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A Gutzwiller-type variational wave function is proposed for the neutron resonance mode in the cuprate
superconductors. An efficient reweighting technique is devised to perform variational Monte Carlo simulation
on the proposed wave function which is composed of linearly superposed Gutzwiller projected Slater deter-
minants. The calculation, which involves no free parameter, predicts qualitatively correct behavior for both the
energy and the spectral weight of the resonance mode as functions of doping.
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I. INTRODUCTION

The �� ,�� resonance mode observed by neutron scatter-
ing in the cuparte superconductors is among the most promi-
nent phenomena in these systems.1–4 Below the supercon-
ducting transition temperature Tc, a sharp peak is observed in
the spin-fluctuation spectrum around �� ,��. The mode is
found to have close correlation with superconductivity of the
system. For example, the mode energy, which is temperature
independent, is found to scale linearly with Tc as a function
of doping. At the same time, the intensity of the mode is
found to have the similar temperature dependence as the su-
perfluid density.

Much theoretical efforts have been devoted to the under-
standing of the origin of the neutron resonance mode and its
correlation with superconductivity.5–11 Among these theories,
the random-phase approximation �RPA�-like theory, which
takes the resonance mode as a spin-one bound state in the
particle-hole channel �spin exciton� induced by the residual
attractive interaction between the Bogliubov quasiparticles in
the superconducting state, is the most popular. In this theory,
the dynamical spin susceptibility is given by

��q,�� =
�0�q,��

1 − U�q��0�q,��
, �1�

here �0�q ,�� is the bare spin susceptibility of the BCS su-
perconducting state determined by both the band dispersion
and the gap function. U�q� is the phenomenological RPA
correction factor chosen to fit the experimental data. In the
RPA theory, the superconducting gap sets a natural energy
scale for the resonance mode below which the mode is
stable. At the same time, when the system approaches the
antiferromagnetic ordering instability under RPA correction,
the mode will evolve into the Goldstone mode of the ordered
state and its energy will approach zero. Thus, the energy of
the resonance mode in the RPA theory is determined by both
the magnitude of the superconducting gap and the strength of
the antiferromagnetic correlation.

Although the RPA theory can account for some aspects of
the neutron resonance mode, it is to a large extent, a phe-
nomenological theory. The band dispersion of the quasipar-
ticle and the RPA correction factor U�q�, on which the result
of RPA calculation depends sensitively on, are subjected to
fine tuning. Some attempts had been made to apply the RPA

theory at a more microscopic level and had received some
success.7,8 However, a direct application of the RPA theory
for the slave Boson mean-field theory of the t-J model8 has
resulted in too large a doping range �0�x�0.2, x is doping
concentration� in which the system is unstable with respect
to antiferromagnetic ordering. At the same time, neither the
phenomenological RPA theory nor the RPA correction on the
slave Boson mean-field theory of the t-J model respects the
local-spin sum rule of the t-J model, �dqd�S�q ,��= �1
−x� 3

4 , as a result of their neglect of the no double-occupancy
constraint of the t-J model.

In this paper, we propose a variational description for the
neutron resonance mode with a Gutzwiller projected wave
function. Our approach can be taken as the generalization of
the usual RPA theory into the Hilbert space satisfying the no
double occupancy constraint of the t-J model. The approach
has the virtual that it is parameter free: the RPA correction is
automatically done through the variational procedure. We
also devise an efficient algorithm to do Monte Carlo simula-
tion on the variational wave function we proposed. Numeri-
cal calculation shows that our variational description of the
neutron resonance mode captures its basic characteristics
very well.

The paper is organized as follows. In the next section, we
introduce the variational ground state and present the result
of the single-mode approximation �SMA� on which the result
of our variational calculation would compare to. We then
introduce our variational wave function for the neutron reso-
nance mode and the numerical technique to do Monte Carlo
simulation on it. Then we present our numerical results and
offer a discussion on the results. Finally, we conclude this
paper with some further problems to be addressed in the
future.

II. SINGLE-MODE APPROXIMATION

We take the t-J model as the basic model to describe the
physics of high-Tc superconductors

H = Ht + Ht� + HJ,

Ht = − t �
�i,j�,�

�ĉi,�
† ĉj,� + H.c.� ,
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Ht� = − t� �
��i,j��,�

�ĉi,�
† ĉj,� + H.c.� ,

HJ = J�
�i,j�

�S� i · S� j −
1

4
ninj� . �2�

Here ĉj,� is the constrained electron operator satisfying the
constraint ��ĉi,�

† ĉi,��1. ��i,j� and ���i,j�� represent the sum
over nearest-neighboring and next-nearest-neighboring
�NNN� sites. Here we take t�

t =−0.25 to describe hole-doped
system. The exchange term is fixed at J

t = 1
3 .

The no double-occupancy constraint ��ĉi,�
† ĉi,��1 is cru-

cial for the spin dynamics of the system. With this constraint,
the electron behaves like mobile s= 1

2 spin rather than usual
free electron. More quantitatively, the spin structure factor in
the t-J model satisfies the following local-spin sum rule:

	 dqd�S�q,�� = �1 − x�
3

4
�3�

in any physical state, here x is hole density. When the con-
straint is relaxed, as is done in slave Boson mean-field theory
or phenomenological RPA theory, the spin fluctuation would
be strongly suppressed and no such sum rule would apply.

To satisfy the local-spin sum rule of the t-J model, the
variational ground state, on which to construct the variational
excitations, must respect the no double-occupancy con-
straint. The Gutzwiller projected d-wave BCS state,12–15

which satisfies the no double-occupancy constraint and for
long has been known as an excellent variational description
of the ground state of the system, is the most natural choice
for this purpose.

Thus our variational ground state is given by


�g� = PNPG
d − BCS� = PG��
i,j

a�i − j�ci,↑
† cj,↓

† �N/2

0� ,

�4�

in which PN is the projection operator into the subspace with
N electrons and PG is the Gutzwiller projection operator into
the subspace of no double occupancy, a�i− j�=�k

vk

uk
eik�ri−rj� is

the real-space wave function of the Cooper pair with
vk

uk

=
�k

	k+Ek
. Here, Ek=�	k

2+�k
2, 	k, and �k are given by

	k = − 2�cos kx + cos ky� − 4tv� cos kx cos ky − 
v,

�k = 2�v�cos kx − cos ky� , �5�

in which tv� , 
v , �v are variational parameters to be deter-
mined by the optimization of the ground-state energy with
respect to the t-J model. We note tv� , 
v , �v are just varia-
tional parameters, rather than real NNN hoping term, real
chemical potential, and real superconducting gap.

Now we construct the spin excitation on the variational
ground state. As a first approximation to �� ,�� resonance
mode, we adopt the single-mode approximation of the form


�Q
0 � = SQ

+ 
�g� , �6�

in which SQ
+ is the creation operator of the spin-density ex-

citation at Q= �� ,��. As the variational ground-state satisfies
the no double-occupancy constraint, the spin-excitation spec-
trum is guaranteed to obey the local-spin sum rule.

The single-mode approximation is a good approximation
when the spin-fluctuation spectrum is dominated by the con-
tribution form the resonance mode. The excitation energy in
the single-mode approximation can be calculated in the stan-
dard way

EQ =
��Q

0 
H
�Q
0 �

��Q
0 
�Q

0 �
− Eg, �7�

where Eg denotes the ground-state energy. Assuming that
H
�g�=Eg
�g�, we have

EQ =
1

2

��g
�SQ
− ,�H,SQ

+ �
�g�
��g
SQ

− SQ
+ 
�g�

. �8�

Using the commutation relation

�ĉi,�
† ,Sj

+ = − �ij��,↓ĉi,↑
† ,

�ĉi,�,Sj
+ = �ij��,↑ĉi,↓, �9�

in which ĉi,�
† is the constrained electron-creation operator at

site i and Sj
+ is spin-lifting operator at site j, the mode energy

in the single-mode approximation can be shown to be given
by

EQ =

− ��g
Ht
�g� −
8

3
��g
HJ
�g�

��g
SQ
− SQ

+ 
�g�
. �10�

It is interesting to note that the Ht� term of the Hamiltonian
does not contribute when Q= �� ,��.

The mode energy calculated from Eq. �10� is shown in
Fig. 1. Two things are to be noted here. First, EQ increases
monotonically with doping, consistent with observation in

FIG. 1. The resonance energy determined from the single-mode
approximation as a function of doping. The inset shows the struc-
ture factor at Q= �� ,�� �divided by the number of lattice sites, Ns�
as a function of doping.
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the underdoped regime. Second, EQ approaches zero at half
filling in the thermodynamic limit. The monotonic increase
in EQ is due to the rapid decrease in the spin-structure factor
as a function of doping which overcompensates the increase
in the absolute value of the kinetic energy and the exchange
energy. The second is, in fact, a reflection of the Goldstone
theorem. At half filling, the spin-structure factor calculated
from 
�g� scales superlinearly with the number of lattice site
Ns �MQ

2 = ��g
SQ
− SQ

+ 
�g� / ��g 
�g��Ns
4/3� as a result of the

long-range correlation induced by the Gutzwiller
projection.14 However, kinetic and exchange energies are by
definition proportional to Ns. Thus EQ must approach zero at
half filling as Ns→. This is to be compared with the mean-
field prediction that MQ

2 �Ns at all doping which imply that
EQ remains finite even at half filling. Thus the Gutzwiller
projection in our wave function plays a key role to recover
the correct trend of the mode energy as a function of doping.

The mode energy calculated by the single-mode approxi-
mation is, in fact, the center of gravity of the spin fluctuation
spectrum at Q= �� ,�� and thus overestimates the energy of
the resonance mode which lies at the bottom of the spin-
fluctuation spectrum. In fact, the single-mode approximation
we adopted above has nothing to say about the very exis-
tence of the resonance mode. This is especially clear at large
doping when the mode energy predicted by Eq. �10� stretches
into the particle-hole continuum. Thus, although the single-
mode approximation gives correctly the trend of the mode
energy as a function of doping, it is too crude to give a
quantitative answer on both the mode energy and mode
weight.

It should be noted that the energy calculated from Eq. �10�
with the variational ground state is only a approximation to
the single-mode approximation energy �as we have made the
assumption that H
�g�=Eg
�g��. Thus, although Eq. �10� is
by definition positive definite, the true single-mode approxi-
mation energy can be negative when the system become un-
stable with respect to magnetic ordering at Q= �� ,��. We
will encounter this situation below when we calculate the
single-mode approximation energy directly from Eq. �7�.

III. PROJECTED SPIN-EXCITON WAVE FUNCTION

In the RPA theory, the resonance mode is interpreted as a
spin exciton: a spin-one particle-hole bound state below the
superconducting gap induced by the residual interaction be-
tween the Bogliubov quasiparticles. The wave function for
the spin exciton can be generally written as


�̃Q� = �
k

�k�k↑
† �Q−k↑

† 
d − BCS� , �11�

in which �k describes the relative motion of the two quasi-
particles �k↑

† and �Q−k↑
† within the bound state. 
d−BCS� de-

notes the BCS mean-field ground state and �k↑
† denotes the

creation operator for the Bogliubov quasiparticles.
As we have shown, the mean-field state fails to satisfy the

local-spin sum rule. For this reason, we project the spin-
exciton wave function Eq. �11� into the subspace of no
double occupancy to construct a variational wave function
for the resonance mode with �k as the variational parameter
to be determined by optimization of energy.


�Q� = PNPG
�̃Q� = �
k

�k
k,Q� , �12�

in which


k,Q� = PNPG�k↑
† �Q−k↑

† 
d − BCS� . �13�

We note that the wave function of the single-mode approxi-
mation can also be cast into the form of Eq. �12�, i.e.,


�Q
0 � = PNPGSQ

+ 
d − BCS�

= �
k

PNPGck+Q,↑
† ck,↓
d − BCS�

= �
k

�k
0
k,Q� , �14�

in which �k
0=uk+Qvk. Here we have used the fact that SQ

+

commute with both PN and PG.
The variational parameters �k can be determined by mini-

mizing the energy of 
�Q� with respect to the t-J Hamil-
tonian. The variational energy is given by

EQ =
��Q
Ht-J
�Q�

��Q
�Q�
=

�
k,k�

�k
�Hk,k��k�

�
k,k�

�k
�Ok,k��k�

, �15�

in which

Hk,k� = �k,Q
Ht-J
k�,Q� �16�

is the matrix element of the t-J Hamiltonian in the basis

k ,Q� and

Ok,k� = �k,Q
k�,Q� �17�

denotes the overlap integral between these nonorthogonal ba-
sis function �note that �k↑

† �Q−k↑
† 
d−BCS� form a orthogonal

basis set before the Gutzwiller projection�.
The problem of minimizing EQ respect to the set of varia-

tional parameters �k now reduces to solving the following
generalized eigenvalue problem:

�
k�

Hk,k��k� = ��
k�

Ok,k��k�. �18�

It is easily seen that the optimized energy EQ is given by the
lowest eigenvalue � of the above generalized eigenvalue
problem.

The above optimization procedure can also be interpreted
as rediagonalizing the t-J Hamiltonian in the subspace
spanned by the set of nonorthogonal basis function 
k ,Q�.
With this understanding in mind, we can even construct
variationally the full spin-fluctuation spectrum as follows:

S�Q,�� = MQ
2 �

n,k,k�


�k
n�Ok,k��k�

0 
2��� − �En − Eg� , �19�

in which �k
n denotes the nth eigenvector of the generalized

eigenvalue problem with the eigenvalue En, Eg denotes the
variational ground-state energy �here we assume that �k and
�k

0 are so chosen that both 
�Q� and 
�Q
0 � are normalized�.

As �k
n forms a orthonormal basis with respect to the overlap
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matrix Ok,k�, i.e., �k,k��k
n�Ok,k��k�

m =�n,m, we have

	 d�S�Q,�� = MQ
2 �

n
��

k,k�

�k
n�Ok,k��k�

0 �2

= MQ
2 �

k,k�

�k
0�Ok,k��k�

0 = MQ
2 , �20�

in which we have used the fact that

�
n,k

�k1

n�Ok2,k�k
n = �k1,k2

, �21�

which can be derived from the orthonormality of the eigen-
vectors of the generalized eigenvalue problem Eq. �18�,

�
k,k�

�k
n�Ok,k��k�

m = �n,m. �22�

Thus our variational construction of the spin-fluctuation
spectrum respects the local-spin sum rule of the t-J model.

Our variational scheme for the resonance mode has the
advantage that it involves no tunable parameter: the param-
eters in 
�g� is determined by optimizing the ground-state
energy and the spin-exciton wave function �k is determined
by solving the generalized eigenvalue problem. The RPA cor-
rection is thus automatically taken into account in our for-
malism.

From the above discussion, we know the single-mode ap-
proximation can be taken as a special case of the projected
spin-exciton wave function �with �k=�k

0=ukvQ−k�. Thus by
construction, the resonance energy calculated from Eq. �18�
should be lower than that calculated from single-mode ap-
proximation. In fact, the mode energy calculated from the
single-mode approximation gives the center of gravity of the
spin-fluctuation spectrum while the resonance mode lies at
the bottom of the spectrum. As the single-mode approxima-
tion already reproduces the correct trend for the mode energy
as a function of doping in the underdoped regime, we can
even expect our variational scheme to produce quantitatively
reasonable result.

IV. REWEIGHTING TECHNIQUE

To calculate the energy of the resonance mode, we should
first evaluate the matrix element of the Hamiltonian in the set
of strongly correlated basis functions 
k ,Q�, Hk,k�, and the
overlap matrix element Ok,k�. This can be done, in principle,
by the variational Monte Carlo �VMC� method. For example,

to evaluate
Hk,k�
Ok,k

=
�k,Q
Ht-J
k�,Q�

�k,Q
k,Q� , we first expand 
k ,Q� in an
orthogonal basis 
Ri�, i.e.,


k,Q� = �
Ri

�k�Ri�
Ri� , �23�

where ��Ri� is the wave function of 
k ,Q� in this basis. Then
we have

Hk,k�

Ok,k
=

�
Ri


�k�Ri�
2
H�k��Ri�

�k�Ri�

�
Ri


�k�Ri�
2
, �24�

in which

H�k��Ri� = �
Ri�

�Ri
H
Ri��
�k��Ri��

�k�Ri�
. �25�

Then we sample the basis space 
Ri� with the weight 
�k�Ri�
2
and do the sum with the standard VMC technique.13

The above procedure, though straightforward, is very in-
efficient. In our problem, there are Ns

2 Hamiltonian matrix
elements Hk,k� and Ns

2 overlap matrix elements Ok,k� to be
evaluated. For lattice of reasonable size, say, 14�14, the
number of the matrix elements to be evaluated would exceed
40 000 even take into account the Hermitian property of
Hk,k� and Ok,k�. This is very time consuming. At the same
time, the naive approach has the drawback that it involves
large statistical error in the simulation. This can be seen as
follows:

Ok,k�

Ok,k
=

�
Ri


�k�Ri�
2
�k��Ri�

�k�Ri�

�
Ri


�k�Ri�
2
. �26�

Thus, when the node of �k�Ri� and �k��Ri� do not coincide
with each other, we will run into trouble when we sample
�k�Ri� around its node as the fluctuation of

�k��Ri�
�k�Ri�

becomes
large. A way to reduce the statistical error caused by the
fluctuation of

�k��Ri�
�k�Ri�

is to sample the combined weight
W�Ri�= 
�k�Ri�
2+ 
�k��Ri�
2 rather than 
�k�Ri�
2,

Ok,k�

Ok,k
=

Ok,k�

Ok,k + Ok�,k�
/

Ok,k

Ok,k + Ok�,k�
. �27�

Now the calculation of
Ok,k�

Ok,k+Ok�,k�
can be done as

Ok,k�

Ok,k + Ok�,k�
=

�
Ri

W�Ri�
�k

��Ri��k�Ri�
W�Ri�

�
Ri

W�Ri�
. �28�

The combined-weight samples symmetrically between
�k�Ri� and �k��Ri� and avoids the fluctuation caused by their
uncommon nodes. Thus the statistical error is much reduced.

The above technique can be easily generalized to calcu-
late all the Ns

2 overlap matrix elements Ok,k�. Here we sample
the combined weight of all the Ns 
�k�Ri�
2: W�Ri�
=�k
�k�Ri�
2. The calculation is done as follows:
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Ok1,k2

�
k

Ok,k

=

�
Ri

W�Ri�
�k1

� �Ri��k2
�Ri�

W�Ri�

�
Ri

W�Ri�
. �29�

To sample W�Ri�, we note that

W�Ri� = 
�k0
�Ri�
2�

k
� �k�Ri�

�k0
�Ri�

�2

�30�

and

�k1

� �Ri��k2
�Ri�

W�Ri�
=

��k1
�Ri�

�k0
�Ri�

���k2
�Ri�

�k0
�Ri�

�
k
� �k�Ri�

�k0
�Ri�

�2 , �31�

in which �k0
is one basis function arbitrarily chosen from the

Ns basis functions. From this transformation, we see all we

need to calculate in order to evaluate
Ok1,k2

�kOk,k
is the Ns ratio

between basis functions
�k�Ri�
�k0

�Ri�
. As the different basis func-

tions are all Slater determinant differing with each other by
at most in a pair of quasiparticle excitations, such ratio is
easy to calculate using the inverse updating technique for
Fermion determinant. More importantly, the calculation of
all the Ns

2 overlap matrix elements can be done in a single
Monte Carlo simulation: the algorithm is highly parallelized.

The calculation of the Hamiltonian matrix elements can
be done similarly. We have

Hk1,k2

�
k

Ok,k

=

�
Ri

W�Ri�
�k1

� �Ri� � H�k2
�Ri�

W�Ri�

�
Ri

W�Ri�
, �32�

where H�k2
�Ri�=�Rj

�Ri
Ht-J
Rj��k2
�Rj�. Following the same

reasoning, we arrive at

�k1

� �Ri� � H�k2
�Ri�

W�Ri�
=

��k1
�Ri�

�k0
�Ri�

��H�k2
�Ri�

�k0
�Ri�

�
k
� �k�Ri�

�k0
�Ri�

�2 . �33�

Thus the calculation of the Hamiltonian matrix elements in-

volves the evaluation of the ratio
H�k2

�Ri�

�k0
�Ri�

. The calculation of

this ratio, though numerically more demanding, is still highly
parallelized.

Thus the reweighting technique developed here not only
reduce considerably the statistical error involved in the
Monte Carlo simulation but also highly parallelize the calcu-
lation of the overlap and Hamiltonian matrix elements, re-
ducing their calculation from the order of Ns

2 to a single
Monte Carlo simulation.

V. NUMERICAL RESULTS

To calculate the energy of the neutron resonance mode,
we first optimize the variational parameters tv�, 
v, and �v as
a function of doping for the ground state. The calculation is
done on a 14�14 lattice with periodic-antiperiodic boundary
condition. We choose J

t = 1
3 and t�

t =−0.25 in the t-J model to
describe a hole-doped cuprate. The results of the optimized
variational parameters as a function of doping are shown in
Figs. 2 and 3.

We note the superconducting region determined by the
variational approach for the t-J model is considerably larger
than that observed in experiments. In Fig. 3, we plot the
off-diagonal long-range order �ODLRO� calculated from the
optimized variational ground state. The ODLRO is defined
as

FIG. 2. �Color online� The optimized variational parameters as a
function of doping.

FIG. 3. �Color online� The optimized pairing parameters as a
function of doping and the off-diagonal long-range order calculated
from the variational ground state.
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� =� 1

Ns
�

i

��̂i�̂i+RM

† � , �34�

in which �̂i= �ci+x,↓ci,↑−ci+x,↑ci,↓�− �ci+y,↓ci,↑−ci+y,↑ci,↓� is the
Cooper pair annihilation operator at site i, RM is the largest
distance on the finite lattice. We find the ODLRO reaches its
maximal around x�26%. We will take this doping concen-
tration as an estimate of the location of the optimal doping in
the following discussion.

After obtaining the variational parameters of the ground
state we are now ready to calculate the Hamiltonian matrix
elements Hk,k� and the overlap matrix elements Ok,k�. This is
the most heavy part of our numerical calculation. In our cal-
culation, we have sampled more than two and a half million
configurations with the weight W�Ri�. The accept ratio is
tuned to be 1

2 . The statistical error is found to be smaller than
the fluctuation caused by the finite-size effect in our calcula-
tion.

When we get the matrix elements Hk,k� and Ok,k�, we
solve the generalized eigenvalue problem Eq. �18� and cal-
culate the physical quantities that we are interested in. First
we show the spin-fluctuation spectrum calculated in this
variational approach in Fig. 4. We see the spectrum consists
of both a coherent peak and a continuum of incoherent spin
fluctuation. The coherent peak at the bottom of the spectrum
is nothing but the neutron resonance mode in our variational
description.

Figure 5 shows the mode energy as a function of doping.
We find the mode energy becomes negative below a critical

doping around x=7.5%. A negative excitation energy indi-
cates magnetic instability of the system. The critical doping
so determined is close but slightly lower than that deter-
mined by assuming directly a magnetic order in the varia-
tional ground state, which is about 10%.15 In whole doping
range in which the mode has nonzero spectral weight, the
mode energy is a monotonically increasing function of dop-
ing and reaches about 0.3t before it loses its weight and
merges into the particle-hole continuum at about x=29%. If
we take t=0.25 eV as is usually done in the literature, we
get the maximum of the mode energy to be about 75 meV,
about a factor of 1.8 larger than that observed in optimally
doped YBa2Cu3O6.93.

1

In our theory, the mode energy increases monotonically
with doping. This is consistent with experiments in the un-
derdoped regime but may have inconsistency with experi-
ment in the overdoped regime, where experiment reported

FIG. 4. �Color online� The spin-fluctuation spectrum at q
= �� ,�� as a function of excitation energy and doping determined
from the variational calculation. The calculation is done on a 14
�14 lattice. The delta function peaks of the spectrum are broadened
into Lorentzian peaks with a width of 0.1t.

FIG. 5. �Color online� The mode energy determined by our
variational approach as a function of doping as compared with the
result of SMA.

FIG. 6. The relative spectral weight of the resonance mode as a
function of doping. The inset shows the result of the absolute spec-
tral weight.
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evidence of a weak-resonance mode with an energy slightly
lower than that of the optimally doped system.4 If we take
the doping at which the ODLRO reaches maximum �x
=26%� as the optimal doping, then the resonance mode will
survive in the slightly overdoped regime with an energy
higher than that of the optimal doped system. This would
imply a breakdown of the linear scaling between the mode
energy and Tc in the slightly overdoped regime.

Figure 6 shows the relative and the absolute spectral
weights of the resonance mode calculated from our theory.
The relative spectral weight is defined as the proportion of
the mode intensity to the total spectral weight at Q= �� ,��,

W =

��Q

0 
�Q�
2

��Q
0 
�Q

0 �
. �35�

The absolute spectral weight is defined as the product of the
relative spectral weight and the spin-structure factor divided
by Ns. The absolute spectral weight decreases rapidly with
doping as a result of the decrease in both the magnetic struc-
ture factor and the relative spectral weight. The relative spec-
tral weight of the resonance mode decreases from unity at
half filling down to zero at about x=29%. The unity of the
relative spectral weight come from the long-range correlation
of spin at half filling and indicates that the resonance mode
can be connected smoothly to the Goldstone mode in the
magnetic ordered state.

VI. DISCUSSION

In this paper, we proposed a variational theory for the
neutron resonance mode in the cuprate superconductors. Our
theory has the virtue that it involves no free parameter and
thus has much larger predictive power than the phenomeno-
logical RPA treatment of the spin fluctuation. In our theory,
the RPA correction is automatically taken into account by the
variational procedure which reduces to solving a generalized
eigenvalue problem. More importantly, our variational ap-
proach builds in the no double-occupancy constraint and thus
satisfies the local-spin sum rule of the t-J model. This is of
vital importance for a correct description of the spin dynam-
ics of cuprates. Our approach has the further advantage that
it provides a physical transparent understanding of the reso-
nance mode as a spin exciton in the physical subspace of no
double occupancy.

Our approach can also be taken as diagonalizing the
Hamiltonian in a truncated subspace with the same quantum
number as the excitation discussed and can be used to calcu-
late the full spectrum rather than the coherent excitation only.
It is important to note this truncated subspace exhaust the
spectral weight for the relevant sum rule, indicating the rel-
evance of the spectrum calculated in this way. An effort to
apply the current approach to calculate the spin-fluctuation
spectrum at momentum other than �� ,��, namely, the in-
commensurate spin-fluctuation spectrum, is now under in-
vestigation.

We have also devised a very efficient reweighting tech-
nique to tackle the numerical problem of simulating the
variational wave function composed of N linearly superposed

Slater determinants. The key for the efficiency of the algo-
rithm is the observation that the Slater determinants involved
in our wave function differ with each other by at most a pair
of quasiparticle excitations. Obviously this technique can be
applied in a much larger literature than simulating the phys-
ics of cuprates.

As we have found in the single-mode approximation, the
center of gravity of the spin-fluctuation spectrum increases
monotonically with doping as a result of the rapid decrease
in the spin-structure factor at Q= �� ,��. We find the reso-
nance mode, which lies at the bottom of the spin-fluctuation
spectrum, inherits this monotonic behavior, probably for the
same reason. As we have mentioned above, this may have
potential conflict with the report of weak-resonance mode in
the overdoped sample with an energy lower than that of the
optimal doped system4 and would imply the breakdown of
the Tc−Er linear scaling in the overdoped regime.

In our theory, the monotonic increase in the mode energy
eventually cutoff at about twice the maximal superconduct-
ing gap when the mode transfers all of its weight into the
particle-hole continuum. To exhibit a nonmonotonic behav-
ior before merging into the particle-hole continuum, it is nec-
essary for the superconducting gap to decrease faster with
doping than that predicted by the present variational calcula-
tion. This is not at all impossible. However, since there is no
generally reason to believe the Tc−Er linear scaling to hold
in the overdoped regime and the mode weight become very
small in the overdoped regime, we think the mode energy in
the overdoped regime is a problem subjected to fine tuning.

The mode energy at the optimal doping �x=26%� as cal-
culated from our approach is about 0.3t and is a factor of 1.8
larger than that observed in optimally doped YBa2Cu3O6.93.
At the same time, the variational theory predicts a consider-
ably larger value of optimal doping than observed in experi-
ments �x=16%�. It is likely that these two problems and the
problem of the Tc−Er linear scaling to hold in the overdoped
regime are related with each other. However, it is not clear to
what extent should we attribute these disagreements with
experiment solely to the limitation of the variational ap-
proach we have adopted rather than the intrinsic properties of
the t-J model.

Finally, we discuss the relation between the resonance
mode and the superconductivity. As many other theories of
the resonance mode,5,8,10 our theory also predicts that the
resonance mode becomes stronger and stronger with decreas-
ing doping and evolves smoothly into the Goldstone mode of
the ordered state at half filling. On the other hand, in the
phenomenological SO�5� theory of cuprates,11 in which the
mode is understood as a pseudo-Goldstone mode accompa-
nying breaking of an SO�5� symmetry between the d-wave
superconducting order and the antiferromagnetic order, the
mode intensity is predicted to be proportional to the ODLRO
of the system. Thus the theory predicts that the mode inten-
sity should decrease when we increase temperature or de-
crease doping and disappear out of the superconducting
dome. On the experimental side, the resonance mode is ob-
served to loss weight with increasing temperature and to dis-
appear in the normal state at optimal doping. In slightly un-
derdoped sample, a broadened and weak signal is observed
above Tc. With further decrease in doping, the normal-state
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signal becomes stronger and stronger and the enhancement
due to superconductivity becomes less and less prominent.1–3

In our theory, we only consider the zero-temperature case.
At finite temperature, both quasiparticle excitations and col-
lective fluctuation of the superconducting order parameter
will be thermally excited. The latter excitation is believed to
be especially important around the superconducting transi-
tion point. We believe both of these thermal excitations are
responsible for the decrease in the mode intensity with in-
creasing temperature. The doping dependence of the mode
intensity is more subtle. Here the relevant question is why
the superconductivity-related enhancement of the mode in-
tensity becomes smaller and smaller with decreasing doping.
In the very underdoped regime, the electron correlation
�Mott physics� is greatly enhanced. We believe the Mott
physics is at work in reducing the superconductivity-related
enhancement of the mode intensity in the very underdoped
regime. It is interesting to note that in the RVB picture, in
which the spins of the system form a liquid-like state com-

posed of resonating spin singlet pairs, the electron-
correlation effect manifests itself as quantum fluctuation of
the superconducting order parameter.

In all, apart from some subtle issues mentioned above, our
variational approach capture the gross feature of the neutron
resonance mode and provides the first truly microscopic un-
derstanding of this important phenomena in the high-
temperature superconductors. As a by product of this re-
search, we developed a very efficient reweighting technique
to simulated wave function composed of N linearly super-
posed Slater determinants, an algorithm whose potential ap-
plication is obviously far beyond the high-Tc issue.
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