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The effects of the coupling between two electronic condensates in two-gap mesoscopic superconductors are
studied within the Ginzburg-Landau theory using a finite difference technique. In applied magnetic field, we
derive the dependency of the size of the vortex on the sample size and the strength of the Josephson coupling.
In addition, we elaborate on the dependence of the critical temperature and field on the parameters of the
coupled condensates. We demonstrate further the existence and stability of fractional states, for which the two
condensates comprise different vorticity. Moreover, we also found pronounced asymmetric fractional states and
we show their experimentally observable magnetic response. Finally, we introduce the magnetic coupling
between condensates, and study in particular the case where one band is type II and the other is type I, i.e., the
sample is effectively of I.x type. The calculated M�H� loops show a clear signature of the mixed type of
superconductivity, which we find to be strongly affected by the ratio of the coherence lengths in the two
condensates.
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I. INTRODUCTION

MgB2 is the first superconductor unambiguously shown to
possess two superconducting gaps.1 Since its discovery in
2001,2 a lot of research was conducted on this specific ma-
terial as well as on two-band superconductors in general. In
its class of binary compounds and metallic superconductors,
MgB2 turns out to have the highest critical temperature
known today, Tc=39 K. Its bulk critical field is strongly an-
isotropic: 3.5 T along the c axis of the crystal and 17 T in the
ab plane and can reach as high as 43 T in films.3–5

While the mechanism of its superconductivity is not yet
entirely understood, it has been experimentally proven that
MgB2 has two separate superconducting gaps. For example,
in Refs. 6 and 7 the separately imaging of the � or � bands
was demonstrated. On the theoretical side, one considered
two order parameters to describe the superconducting prop-
erties of MgB2. One of the first Ginzburg-Landau �GL� de-
scriptions of multigap superconductors was developed by
Zhitomirsky and Dao, starting from microscopic theory.8 Fit-
ting to experimental results, the authors pinpointed the val-
ues of several GL parameters relevant for MgB2, and derived
analytical expressions for the critical parameters. In Ref. 9
the same authors discussed the anisotropy of Hc2 within the
GL framework. They considered only the direct exchange of
Cooper pairs between condensates, i.e., the so-called “Jo-
sephson” coupling. In the work of Askerzade et al. a differ-
ent interaction between the bands was investigated—the drag
effect,10–13 which is described in the GL formalism through
the coupling of the gradient terms of the two condensates.
The apparent agreement with experiment led these authors to
fitting parameters for the GL model of MgB2.

MgB2 is generally accepted to be a type-II supercon-
ductor. However, in a very clean sample, Moshchalkov et al.
estimated that one of the bands could be type-I and the other
type-II.14,15 The resulting system exhibits behavior that can-
not be attributed to either type, thus the name type 1.5 su-
perconductivity seemed credible. Indeed, the authors found a

strong clustering of vortices, a phenomenon which they as-
cribe to a combination of attractive and repulsive vortex-
vortex interaction. Actually, Ref. 16 reported a positive sur-
face energy for vortices whenever the coherence lengths of
the two bands are comparable. In Ref. 17 the semi-Meissner
state was predicted theoretically for a two-gap supercon-
ductor and for superconductors which do not belong to either
of the two classes type-I or type-II. The possibility of vorti-
ces carrying noninteger flux was studied in Ref. 18.

Surprisingly, virtually all studies done on two-gap super-
conductors �TGS� up-to-date concern bulk samples. It is
known however that mesoscopic superconductivity bears a
number of fascinating phenomena, ranging from specific vor-
tex states, to enhancement of critical parameters by quantum
tailoring. The only existing example of such a study is the
work of Chibotaru et al. on mesoscopic disks.19 As a novelty,
the authors found that fractional vortex states �when bands
have different vorticity� can be realized in a TGS and can
even be thermodynamically stable. However, those results
turned out to be specific to the case of very weak coupling
and not realistic for MgB2.

In this paper we analyze the fundamental properties and
vortex matter of mesoscopic disk-shaped two-gap supercon-
ductors using the Ginzburg-Landau formalism, where the
electronic exchange between condensates occurs through Jo-
sephson coupling, and magnetic exchange between conden-
sates is allowed for. The latter mechanism has not yet been
studied in detail up to now. The paper is organized as fol-
lows. In Sec. II, after describing the theoretical approach, we
focus on the effects of Josephson coupling on the size of a
vortex core, the unique vortex states and their H-T stability
regions, and the critical temperature and field as a function of
coupling strength. In Sec. III, we introduce the screening of
the magnetic field into the theoretical formalism, and illus-
trate the influence of the magnetic coupling between the two
condensates on the vortex states, particularly in the case of
type I.x superconductivity. Magnetic signatures of the differ-
ent features are discussed in the light of potential observation
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by magnetometry. Finally, our findings are summarized in
Sec. IV.

II. JOSEPHSON COUPLING

A. Theoretical formalism

It is widely accepted that the high critical temperature of
MgB2 arises due to the coupling of the superconducting
bands which effectively reinforce each other. However, the
exact nature of the coupling is not fully understood, and
possible scenarios are the exchange of electrons, Cooper
pairs, interaction between the respective supercurrents, inter-
action through the internal magnetic field, etc. Microscopic
ab initio calculations have not been able to pinpoint the key
interaction. In what follows, we will consider the Josephson
coupling between the bands, resulting from the tunneling of
the Cooper pairs from one band to another. This is incorpo-
rated in the Ginzburg-Landau �GL� energy functional8

through an interaction term dependent on the order param-
eter of both bands and proportional to �, the Josephson cou-
pling strength,

�F =� ��
n=1

2 � 1

2mn
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where �n=�n0�1−T /Tcn� and �n are the GL coefficients, and
n is the band index. This results in a set of nine parameters
describing a two-gap system: �10, �20, �1, �2, the Cooper-
pair mass m1 and m2, �, and the critical temperatures Tc1 and
Tc2. While each band has its own intrinsic critical tempera-
ture, Josephson coupling causes both bands to survive up to
a higher critical temperature, Tc	max�Tc1 ,Tc2�. While the
GL functional is derived for T
Tc, experience with mesos-
copic single-gap superconductors indicates that the GL equa-
tions in practice are valid much deeper into the supercon-
ducting state. In Eq. �1� we then introduce temperature
independent units, in order to rewrite it in a dimensionless
form. We express the free energy of the system in units
of F10=�10

2 /�1, length in units of �10��n0=� /�−2mn�n0�,
the vector potential in A0=�c /2e�10, the order parameters
in �n0=�n0�T=0, �=0, H=0�=�−�n0 /�n and the
temperature in Tc1. This reduces the set of necessary param-
eters to five: �=�10 /�20, �=�10

2 /�20
2 , m=m1 /m2, Tcr

=Tc2 /Tc1, and 
=� /�10. In addition, we have two external
tunable parameters: the temperature T and the applied field
H. The flux � is defined as the externally applied flux. We
first consider an extreme type-II case, and neglect the self-
induced magnetic field in the sample.

The minimization of the energy functional leads to the
two-band GL equations. After the scaling described above,
the equations for the order parameters read:
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This system of nonlinear coupled differential equations
we solve numerically on a square grid of typically 128
�128 points. The details of this procedure can be found in
Ref. 20.

In the following analysis we neglect the screening of the
magnetic field. This is justified for an extreme type-II mate-
rial, or any sufficiently thin sample. An applied vector poten-
tial A= � 1

2Hy ,− 1
2Hx ,0� results in a magnetic response result-

ing from a total supercurrent,
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The free energy functional in dimensionless units reads
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Let us here address several direct implications of Joseph-
son coupling. It is clear from Eq. �1� that the sign of 

determines the relative phase shift between the order param-
eters in the two condensates—either �0 when 
	0 or ��
when 
�0—in order for the coupling term to provide a
negative energy contribution. However, the sign of 
 has no
influence on observables such as the Cooper-pair density and
magnetic response of the sample. The general consequence
of 
 coupling is an injection of Cooper pairs from one band
into the other and vice versa, thus increasing the stability of
the superconducting state. In other words, the average
Cooper-pair density always increases with 
. In the absence
of an applied field, the ratio �=�1 /�2 can be found from


�

m�
�4 + �1 −

T

Tcr
	�3 − �1 − T�� −




�
= 0, �5�

analytically derived from the GL equations. From this we
find that in the limit 
→� a constant ratio �1 /�2�H=0�
=��m� /� is reached, independent of temperature.

The next section is dedicated to an analysis of the size of
the vortex core. Before we get into the physics of the prob-
lem, we here address some numerical issues following from
mapping of the superconducting disk on a square numerical
grid. For obvious reasons, the influence of the resolution of
the numerical grid N, on the observed vortex size RV, is
significant. In Fig. 1�a� we show the RV vs N �definition of
RV is given in the next section�. With increasing grid density,
the numerical error decreases, and the vortex size converges
toward the R0 value with dependence RV=R0+b /N. By a
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fitting procedure R0 and b can be determined and the corre-
sponding curves are represented by the solid lines in the
figure. The dashed lines are the asymptotes with value R0. In
Fig. 1�b� the relative error is plotted as a function of h, the
grid spacing �proportional to sample size and inversely pro-
portional to N�. We conclude that due to numerics the vortex
size is always slightly overestimated, with overshoot increas-
ing for smaller samples �where influence of the boundaries is
more pronounced�. Nevertheless, with a resolution of 10
points per coherence length we get a relative error under 5%.
Although higher grid density obviously improves the results,
we refrain from using a density above 10 points /�, in order
to optimize the speed of the calculation.

B. Size of the vortex core

The coherence length is the characteristic length scale
over which the order parameter changes. It is therefore intui-
tive that the size of the vortex core is proportional to the
coherence length in bulk superconductors. In single-gap ma-
terials, the coherence length is proportional to 1 /�1−T /Tc in
the temperature range where the Ginzburg-Landau theory is
valid. Here we show that in two-gap superconductors the
coherence length is strongly affected by the coupling param-
eter 
, generally in an opposite manner from temperature.
For comparison, we can use the coherence length obtained
from the expression for the second critical field derived in
Ref. 8, through the relation Hc2=�0 /2��2, with �0 being the
flux quantum. Deviations are a priori expected, since already
experiments of Refs. 6 and 7 found a discrepancy between
the vortex size and the coherence length deduced from the
second critical field.

To estimate the coherence length, we will numerically de-
termine the size of the vortex core, a quantity which is not
uniquely defined. In the following calculations, we examine
the single-vortex state in a MgB2 superconducting disk ex-
posed to a field providing three flux quanta through the
sample. For the definition of the vortex size, two possibilities
are considered in the literature: �i� the vortex size is deter-
mined by the distance from the center of the vortex to the
contour where the Cooper-pair density �CPD� recovers to
some percentage of its maximal value in the sample, denoted

as RV,CPD; and �ii� the vortex size is the distance from the
center of the vortex to the first contour where the supercur-
rent js reaches its maximum, denoted as RV,j. The problem of
the first definition is the arbitrary threshold value for the
criterion, but also the fact that we have two Cooper-pair
densities, which makes the single vortex size ambiguous. As
a threshold we take 80%, since this allows for a more precise
vortex size determination, and we will consider only the first
condensate. On the other hand, the second definition in-
volves coupled condensates and thus provides us with a
unique vortex size. We therefore adopt the second definition
to describe the vortex size in the rest of this work. Contrary
to the bulk case, in our mesoscopic disks both definitions
render a vortex size dependent on the radius of the disk RD,
as vortex currents in the center of the sample can interact
with Meissner currents decaying from the edge inward.
However, while RV,CPD in each band saturates for RD→�,
this is not the case for RV,j: it develops a linear dependence
on RD. We extracted the exact dependence of both definitions
of the vortex size RV on the disk size RD, which led us to a
universal formula �valid for both definitions, but with differ-
ent coefficients�,

� 1

RV0
	2

+ � c

RD
	2

= � 1

RV − hRD
	2

, �6�

where RV0 is the vortex size independent of the sample size,
c is a length coefficient and h is the slope of RV vs RD for
large RD. From fitting of our numerical data, collected at
different T, 
, �, and m, we obtained �c=1.90, h=0� for
RV,CPD and �c=3.40, h=0.006� for RV,j. These coefficients
are valid for single gap superconductors as well as for two-
gap superconductors, even when the coherence lengths of the
two condensates are very different �e.g., for small �, see Fig.
2�. The function gives an excellent estimate of the vortex
size for m�1, for disks larger than 5�. As shown in Fig. 2,
deviation from the given function does occurs for specific
choices of m and �, especially for small disks, but the rela-
tive error remains under 5%.

/�
10

FIG. 1. �Color online� �a� The dependence of the observed vor-
tex size RV on the number of grid points in the numerical mesh N.
�b� The relative error in found vortex size vs grid spacing h, for two
different sizes of the superconducting disk.

FIG. 2. �Color online� The relative error of the result of Eq. �6�
compared to the observed vortex size, as a function of disk size, for
indicated different values of parameters m and �, each with three
different combinations of 
 and T in order to cover as large as
possible parameter space in the analysis.
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Both previously given definitions of RV are illustrated in
Fig. 3. When disks are too small, the vortex size is not al-
ways fixed by the disk size only, e.g., when T	Tcr and 

�0.1, when the coherence lengths differ much and the inter-
action of the vortex with the Meissner currents becomes too
different in the two bands. We found however that when
RD	10�10 these mesoscopic effects have only a minor influ-
ence and the correspondence between RV and RD becomes
predictable again.

With the established dependence of the vortex size on the
size of the sample, we can more precisely determine the
actual influence of the coupling 
 on the vortex size. In par-
ticular we will look at the behavior of RV0,j as a function of
T, Tcr, and 
 �parameters � and m remain fixed at realistic
values for MgB2�.

In Fig. 4 the size-independent vortex size RV0 is plotted
versus 
, for different temperatures T and Tcr. The dots rep-
resent the result of our simulations. The general behavior can
be described by the following observed trends: �i� increasing
T induces an increase of the vortex size whereas increasing 

has the opposite effect. �ii� Deviation from the latter mono-

tonic behavior occurs when T�Tcr and the coupling is weak,
see, e.g., the curve at T=Tcr=0.4. The reason for the initial
positive slope is that the second band is revived by the pres-
ence of coupling but retains its own character �i.e., a larger
coherence length� since coupling is still weak. �iii� For T
	Tcr, curves with different Tcr but identical T merge at 

=0 since then only the first condensate survives and fully
determines the vortex size. In Fig. 4, the solid curves repre-
sent an estimate of the vortex size based on the general re-
lation between the coherence length and the upper critical
field in a single gap bulk superconductor Hc2�1 /�2,

� =
�2

�g+��,T,Tcr� +�g−��,T,Tcr�2 + 4

2

m

, �7�

with g��� ,T ,Tcr�=1−T���1− T
Tcr

�, based on the analytical
expression for the critical field of a bulk two-gap supercon-
ductor,

Hc2�T� � 1 − T + ��1 −
T

Tc2

	
+��1 − T − ��1 −

T

Tc2

	�2

+ 4

2

m
, �8�

taken from Ref. 8. We find that the vortex size in our samples
scales with the coherence length as RV0=1.78�, which we
use to plot the curves in Fig. 4. These theoretical curves
coincide rather well with the data for 
	0.25. The reason
for this is that, when coupling becomes sufficiently strong,
both order parameters tend to have a similar spatial distribu-
tion and thus also exhibit a similar vortex size and coherence
length. A good correspondence between the data and the fit-
ted curves is also found for T�Tcr, i.e., when the second
condensate exists solely due to the coupling to the first con-
densate, or in the case of weak coupling and the second
condensate is almost depleted, so that it does not influence
the vortex size. Two regions of discrepancy include T�Tcr
�RV0 behaves nonmonotonic�, and T�Tcr and weak cou-
pling. For the latter case, the formula still predicts RV0�

=0� to be independent of Tcr, while this is clearly not the
case. In this regime the vortex size is found to behave more
like that of a single gap superconductor, but with a different
critical temperature. By fitting we determined a function that
describes the behavior of the vortex size accurately in this
regime as

RV0 =
1.78

�1 − T/�Tcr + 

. �9�

This equation is generally applicable, and effectively shows
our initial premise that 
 has an opposite influence to T.

We notice however that Eq. �7� also contains the depen-
dence on � and m. However, this formula can not adequately
describe the vortex size for m ,� much different from 1, since
the properties of the two condensates can no longer be de-
scribed by a single coherence length. In general we can state

FIG. 3. �Color online� Vortex size, determined through the de-
cay of the Cooper-pair density RV−CPD �a� and determined through
the maximum of encircling currents RV−j �b�, as a function of the
radius of the superconducting disk RD. The solid dots represent the
numerical results, while solid lines show the fit using Eq. �6�. The
dashed lines indicate RV0, the fitting parameter corresponding to the
sample-independent vortex size.

r

r

r

r

r

r

FIG. 4. �Color online� RV0 as a function of 
 and temperature,
for 
�1 and for different values of Tc2. �=m=1.
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that the relation between the coherence length and the critical
field does not hold anymore when the individual coherence
lengths differ too strongly. In Fig. 5 we plot the numerically
obtained RV as a function of m, for a small parameter � �with
thus an acute difference between the coherence lengths in the
two condensates�. The analytic estimate of Eq. �7� is mo-
notonously increasing with m in this case, and is obviously
not useful for comparison with nonmonotonically evolving
curves in Fig. 5.

Let us first analyze the limiting case of extremely large m.
Following from Eq. �2�, the second condensate decouples
from the first one in this limit. At the same time, as seen in
Eq. �3�, the influence of the second condensate on the total
current in the system increases. Therefore, the size of the
vortex RV,j will be fully determined by the second conden-
sate �and its nominal coherence length �2�T�
, provided that
the temperature is below Tcr. Otherwise, the vortex size is
determined solely by the first condensate �and �1�T�
, since
the coupling between the condensates is entirely suppressed
and the second condensate fully depletes.

This helps us to understand the behavior of the vortex size
as a function of m, shown in Fig. 5. At T�Tcr, the initial
increase of m decreases the coupling of the second conden-
sate to the first �m has an opposite effect from 
, see Eq. �2�.
This causes an increase of the apparent vortex size, due to
much larger coherence length of the second condensate ��
=0.1�, and at the same time the increase of m makes the
supercurrent of the second band stronger and thus more de-
terministic for the magnetically detectable size of the vortex
�see Eq. �3�
. Above Tcr these two effects become competing,
since the first will deplete the second condensate and there-
fore reduce its influence while the second enhances the in-
fluence of the second condensate. These competing effects
result in the nonmonotonic behavior of the vortex size vs m
in Fig. 5. At low m, the influence of the large coherence
length in the second condensate dominates, whereas at large
m the coupling disappears and the second condensate de-
pletes. At very large m, all curves for T	Tcr saturate to the
same value, namely the size of the vortex core in the first
condensate, in the absence of a second one.

In Fig. 6 we demonstrate some peculiarities of the depen-
dence of the vortex size on the parameter �. � was swept
down from 1 to 0.005 in a disk with parameters m=�=1,

Tcr=0.5, and RD=4�10. In the absence of coupling, this
sweep increases �20 while �10 is kept constant, as the length
unit of the GL equations. In the presence of coupling, both
the resulting �2 and the resulting �1 will be influenced �i.e.,
the Cooper-pair correlation length in each of the conden-
sates, different from the nominal coherence lengths in each
condensate separately�. Intuitively, one expects that coupling
causes vortex cores in the two condensates to have similar
behavior, and tend toward similar sizes; instead, for decreas-
ing � at temperatures T=0.45 and T=0.7 an increase of RV2
is observed while RV1 decreases. For stronger coupling this
effect becomes even more prominent, compared to the vortex
size at �=1. At lower temperatures �shown for T=0 in Fig.
6�, the behavior of RV,j��� for T=0 is in better concordance
with the intuition: RV1 increases as RV2 increases, with the
effect growing with coupling. However this effect is weak.

To better understand the behavior of the vortex sizes we
will invoke the full free energy expression of Eq. �4�, which
can be written as F=F1+F2+F12, where Fi depends only on
�i and F12 is the Josephson coupling term. The key point
here is that a decrease of � will lower F2 directly, therefore
giving more weight to the other terms F1 and F12, i.e., chang-
ing � reorders the hierarchy of the terms. A stronger F12
stimulates an increase of �1 and �2. Since F2, which regu-
lates the size of �2, becomes less important, �2 will increase
much faster than �1. A similar behavior of the � and RV
curves hints to the link between the two variables. For an
infinite superconductor, sweeping � to zero would cause
both �1 and �2 to diverge. However for a finite �mesoscopic�
superconductor, the vortex size will eventually exceed the
disk size, thereby effectively suppressing the order parameter
and preventing the divergence.

The decrease of RV1 with decreasing � can be ascribed to
the increase of �1. However, in the left panel of Fig. 6 where
temperature is zero, we notice the subtle increase of RV1 with
decreasing �. Here �2 is still relatively large �because of the
low temperature� which causes �1 to feel a strong influence
from �2 due to coupling. As a result, for low T, vortex sizes

FIG. 5. �Color online� The apparent vortex size in a disk with
radius R=30� as a function of m, for different 
 and T. The ratio of
coherence lengths in two condensates is fixed at �20 /�10=3.162, i.e.,
�=0.1.

FIG. 6. �Color online� Top: RV in each condensate as a function
of �, for different 
, T. Bottom: ratio of condensation energies of
the two condensates �logarithmic scale� vs �. When equal to 1,
condensates influence each other with equal strength since m=1.
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will tend to be similar in the two condensates, as we intu-
itively predicted. In the central and the right panel of Fig. 6,
i.e., for higher temperatures, the influence of �2 is reduced,
and the increased order parameter �1 prevails in determining
the vortex size—thus RV1 decreases. In the right panel T
	T2, and the second condensate would be depleted in the
absence of coupling. This creates yet another regime of the
RV��� dependence: initially RV2 now decreases with decreas-
ing � from 1. The second condensate is completely depen-
dent on the first one, and therefore obeys its shape. When �
further decreases, �2 is less modified and an increase of RV2,
is recovered.

Finally we point out one more interesting artifact. In Fig.
7 we show the calculated vortex size as a function of tem-
perature, for very weak coupling, i.e., small 
, and m=�
=1. The observed kink corresponds to the critical tempera-
ture of the second band, and smears out when 
 is increased.
The �
=0, Tcr=0.4� curve starts at the same value as the
�
=0, Tcr=1� curve, since at T=0 there is no dependence of
vortex size on Tcr. This behavior is observable by magnetic
force, scanning Hall probe, or scanning tunneling micros-
copy, and we expect its experimental verification.

For the �
=0, Tcr=1� curve, the superconducting state
and supercurrents in both condensates are identical. There-
fore the vortex size defined on separate condensates as well
as on the combined system will be equal. For this reason the
curve coincides with the �
=0, Tc2=0.4� case for T	Tc2
=0.4, since then the second band is depleted and only the
first band superconducts.

C. H-T phase diagrams

In increasing magnetic field, more vortices penetrate the
superconducting system. It is known that the symmetry of
the vortex states is strongly affected by the symmetry of the
mesoscopic sample, as detailed in Ref. 21. With increasing
temperature, the symmetry of the sample is even stronger
imposed on the vortex matter, and it is therefore no surprise
that in mesoscopic disks most vortex state configurations
collapse into a giant-vortex22 at high temperature. We can
construct an H-T diagram for mesoscopic samples, indicat-

ing the area of stability of states with different vorticity.
Two-gap systems make there no exception, but do comprise
several particularities. In Fig. 8 we displayed the full stability
regions of all possible vortex states with vorticity L�7
in a superconducting disk with parameters �Tc2=0.44, �
=1.33, �=0.844, m=1�,19 which is very similar to MgB2
except for the coupling parameter, where we took signifi-
cantly smaller 
=0.01. This choice provides more complex-
ity to the vortex states, as it allows for different vorticities
and vortex arrangements in the two bands.

Indeed, one difference from the single-gap superconduct-
ing disks is directly visible in Fig. 8, where the stability
regions of composite vortex states are mushroom shaped. In
other words, with increasing temperature, one can exit the
stability range of a particular L state, but then find it again
at higher temperatures. This shape has the following origin:
At high temperatures �Tc2�T�Tc1� the second gap would
be completely depleted if it was not for the coupling. In other
words, the second band depends completely on the first band,
and therefore has the same behavior and features like the
H�T� boundary. However, for low temperatures �T
Tc2� the
second band is still active and retains its own character, and
therefore the stability region boundary follows quite closely
the single-gap stability region.

In the mushroom-shaped areas, the vorticity in the two
bands is the same. However, in the shaded areas we found
vortex states where the vorticity differs from one band to the
other. As a consequence, the overall, apparent vorticity of the
sample is no longer integer! These are the so-called frac-
tional vortex states.

As clearly shown in Fig. 9�a�, the full H-T stability region
of an integer flux vortex state is related to the union of the
H-T stability regions for the given state in the two corre-
sponding single-gap condensates. On the other hand, the
fractional states are found at the intersection of two corre-
sponding single-gap stability regions �see Fig. 9�b�, for the
�L1 ,L2�= �4,5� state
.

FIG. 7. �Color online� The size-independent vortex size RV0 as a
function of temperature �for fixed Tc1 and Tc2�, for several values of

. RD=10�0, m=1, and �=1.

FIG. 8. �Color online� The magnetic flux-temperature stability
regions for different vortex states �vorticity L� in a two-band disk
of size RD /�10=4, and with Tc2=0.44, �=1.33, �=0.844, and

=0.01. In color-coded areas, the vortex state is fractional and can-
not be represented by a single L, but rather as �L1 ,L2� state, where
vorticities in two condensates are given, respectively.
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With increasing coupling parameter 
, the vortex states in
the two condensates are linked together, and moreover rein-
force each other. In Fig. 10 we show the stability region of
the integer flux L=4 state, for three values of 
, where the
H-T stability region grows with 
. We conclude that increas-
ing 
 stabilizes the integer flux states, but for the same rea-
son destabilizes the fractional states. We discuss the latter
further in the following section.

D. Fractional vortex states

The existence of fractional states, i.e., states with different
vorticity in the bands, depends strongly on the coupling.
They survive only at weak Josephson coupling between the
bands, while only integer flux states are possible at large 

values. This is illustrated in Fig. 11, where we show that the
region of stability of fractional states shrinks with increasing
coupling, but also that lower vorticity fractional states are
more resilient to 
. Another interesting aspect of fractional
states is their strong affinity to asymmetry. In both conden-
sates vortices attempt to form a symmetric shell, but due to
coupling and different respective number of vortices, the fi-
nal state becomes asymmetric in most cases. For that reason,
the asymmetry is more apparent at larger coupling 
. We
show several examples through the log plots of the Cooper-
pair density of the chosen states in Fig. 11. Note that the
fractional state not necessarily contains vortices in both con-
densates; for example, inset 1 in Fig. 11 is the �0,1� state.
Due to coupling, the total energy is minimized when regions

with depleted order parameter in two condensates are on top
of each other. As a result, the vortex of the second band is
attracted to the boundary of the sample, where the circulating
Meissner currents strongly suppress the order parameter in
the first band. Inset 2 is the �1,2� state for 
=0, i.e., the
condensates are decoupled. This fractional state is therefore
twofold symmetric, but when we increase 
 we enhance the
asymmetric �1,2� state, as shown in inset 3. One vortex of the
second band is attracted to the vortex of the first band, and
the other is attracted to the edge of the sample. Finally we
show in inset 4 the �4,5� state, at the verge of its stability
region, showing maximally pronounced asymmetry. Four
vortices in both bands sit on top of each other, and the re-
maining, fifth vortex of the second band, breaks the symme-
try and is gradually pulled out of the sample. The found
states look similar to what was found earlier for Coulomb
bound classical particles,23 although underlying physics is
very different.

A two-gap mesoscopic system is a prime example of a
vortex system with competing interactions. Besides the
vortex-vortex interactions in each band, one must take into
account the coupling between order parameters across the
bands, and the mesoscopic effect of the compression of vor-
tices to the interior by the circulating Meissner current that is
maximal at the edge. For example, consider the �0,1� state,
where an outward force originates from the coupling be-
tween the vortex in the second condensate and the suppres-
sion of superconductivity at the edge of the first one. How-
ever, this action competes with the inward force exerted by
the Meissner current. This purely mesoscopic effect leads to
a tunable position of the vortex in this fractional state: while
the Meissner current is roughly the same at a given magnetic
field, the changed coupling between the condensates brings

FIG. 9. �Color online� Illustration on how the stability flux-
temperature regions of integer �a� and fractional states �b� arise
from the single-gap picture.

FIG. 10. �Color online� The stability region of the L=4 integer
flux vortex state, for three different strengths of coupling 
.

1

2

3

4

1 2 3 4

FIG. 11. �Color online� The stability regions in �−
 parameter
space of fractional states with different vorticities in the two bands.
Parameters of the sample are RD /�10=4, �=�=m=1 and T=0. In
insets at the top of the figure, we superimposed the logarithmic
plots of the Cooper-pair density in the two gaps on each other
�red/blue shades for condensates 1/2, respectively� for states indi-
cated in the phase diagram by the red numbers.
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the vortex further to the boundary. This is shown in Fig. 12,
as a transition from a fractional �0,1� vortex state to an inte-
ger L=0 vortex state with increasing coupling.

As fascinating as they are, the fractional states are diffi-
cult to find in the ground state. For example, when the co-
herence lengths of the two bands are the same, then the en-
ergy landscape in both bands—considered as separate single-
gap superconductors—are proportional, i.e., F1=��2 /mF2.
All possible vortex states thus have their ground state in the
same phase space region. The total energy of the system, F
=F1+F2, will therefore be proportional to the single-gap en-
ergy with as a direct consequence that fractional states al-
ways will have higher �or equal� energy compared to the
integer states. To realize fractional states as the ground state,
one therefore needs to make the discrepancy between the
coherence lengths as large as possible. This can be done by
taking � significantly different from one, or by taking tem-
perature close to Tc2, when Tc1	Tc2. In Fig. 13 we show the
stability and ground state regions of the noncomposite states
in a disk of size R=5�10 at temperature T=0.4 �and �=0.5�.

These asymmetric states can be observed in mesoscopic
two-band samples. As main candidates for such an experi-
ment, we select the imaging of only the �-band, as was done
recently in Ref. 6. Alternatively, scanning Hall magnetom-
etry or magnetic force microscopy can both reveal the asym-
metric magnetic response of the sample in the case of a frac-
tional state. We will revisit this point in the section devoted
to magnetic coupling.

E. Superconducting-normal phase boundary

As mentioned in preceding sections, in Refs. 8 and 13 an
expression was derived for the second critical field of a bulk
two gap superconductor, given by Eq. �8�. That expression
contains the dependence of the critical field not just on 
, but
on m and � as well. We have shown that dependence does
not describe the vortex properties in the two-band samples,
but at this point we check its applicability for the estimation
of the upper critical field of mesoscopic two-band disks at a

given temperature. Our results for the dependence of the up-
per critical field on the mass ratio in two bands are shown in
Fig. 14�a�, and demonstrate perfect agreement with Eq. �8�,
provided that the found critical field is scaled by its value at
zero temperature and in absence of coupling.

Equation �8� is further applicable for the estimation of the
H-T superconducting-to-normal phase boundary. Namely,
equating that expression to zero gives the expression for the
critical temperature of the two-band sample,

Tc =
1

2
�1 + Tcr +��1 − Tcr�2 + 4


2

m�
Tcr	 . �10�

This means that the critical temperature of a two gap super-
conductor is always equal or higher than the sum of the
critical temperatures of the two bands, in the case as if there
was no coupling. This observation is in contradiction with
findings of Ref. 24, where it is claimed that also a lower Tc is

FIG. 12. �Color online� Calculated free energy of the fractional
�0,1� state, as a function of Josephson coupling between the bands.
Insets show contour plots of the Cooper-pair density in the second
gap, illustrating how the asymmetry gradually increases with 
 for
taken MgB2 parameters and size of the disk RD=5�10. The 
 sweep
was done along the vertical dashed line in Fig. 13.

FIG. 13. �Color online� The stability regions and the ground
state �colored� regions in �−
-space of the fractional states. Taken
parameters are RD /�10=5, �=0.844, �=1.33, m=1, Tc2=0.44, and
T=0.1, corresponding to MgB2.

FIG. 14. �Color online� �a� The critical field of the mesoscopic
disk Hcr as a function of the mass ratio in two condensates. Param-
eters used are RD=4�10, Tc2=0.5, �=0.1. �b� Idem but now as a
function of �.
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possible, depending on the parameters. The authors obtained
these results from a microscopic derivation.

Above expressions were originally derived for bulk
samples. It is already known that the upper critical field in
mesoscopic superconductors is higher than in bulk,25 and it is
therefore intuitively clear that Eq. �8� would not work for the
case of two-gap mesoscopic disks. In Fig. 15 we show the
numerically obtained critical temperature Tcr and upper criti-
cal field Hcr �corresponding to bulk Hc2� versus 
 in disks of
size R=4�10. We found that both the dependence of critical
temperature and field on 
 obey the dependencies given in
Eqs. �8�–�10�, provided that the critical field is scaled to its
value in the absence of coupling and at zero temperature. In
Fig. 16 we show the calculated Tc�H� boundary for different
coupling strengths. Equation �8� can also be inverted to de-
scribe the dependence of Tc on the applied field. Although
derived for bulk, we find that latter equation nicely fits the
H�T� curves in Fig. 16 for a mesoscopic disk, after the afore-
mentioned scaling of the magnetic field.

III. MAGNETIC COUPLING

In the previous section, we assumed the existence of a
Josephson coupling between two superconducting bands, but
we neglected the screening of the magnetic field. In applied
magnetic field, the magnetic response of a two-band super-
conductor follows from the induced supercurrent:

− �1
2�A� = j�s

= R��1�i � − A� ��1
�
 +

m

�2R��2�i � − A� ��2
�
 .

�11�

Conventionally, the demagnetization and screening effects in
mesoscopic superconductors are expressed through the
Ginzburg-Landau parameter �, being equal to the ratio of
penetration depth � and coherence length �. For that reason,
we reformulate the equations of Sec. II A to introduce �2, the
GL parameter of the second condensate instead of the param-
eter �, the ratio of the order parameters in two bands. We
start from the definitions of � and �,

�n0
2 =

mnc2�n

16��n0e2 �n0
2 =

�2

2mn�n0
,

to derive

�1
2

�2
2 =

m

�2�
, �12�

which we then substitute in the GL equations to obtain

�− i � − A� �2�1 − �1 − T − 
�1
2��1 =

�

m

�1

�2
�2, �13�

�− i � − A� �2�2 − ��1 −
T

Tc2
− 
�2
2	�2 =




�m�

�2

�1
�1,

�14�

− �A� = j�s =
1

�1
2R��1�i � − A� ��1

�
 +
�

�2
2R��2�i � − A� ��2

�
 .

�15�

This form of two-band Ginzburg-Landau equations is par-
ticularly convenient for comparison with the conventional
types of superconductivity. In the single-gap bulk samples,
the value of � above or below 1 /�2 determines the super-
conductor being of second or first type, respectively. For a
two-band sample, this distinction is much more difficult to
establish, since Eqs. �13�–�15� show the direct influence of
not only �1 and �2, but also the Josephson coupling and the
squared ratio of coherence lengths in two condensates �.

Equation �15� also shows that two bands are directly
coupled through the screening currents, and this type of cou-
pling we refer to as magnetic coupling. In Fig. 17 we show
the calculated magnetization of the disk with radius R
=10�10 as a function of the applied field �in absence of Jo-
sephson coupling�, to illustrate how the magnetic field
couples the two bands. We observe: �i� the magnetization of

r

FIG. 15. �Color online� �a� The critical temperature Tcr of a
two-band mesoscopic disk as a function of Josephson coupling 
, in
absence of magnetic field. �b� The upper critical field Hcr vs 
 for
T=0. Dots represent the numerical data, and the solid line is the
result of Eqs. �8�–�10�.

FIG. 16. �Color online� The superconducting-normal phase
H�T� boundary for the sample with parameters RD=4�0, �=1.33,
�=0.844, Tc2=0.44, and m=1, for different values of the Josephson
coupling strength. Different colors of the dots mean different vor-
ticities. Dashed lines are obtained from Eq. �8� with a prefactor
described in the text.
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the coupled system is somewhat higher than the sum of the
two uncoupled systems; �ii� the found cusps are wider, since
the Meissner currents in one band screens the field in the
other band and flux entry is therefore more difficult. The net
field in the interior of the sample is therefore lower, and the
critical field is increased. This is in accordance with existing
experimental findings on MgB2.

However, the information available in literature is also
often confusing. For example, we identified two sets of pa-
rameters, both believed to be correct for MgB2. From Refs.
14 and 16 we extracted �1=3.68, �2=0.66, �=0.068 which
should be valid for a clean sample �single crystal�. In these
works the strength of the Josephson coupling, 
, is not esti-
mated. In the dirty limit, the compound is definitely a type-II
material. Substituting former values into Eq. �12� we obtain
�2 /m�0.59. On the other hand, from Refs. 8 and 19 we
obtain Tc2=0.56Tc1, and �=1.33. For usual Mg11B2 we have

=0.4, m=1, and �=0.844. For the Mg10B2 we found 

=0.28. For irradiated MgB2 samples a mass ratio m�14 has
been observed together with �=0.059.19 Therefore, in the
remainder of the paper, we will not restrict ourselves just to
the particular values of the parameters, but rather focus on
new physics between the two types of superconductivity and
its manifestations.

A. Magnetic vs Josephson coupling

As mentioned above, one of the most fascinating proper-
ties of a two-band system is the possible appearance of frac-
tional states. We argued that those could be observed in ex-
periment through their magnetic response. Using the
preceding theoretical formalism, we can now calculate the
magnetic field in and around the sample, in response to the
applied magnetic field. In Fig. 18 we show the magnetic field
profile emanating from the mesoscopic superconducting disk
in the fractional �0,1� and �1,2� vortex state. The asymmetry
induced by the Josephson coupling is clearly visible and can
be directly imaged in magnetic force microscopy or scanning
Hall probe magnetometry experiments. Additionally, the in-
tegrated magnetic field from such measurements will reveal

the fractional flux carried by these states of noninteger total
vorticity.

In Fig. 19 we show the effect of both Josephson and mag-
netic coupling on the free energy and the vortex states. Fig-
ure 19�a� shows the energy landscape when superconducting
condensates are decoupled. As could be expected, all �L ,L
+1� fractional states are stabilized in the ground state, at
intermediate fields between integer flux L and L+1 states.
�L ,L+2� states also exist, but have significantly higher en-
ergy. The same holds for �L+1,L� fractional states, having
far higher energy than the corresponding �L ,L+1� state. This
can be entirely inverted for a different choice of parameters,
particularly �, which determines the relative coherence
lengths and consequently the ratio of the vortex energy in the
two bands. In the present calculation, we therefore omit the
curves corresponding to �L+1,L� states.

In Fig. 19�b� the Josephson coupling is added. This di-
rectly results in stabilization of the integer flux states in the
ground state, and fractional ones have much higher energy.
Generally, the �L ,L+n� energy increases further and energy
levels follow each other as magnetic field and n are in-
creased.

In Fig. 19�c� we introduced the magnetic coupling, in ab-
sence of the Josephson one. This broadens the stability inter-
vals of all vortex states—integer and fractional—as a conse-
quence of the magnetic screening which lowers the
effectively experienced field by the sample and enhances su-
perconductivity. However, the magnetic response of the
sample is generally of oblate shape �due to the symmetry of
the disk�, and asymmetric states are less favorable than in
case �a�. For that reason, pronouncedly asymmetric �0,1� and
�1,2� states are not present in the ground state. However,
higher fractional states can be found in the ground state since
the ringlike arrangement of vortices and their fields in both
condensates enhance each other, and also follow better the
overall symmetry of the stray magnetic field. Nevertheless,
Josephson coupling is still able to completely remove the
fractional states from the ground state, as shown in Fig.
19�d�. Arguably, at higher vorticity fractional states could
appear in the ground state, since the order parameters in the
two bands will become increasingly similar with increasing
vorticity.

In Fig. 20 we illustrate the flux quantization in a two gap
superconducting disk. As is already known, the flux in

/H
c
2

FIG. 17. �Color online� Magnetization versus applied magnetic
field �M�H�
 loops for a two-gap disk with radius RD=10�10, and
two condensates as single-gap samples, in the absence of Josephson
coupling. Magnetic coupling is included in the calculations, with
parameters �1=3.68, �2=0.66, and �=0.06.

a b

x

FIG. 18. �Color online� The magnetic response of the fractional
�0,1� and �1,2� vortex states in a mesoscopic two gap superconduct-
ing disk with parameters RD=10�0, �1=10, �2=2, �=0.3, 
=0.01,
and T=0. The applied field in �a� is 0.04Hc2 �� /�0=2� and in �b�
0.08Hc2 �� /�0=4�. The dashed line shows the sample boundary.
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single-band mesoscopic samples is not quantized, but it al-
ways is within a contour determined by the zero current.
Therefore we compute the flux �� penetrating the two-band
sample through a contour � inside the sample on which j�s
=0. The result is plotted in the presence of magnetic cou-
pling between the bands to still have some fractional vortex
states left in the ground state. By plotting the whole stability
regions of the states, we noticed that the fractional flux de-
creases with increasing applied magnetic field �i.e., the ap-
plied flux ��. We pinpoint this effect in addition to the find-
ings of Ref. 19, where the authors found the decrease of flux
through contour 
 with increasing temperature. The reason
for the change of the fractional flux with applied field or
temperature is that one of the condensates always depletes

faster than the other �in the present case, the second one�. At
sufficiently high field or temperature, only one band super-
conducts, and the flux through contour � changes toward its
quantized level in the surviving band. In the present case, the
first band is stronger, and the fractional flux decreases toward
vorticity in the first band, i.e., L=1. If the considered state
was a �2,1� one, the fractional flux would increase toward
L=2 level with increasing field or temperature.

B. Magnetization curves

We define the magnetization as: M = 1
4�V��HzdV, where

�H represents the induced magnetic field. In Fig. 21 we plot
the M�H�-loop in a MgB2 disk with radius RD=10�0 and
thickness d=� at T=0, taking the parameters of Ref. 14, i.e.,
�1=3.68, �2=0.66, �=0.068. Although the second band is
conventionally type-I, the shape of the M�H� loop suggests
that the whole system still behaves like a type-II supercon-
ductor, i.e., there is no indication of a type 1.5 superconduc-
tivity reported by Moshchalkov et al.14 We additionally plot-

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a)

b)

c)

d)

FIG. 19. �Color online� Free energy as a function of magnetic
flux for found integer and fractional states with L�4. A linear
background is subtracted from all curves to enhance readability �as
indicated in the labels�. The colors of the curves correspond to the
vorticity, and also indicate the combinations involved in the �two-
colored� fractional states. The ground state is indicated by the color-
coded shaded areas below the curves. Parameters of the sample are
RD=7.5�0, T=0.2, Tcr=0.5, �=0.3, and m=1.

�

FIG. 20. �Color online� The flux quantization in a two gap su-
perconductor bands only coupled by the magnetic field. �� is the
flux measured through the contour �, defined as the contour where
the supercurrent equals zero, as illustrated by the white dashed line
in the inset. The thick solid grey line in the graph depicts the ground
state as a function of applied field.
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FIG. 21. �Color online� M�H� loops obtained by sweeping up
and down the magnetic field for a MgB2 single-crystal disk of ra-
dius RD=10�10.
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ted the magnetization in the absence of Josephson coupling,
which also does not show any qualitative deviation of type-II
behavior. The only influence of the Josephson coupling is an
apparent increase of critical field and a stronger magnetic
response, which is a direct consequence of currents being
strengthened by coupling. However, when we take lower val-
ues of the GL parameters, for example �1=1 and �2=0.2, we
find, as shown in Fig. 22 a behavior of the magnetization
versus field that is neither type-II- nor type-I-like. This state
is characterized by a steep drop of the magnetization at a
field close to the thermodynamical critical field Hc of the
second condensate �Hc

�2��. Due to finite demagnetization ef-
fects, characteristic of type-I samples, the transition is at a
lower field than Hc

�2�. At this transition field, superconductiv-
ity ceases in the second gap, and the magnetization under-
goes a steep drop. The origin of this effect is clearly visible
in the figure, where also the mean Cooper-pair density in the
sample is plotted—the magnetization drop coincides with the
depletion of the second band. Beyond the transition field, the
flux continues to enter the sample gradually, exhibiting the
type-II mixed state of the first condensate, and the overall
behavior of magnetization can be treated as a superposition
of type-I �steep drop� and type-II �gradual decrease� behavior
of the two condensates, each being of different type. The
influence of the Josephson coupling is also striking, as it
smoothes out the drop in the magnetization: the second con-
densate still depletes but at a slower rate due to the exchange
of Cooper pairs with the first condensate. The slope of the
decrease of the mean Cooper-pair density in the second con-
densate still seems to match the slope of the drop in magne-
tization with a remarkable accuracy, although the transition
becomes less abrupt and more reminiscent of a type-I inter-
mediate state with bundles of flux penetrating the sample.

In Figs. 23 and 24 we demonstrate the influence of the
ratio of the coherence lengths, � on the magnetic behavior of
the sample. In Eq. �15�, the supercurrents due to the second
condensate have a prefactor of � /�2

2. Therefore, it is not �2
alone which determines the type of the band and an effective
�2

ef f =�2 /�� can be introduced. Essentially, this suggests that

the self induced field should be proportional to �, and the
results in Fig. 23 are supportive of this. The level of magne-
tization to which the sample jumps after the magnetization
drop should be independent of �, since the second conden-
sate is depleted there. However it turns out that the larger the
magnetization is before the drop, the lower it becomes after
the drop. This follows from the fact that, before the magne-
tization drop, the second condensate is able to provide a
better screening of the magnetic field for the first condensate
when � is larger, but when the second condensate ceases, the
first condensate experiences a large difference in the felt
magnetic field, which in turn allows for a larger flux penetra-
tion and thus a lower diamagnetic response of the sample.

It should be stressed here that the field at which the sec-
ond condensate depletes and the magnetization drops is also
influenced by �. The smaller the coherence length of the
second condensate �higher ��, the smaller the transition field.
This difference is even more prominent in the presence of
Josephson coupling. In other words, the apparent demagne-
tization effect in the type-I part of the magnetization curve is
clearly influenced by the parameter �.

In Fig. 25 we also show the magnetization corresponding
to the sweep-down of the applied magnetic field. At the point

/H
c
2

FIG. 22. �Color online� Solid curves represent magnetization as
a function of applied magnetic field for 
=0 �black� and 
=0.1
�red�, and parameters of the sample �1=1, �2=0.2, �=0.1, RD

=10�10, and T=0. Dashed curves represent the mean Cooper-pair
density in the second condensate.
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FIG. 23. �Color online� Magnetization of the sample versus the
applied field for different values of the ratio between the coherence
lengths in two condensates �. Other parameters of the sample are

=0 �1=1, �2=0.2, RD=10�10, and T=0.
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FIG. 24. �Color online� Idem as Fig. 23, but for finite Josephson
coupling 
=0.1.
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where the second condensate revives the magnetization
jumps up, since there the type-I condensate contributes to the
diamagnetic signal. This jump is less abrupt when 
 is non-
zero. Finally in Fig. 26, the full stability regions of the key
vortex states are given for a mesoscopic type I.x supercon-
ducting disk.

C. Type-I.x vortex states

It is already known that vortices repel each other in
type-II superconductors, form Abrikosov lattice in bulk
samples, but are compressed into geometry dependent mul-
tivortex states and even giant vortex states in mesoscopic
superconductors. In type-I samples however, flux penetrates
the sample in the form of lamellae or tubular flux bundles.26

As we showed above, two band superconductors can show a
bit of both behaviors, called type-1.5 superconductivity by
Moshchalkov et al.14 While we demonstrated the type I.x
behavior through the magnetization loops, they mainly dis-
cussed the vortex-vortex interaction in two-band supercon-
ductors, claiming that it should be short range repulsive and
long range attractive. This of course assumes integer flux
vortex states, or strong Josephson coupling in our model.
However, as we have seen above, a plethora of other vortex

states are possible, not all with integer flux. Therefore, the
vortex-vortex interaction should be discussed separately
within bands �intraband�, and separately between them �in-
terband�. While leaving the detailed analysis for the future,
we here show several prime examples of vortex states that
can be found in two-band mesoscopic disks, that show type-
I.x behavior �however different from Ref. 14�. For example,
we take the disk with radius 10�10 with parameters of the
condensates �1=1, �2=0.2, and �=0.3. As shown in Fig.
27�a� and 27�b�, at larger applied field providing 30 flux
quanta through the sample, we found a L=24 vortex state.
Due to absence of Josephson coupling, two allotropic modi-
fications of the vortex state were found possible. In both, the
vortices in type-I condensate merge into a single domain,
either a ring domain �a�, or a giant-bubble �b�, which is typi-
cal for type-I samples. Actually they are still single vortices,
but have huge overlap, mimicking a normal domain. Vortices
in the type-II condensate remain separate however, but are
forced by magnetic coupling to obey the symmetry of the
intermediate state of the type-I condensate. They therefore
form more or less a conventional multishell state under the
giant vortex in �b�, but are forced to make an unconventional
state with dense shells within the ring domain in �a�. This
type-I-II competition is even more pronounced in the pres-
ence of Josephson coupling, as shown in Fig. 27�c�. In the
first condensate, one can see three giant L=2 vortices and
two L=3 multivortex clusters. This is also the situation in the
second condensate, however the multivortices are now even
closer and also overlap more, mimicking perfect giant vorti-
ces. Due to the Josephson coupling, both condensates influ-
ence each other; as a consequence, the type-I intermediate
state is forced to split into as many bubbles as possible, and
vortices in type-II condensate must group into those bubbles.
As a result, a multivortex of multivortices is formed, clearly
a signature of type-I.x behavior. Similar behavior was also

/H
c
2

FIG. 25. �Color online� Full sweep up and down M�H� loops
with and without coupling. Taken parameters are �=0.3 �1=1, �2

=0.2, RD=10�10, and T=0.

/H
c
2

FIG. 26. �Color online� M�H� for all stable vortex states in a
mesoscopic type-I.x superconducting disk.

a

b

c

FIG. 27. �Color online� Cooper-pair density contour plots of the
first �left� and second �right� condensate. �1=1, �2=0.2, �=0.3,
RD=15�10. In �a� and �b� � /�0=30, L=24, 
=0. In �c� � /�0=15,
L=12, 
=0.02.
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observed in Ref. 27 for a system of classical particles with
short-range attractive and long-range repulsive interaction.

IV. CONCLUSIONS

In summary, we presented a theoretical Ginzburg-Landau
�GL� study of the superconducting state of two-band mesos-
copic disks, where both the influence of Josephson and of
magnetic coupling between the superconducting bands are
discussed. In cases when screening of the magnetic field can
be neglected, we found the dependence of the size of the
vortex core on the strength of the Josephson coupling and
showed that it generally has an influence opposite to the one
of temperature. In limiting cases, our numerical findings
agree well with analytic expressions available in literature.
We also found a fitting function, which gives an excellent
estimate of the size of the vortex core as a function of the
size of the mesoscopic disk. In our further analysis of the
vortex states, we focused mainly on exotic, fractional states,
where two condensates comprise different number of vorti-
ces and the apparent total vorticity of the sample is frac-
tional. We reported asymmetric vortex states following from
competing interactions in the two-band mesoscopic system,
and showed how some states can be manipulated by, e.g.,
coupling between the bands. We indicate how such states can
be experimentally observed. Fractional states can even be
found in the ground state, but typically far from the S/N
boundary. We give the expression for the upper critical field

of a two-band mesoscopic disk as a function of temperature,
which is similar to analytic estimations for bulk, however
scaled to its value at zero temperature for zero coupling be-
tween the condensates.

When magnetic screening and coupling between the
bands is included in the simulations, we characterized the
response of the sample through the competition of the GL
parameters of the two bands �with special attention to the
case when one band is type-II and the other is type-I�. How-
ever, we show that this is insufficient, and that Josephson
coupling and the ratio of the coherence lengths in the two
bands also play an important role. Although we did not find
evidence for type-1.5 superconductivity in clean MgB2 disks,
we did find its manifestation for a different choice of relevant
parameters. The magnetization vs applied field shows a dis-
tinct jump at the field where type-I condensate ceases, and
the overall shape of the curve can surely be characterized as
type-I.x-like. This is also evident in the found vortex states in
the latter case, which are a combination of single vortices
and lamellar domains.
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