enhanced.
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FIG. 7. (Color online) (a) Surface plot of the superconducting
gap A,.(k,T,x) for T=0 and x=0.2 as a function of momentum k in
the first Brillouin zone of the CuO, plane. (b) The same as (a) but
for x=0.1.

IV. ARCS AND ENERGY OF NEAREST APPROACH ON
THE FERMI CONTOUR

A question that immediately arises is, how does the super-
conducting gap which comes from the numerical solution of
our modified BCS Eq. (14), vary on the Fermi contour. A
direction on this contour can be specified by an angle 6 al-
ready introduced in Fig. 1 and which is, again, defined in the
inset of Fig. 8(a). Figure 8 presents the variation in the su-
perconducting gap as a function of the angle # on the nearest
approach contours determined from E,(x) in the normal
state. We show four values of doping, namely, x=0.2, 0.16,
0.12, and 0.1 and several temperatures as indicated. The
solid (black) curve in Fig. 8(a) is for 7=0 and we see that it
is quite different from a pure cos(26) [dashed (black) curve]
variation that has often been assumed to hold. The concave
upward behavior of this curve is in qualitative agreement
with some ARPES (Ref. 50) as well as with some STS
experiments®®*849 although in that case the experimental
technique of Fourier transforming the spatially varying local
density of states does not provide access to data very near the
node. The dashed-dotted (red) curve shows that at 7=80 K
the 6 dependence of the solutions of the BCS Eq. (14) is
again quite different from a simple cos(26) [dashed-double
dotted (red) line]. This is a case of zero pseudogap. The
curves for A (T, 6) vs 6 in Fig. 8(b) are for x=0.16 with a
significant input pseudogap the magnitude of which is com-
parable to the magnitude of the amplitude of the supercon-
ducting gap, yet concave upward behavior is still seen. As

214521-9



E. SCHACHINGER AND J. P. CARBOTTE

20 = Z 16
oo = /) x=016
oo 0 —a(T=0) 114
= = -cos(20)
15 -4 (T=60) 112
---= cos(20)

— N ] —
3 ©3
E 10 (a) N 18 E
B s
s T N cos(26 16 =
B O U A (T &

[ ——a (T=0)\.
= = -cos(20)

-+-= 4, (T=80)
0 = =-0s(26) ) 0
(c) x=0.12 (d) x=0.1 15
10
14
8
E e E
= )
e 2 &
< 4 AN <’

_Asc(T=5}\\.
2 - - -cos(260)
—-—-A_(T=40)
-+ =-*c0s(20) N\
O0 10 20 30 40 O
0 (deg.)

- = -cos(20)
=-=-A(T=12)
=++= c0s(20)

10 20 30 40
0 (deg.)

FIG. 8. (Color online) The superconducting gap along the Fermi
contour [solid (red) line in the inset] as a function of # for x=0.2
when there is no pseudogap. The solid (black) line gives the zero-
temperature solution of Eq. (14) which is compared with the simple
d-wave symmetry ~ cos(26) (dashed line). The (red) dashed-dotted
and dashed-double dotted lines give the same results but for T
=80 K. The inset defines the angle # within the first quadrant of the
two-dimensional Brillouin zone of the CuO, plane. The nodal di-
rection (I'M line) corresponds to §=/4 while the antinodal direc-
tion (XM line) corresponds to #=0. Frames (b)—(d) are for x
=0.16, 0.12, and 0.1, respectively, with temperatures as labeled.

we go to even larger values of the input pseudogap amplitude
and it becomes much larger than A, the superconducting
gap variation becomes more cosine like, as can be seen in
Fig. 8(d), on comparing the solid (black) curve for T=0 and
dashed-dotted (red) curve for T=12 K with dashed (black)
and dashed-double dotted (red) curves, respectively. This
trend from concave up to more linear variation out of the
node as doping is decreased is confirmed by the data of
Kohsaka et al.3® We also made comparison (not shown here)
with the case of the lowest d-wave harmonic A,.(Kk)
~[cos(k,a)—cos(k,a)] which is evaluated on the Fermi con-
tour and these are close to the pure cos(26) curves. Thus, the
differences between solid and dashed (black) curves in Fig.
8(d) represent a mixture of higher d-wave harmonics in the
solution of Eq. (14) for the superconducting gap. Note the
shoulder and a small kink at intermediate @ after which the
rate of increase in the gap with decreasing 6 toward the
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antinode is reduced from its relatively much more rapid near
linear variation out of the node at #=45°. In summary, our
gap solutions projected on the Fermi contour do not follow
the often used cos(26) form and the deviations found agree
with some experiments.’®>° The differences found are not
very large and in that sense provide support for the usual
ansatz that A, follows Eq. (10) when the aim is a first quali-
tative understanding. This result was unexpected. As we have
documented at length in Sec. II B pseudogap formation leads
to large modifications of superconducting properties, yet we
find that its influence on the superconducting gap itself is
rather modest.

ARPES gives the superconducting gap directly only on
the boundaries of the Luttinger pocket where the pseudogap
is zero. On the remainder of the Fermi contour it is a com-
bination of superconducting and empirical pseudogap that is
measured. Such curves are presented in Fig. 9 for two dop-
ings, namely, x=0.12 in Fig. 9(b) and x=0.16 in Fig. 9(a).
These curves involve the solution of the gap-equation (14)
and the evaluation of the energy Ey ¢(x) of Eq. (12¢) with
Ei(x) defined in Eq. (7a) and momentum k on the Fermi
contour [heavy solid (white) curves in Fig. 6]. Only the part
of the Luttinger pocket with Wy of order one is shown as in
most experiments this is the only piece considered. The en-
ergy of nearest approach Ay, (7, 6) is shown for T=0 [solid
(black) line], T=40 K [dashed-dotted (red) line]. We have
introduced temperature only in as much as it modifies the
superconducting gap which is the finite temperature solution
of Eq. (14) so that the T=T, curve is the zero temperature
normal state case but with finite pseudogap. This effective
pseudogap is nonzero only for angles less than 6, p defined in
Fig. 1 which range from ~25° (x=0.12) to ~19° (x=0.16).
In this regard we emphasize that the input pseudogap of Eq.
(2) has a finite amplitude for all momenta in the BZ except
for the zeros required to preserve d-wave symmetry. On the
other hand, the effective pseudogap Ays(7, 6) defined by the
double-dotted (blue) curve in Fig. 9 is what is measured and
this energy is zero on the entire Luttinger contour. Thus, the
effective pseudogap Ana(7,6) is clearly not the input
pseudogap of YRZ itself although is related to it. In particu-
lar, at 0=0 Ana(T=0,6=0)/t,=0.27 while A, (0=0)/1,
=(.24. To be very explicit on this point the input pseudogap
Apg(k,x)=A2g[cos(kxa)—cos(kya)]/2 is not zero on the Lut-
tinger contour while Aya(7,6,x) is exactly zero all along
this contour. In Eq. (7a) for the energies E, (x) it is not just
the input A, (k,x) which enters but also ¢, and € evaluated
on the Fermi contour play a role. For x=0.12 [Fig. 9(b)] the
finite value of the superconducting gap at =0 is responsible
for a slight increase in Ay,(T, 8=0) as T goes to zero. In the
ARPES data by Kondo et al.?° no such temperature depen-
dence is observed in their underdoped sample. This is in
reasonable agreement with our results. But no temperature
variation is also observed at optimum doping while here we
find a significant dependence even for x=0.16 as shown in
Fig. 9(a), which represents a case where the superconducting
and pseudogap energy scale are more equal in value. While
the nodal direction provides a measure of the superconduct-
ing gap alone for > 6, p, the empirical pseudogap dominates
the behavior of this curve at values of 4 around the antinodal
direction. But still, there remains noticeable temperature de-
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FIG. 9. (Color online) (a) The normalized energy of nearest
approach Axa(T, 6)/1, for various temperatures as indicated and for
doping x=0.16 as a function of # along the Fermi contour [solid
(white) line in the top-right frame of Fig. 6]. We also show, for
comparison the normalized superconducting gap A.(7,6)/t,. For
angles 6> 6;p the energies of nearest approach correspond to the
superconducting gap because the effective pseudogap is zero on this
part of the Fermi contour along the Luttinger pocket. The case
ANA(T=T.)/ty corresponds to the normal pseudogap state. (b) The
same as (a) but now for x=0.12. The relevant Fermi contour is
found as the solid (white) contour in the left-hand bottom frame of
Fig. 6.

pendence at =0 which reflects the smaller contribution of
the superconducting gap. This fact does not agree with a
possible interpretation of the data by Kondo et al.?® in terms
of a superconducting gap largely confined to the Luttinger
pocket and small or vanishing’ outside where it competes
with the effective pseudogap. Except for the temperature de-
pendence just noted, many other features of these curves are
in qualitative agreement with ARPES data?® which is also
confirmed in some recent STS data on the underdoped
cuprates.’® The energy of nearest approach given in Fig. 9
clearly shows two energy gap scales as does the data of
Kondo et al.?® There is, however, other ARPES data by Chat-
terjee et al.’’ on Bi2212 which shows a single d-wave gap
even for dopings beyond the bottom of the superconducting
dome which is achieved by using thin films. Such data is
interpreted as more consistent with a preformed pair
scenario®® than with competing order theories. The source
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FIG. 10. (Color online) The energies of nearest approach |E§A|
as a function of angle 6 as defined in Fig. 1 for x=0.16. The inset
shows the Fermi contours associated with the two energies Ej of
the YRZ spectrum in the first quadrant of the CuO, Brillouin zone.

of discrepancy between the data is as yet unresolved but
could be related to sample preparation.

ARPES traces the contours of minimum approach associ-
ated with the E,_ branch of the YRZ spectrum and it is this
branch which gives the Luttinger surfaces on which there is
no gap in the normal state. But there are also energies of
nearest approach associated with the Ej branch and these are
shown as the dashed-dotted (blue) curve in Fig. 10 where we
compare the results for |E;| [solid (red) curve] for x=0.16
and T=T,, i.e., normal pseudogap state, no superconductiv-
ity. For angles 6 larger that 20°|E{,(6)| is large while
|[Exa(0)] is zero. For 6<20°, however, the solid (red) and the
dashed-dotted (blue) curve cross and in the antinodal direc-
tion (6=0)|E{,(0=0)]| is the smallest of the two energies.
Note, however, that Ex,(6) =0 and E{,(6) =0 for all 6 and,
thus E,(6) > Eqa(6) for all angles 6. The momentum con-
tour of nearest approach associated with Ex(6) is shown as
the dashed-dotted (blue) curve in the inset of Fig. 10 where it
is compared to the contours from Ey,(6) [solid and dashed
(red) curves]. Finally, the weights associated with Ey,(0
<<20°) are both on the order of one half and in principle both
could be important for some purposes but Ey(x) corresponds
to unoccupied states with positive energy.

So far we kept the magnetic coherence length fixed at a
value £=2.5 in Figs. 6-9. Next we illustrate in Figs. 11 and
12 how the superconducting gap can further change when &
is increased. One might reasonably expect that as the doping
is reduced and the antiferromagnetic state in the cuprate
phase diagram (which is also a Mott insulating state at x=0)
is approached, the magnetic coherence length will increase.
For simplicity we show here only results for x=0.1 and &
increased to 10. Figure 11(a) gives the superconducting gap
A,.(k,T=0) at zero temperature as a function of momentum
k in the BZ of the CuO, plane. Note the four large positive
peaks with corresponding negative images which are well off
the zone boundaries. The height of these peaks reaches
~4.3 meV while at the antinodal point the gap is only 1.2
meV. This is drastically different from the classical d-wave
result represented by the lowest harmonic described earlier.
The corresponding constant gap contours [light (black) lines]
are given in Fig. 11(b) in the first quadrant of the CuO, plane

214521-11



E. SCHACHINGER AND J. P. CARBOTTE

T

FIG. 11. (Color online) (a) Surface graph of the superconducting
gap A, (k,T) as a function of momentum Kk in the two-dimensional
BZ of the CuO, plane. The doping x=0.1 and the magnetic coher-
ence length ¢€=10. (b) Color plot of constant energies of the super-
conducting gap A,.(k,7) in the first quadrant of the two-
dimensional BZ of the CuO, plane.

BZ. We also show the Fermi contour as the heavy solid and
dashed (white) lines. The superconducting gap is radically
changed as compared with its momentum variation seen in
the bottom right-hand frame of Fig. 6. Yet, only the magnetic
coherence length has been altered in these two cases. This is
further illustrated in Fig. 12. In Fig. 12(a) we show our re-
sults for the variation in the superconducting gap at 7=0 on
the Fermi contour for the four values of doping noted. All
exhibit a nonmonotonic behavior with a peak away from the
antinodal direction. This peak moves to larger angles as the
doping is decreased. As the value of the critical temperature
is reduced so is the amplitude of the gap. The case x=0.1 is
further emphasized in Fig. 12(b) where we indicated the
angle 6,=26.5° at which the maximum on the Fermi con-
tour occurs. At this angle A,.=1.83 meV which is 50%
larger than its value at the BZ boundary (~1.2 meV). Both
these values are much smaller than the maximum gap in the
BZ equal to ~4.3 meV. As we saw in Fig. 11, this maxi-
mum occurs in the upper reduced AFBZ and has moved
away from the antinodal direction toward the angle 6 p indi-
cated in Fig. 1. This angle marks the beginning of the Lut-
tinger pocket. These features are a result of the choice of
MMP model pairing potential which is highly peaked when
the magnetic coherence length gets large as indicated sche-
matically in Fig. 1. The (yellow) shaded circle is meant to
represent the range in momentum space of Vy_y_q about the
hot spot defined as the crossing point between the Fermi
contour and the AFBZ. Fermi-contour to Fermi-contour tran-
sitions through momentum transfer q=Q equal to the com-
mensurate magnetic vector (7, ) are in this case strongly
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FIG. 12. (Color online) (a) The superconducting gap A,.(7,x, 6)
for zero temperature as a function of the angle 6 on the Fermi
contour for various values of doping x as indicated in the figure.
The magnetic coherence length ¢=10. (b) The same as above but
for x=0.1 only. We find the gap to critical temperature ratio for the
maximum gap in the BZ 2A ../ (kgT,)=6.0, for the maximum gap
on the Fermi surface 2Apg max/ (kgT.)=2.55, and for the maximum
gap along the antinodal direction 2A s\n_max/ (kgT,.)=1.7.

favored by Vi/_y_q. This leads to an increased contribution of
higher order d-wave harmonics in the superconducting gap
while it adjusts to the decreased effectiveness of the pairing
potential away from momentum transfer q=Q. There is also
a strong increase in the coupling parameter g(x=0.2) with
increasing values of & [see Fig. 3(b)]. An additional effect for
the specific case considered here (x=0.1), is that there is also
a pseudogap on the Fermi contour and this by itself is ex-
pected to reduce the effectiveness of such transitions in the
pairing process as compared with the case of no pseudogap.
Our detailed calculations show that the net result of all this is
a superconducting gap that peaks at 6,;=26.5° in Fig. 12(b)
with Gy larger than 65~ 16.3°. These same effects produce
a nonmonotonic gap in all cases considered in Fig. 12(a).
Clearly the YRZ model retains elements of competing order
scenarios?!?2 where superconductivity competes for Fermi
surface with pseudogap formation. Even for large values of
the magnetic coherence length, however, our numerical re-
sults give nonzero superconducting gap values everywhere
on the Fermi contour and, in particular, in the antinodal di-
rection. Thus, we expect some temperature dependence of
ARPES results in this direction in conflict with what was
found by Kondo et al.?
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EFFECT OF PSEUDOGAP FORMATION ON THE...
V. SUMMARY AND CONCLUSIONS

The ansatz for the superconducting Green’s function pro-
posed by YRZ has had considerable success in providing a
first qualitative and even semiqualitative understanding of
the many properties of the underdoped cuprates previously
considered anomalous. While the theory explicitly treats the
formation of a pseudogap for dopings less than x=xgcp
where xqgcp is the doping concentration at the quantum-
critical point, the superconducting gap itself is treated only
on the level of mean-field BCS and is taken to be a phenom-
enological parameter. Here we have addressed the question
of how the superconducting gap itself is modified when the
pseudogap is included in the normal-state electronic structure
with attendant Fermi surface reconstruction. These represent
profound changes in charge carrier dynamics as the Mott
insulating state is approached. Because of this the supercon-
ducting properties of the underdoped cuprates are radically
altered from the prediction based on ordinary d-wave BCS
theory and so we might reasonably expect corresponding
large changes in the behavior of the superconducting gap as
well. Also the ARPES data of Kondo et al.? shows that the
energy of nearest approach in the antinodal direction is tem-
perature independent and, consequently, could be interpreted
to mean that the superconducting gap is small in the antin-
odal region where it competes with a finite value of the
pseudogap and large only on the Luttinger pocket. Here we
consider both its structure in momentum space within the
two-dimensional CuO, BZ and its evolution with tempera-
ture. The work proceeds through numerical solution of a gen-
eralized superconducting gap equation in which pseudogap
formation is explicitly included. For the pairing potential the
simplest possible form, based on a spin-fluctuation exchange
mechanism is employed. In some calculations included for
comparison, we also use a nearest-neighbor pairing potential.
A fast Fourier transform technique is used to generate the
solutions for the superconducting gap which are found to
involve many higher-order harmonics beyond the lowest or-
der. This is true even when no pseudogap is present and its
structure in k space is strongly modified with changes in the
magnetic coherence length and with increasing pseudogap.
The superconducting gap does not vary with angle 6 on the
Fermi contour according to the simple BCS d-wave assump-
tion ~cos(26) even near the nodal direction. In particular,
for doping values around the QCP it shows concave upward
behavior which becomes more linear in the highly under-
doped regime. This effect is seen in some ARPES (Ref. 50)
as well as FT-STS (Refs. 36, 48, and 49) experiments. As the
magnetic coherence length is increased, as expected when
the antiferromagnetic state is approached more closely, the
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superconducting gap acquires a strong nonmonotonic behav-
ior as a function of @ and can have a maximum at an angle 6
considerably before the antinodal direction is reached. But in
all calculations the superconducting gap amplitude remains
finite and significant in magnitude everywhere on the Fermi
contour away from the Luttinger pocket where it competes
directly with pseudogap formation and so might have been
expected to be suppressed. Consequently, we find that there
will always be some temperature dependence to the energy
of nearest approach in the antinodal direction. This finding is
in disagreement with some interpretation’ of the data by
Kondo et al.?

Another result is that the temperature dependence of the
gap amplitude is altered from its classical mean-field value.
Furthermore, the dimensionless ratio of zero-temperature gap
to critical temperature is strongly affected by the pseudogap
and varies considerably with doping. It is close to its canoni-
cal d-wave BCS value of 4.3 around optimal doping but
increases particularly strongly for x=0.12 rising to values
beyond 6 and this implies that the superconducting dome for
the gap differs from that for the critical temperature. Never-
theless, this change and others described above for the most
part do not result in large qualitative changes in the predicted
properties of the underdoped cuprates as compared with
those based on the simpler ansatz of YRZ. In this sense, our
work justifies this approach as a first attempt at understand-
ing some of the anomalous features found in the underdoped
cuprates. But more subtle effects such as noted above are
missing. What becomes clear from our solutions, however, is
that the coupling strength of the charge carriers to the spin
fluctuations needs to increase as the doping is reduced to-
ward the highly underdoped region of the superconducting
dome. This result is consistent with a dominant spin-
fluctuation pairing mechanism. It is the growth of the
pseudogap which brings down the value of the critical tem-
perature as the antiferromagnetic Mott insulating state is ap-
proached and not a reduction in pairing strength. The elec-
tronic structure simply evolves toward an insulating state
which is unfavorable to superconductivity and, consequently,
the value of the critical temperature goes to zero. A different
choice of pairing potential leads to the same conclusion, i.e.,
the strength of the pairing must increase with decreasing
doping.
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