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The ground state of the S= 1
2 Heisenberg antiferromagnet on kagome can be viewed as a collection of

fermionic spinons bound into small, heavy singlet pairs. Low-energy magnetic excitations in this system
correspond to breaking the pairs into individual spinons. We calculate the structure factor for inelastic neutron
scattering from independent spinon pairs.
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I. INTRODUCTION

The spin-1/2 Heisenberg antiferromagnet on kagome �Fig.
1� has attracted attention of theorists for more than two
decades.1,2 Synthesis of new magnetic materials with Cu2+

spins forming precisely such a lattice has generated renewed
interest in this system.3,4 Strong frustration, induced by the
nonbipartite geometry, and strong quantum fluctuations sup-
press long-range magnetic order and open intriguing possi-
bilities of an exotic quantum-disordered ground state and
unusual magnetic excitations. Numerical calculations5,6 sug-
gest that the ground state of the system is a total spin singlet
and that magnetic excitations are gapped, although the exis-
tence of the gap is still being debated.7 Among the proposed
ground states of this system are a valence-bond crystal8–10

breaking lattice symmetries or a spin liquid of some sort.11–13

Recent synthesis and experimental characterization of her-
bertsmithite ZnCu3�OH�3Cl2,14–24 where Cu2+ ions carry S
= 1

2 and form a perfect kagome lattice, provides additional
motivation for theoretical studies of this model.

The simplest model takes into account exchange interac-
tions between nearest neighbors represented by the Hamil-
tonian,

H = J�
�ij�

Si · S j . �1�

Recasting the Hamiltonian as J��S�
2 /2, where S� is the net

spin of triangle �, suggests a plausible route to constructing

the ground state of the system: minimize the total spin of
every triangle, S�= 1

2 , by locking two of its three spins in a
S=0 bond. Unfortunately, this program fails, as a simple
counting argument shows.1 A kagome with N triangles con-
tains 3N /2 spins and thus no more than 3N /4 singlet bonds
can be formed, leaving at least one in four triangles without
a singlet bond �Fig. 1�. As a result, a short-range valence-
bond state is not a ground state of Hamiltonian �1�.

Although the naive approach to constructing a valence-
bond ground state fails, it nonetheless provides a useful start-
ing point by forcing us to regard most of the lattice �triangles
with a singlet bond� as the vacuum containing relatively di-
lute dynamical objects �defect triangles�. Elucidating the
properties of an isolated defect triangle is the next logical
step toward understanding the physics of the model. Work in
this direction was carried out early on by Elser and Zeng,2,25

who considered an isolated defect triangle on the Husimi
cactus,26,27 a Bethe lattice of corner-sharing triangles. They
found that quantum fluctuations are strongly localized in the
vicinity of a defect. By treating the kagome antiferromagnet
as a dilute ensemble of fluctuating defects, Elser and Zeng
obtained an estimate of its ground-state energy in excellent
agreement with numerical diagonalization.

More recently, we pointed out28 that defect triangles are
composite objects: they are bound states of two quasiparti-
cles with S= 1

2 . These quasiparticles bear strong resemblance
to spinons of the �, or sawtooth, chain.29,30 The spinons
come in two flavors: kinks and antikinks. Kinks are localized
and have zero excitation energy while antikinks are mobile
with the lowest energy of 0.218J. A defect triangle on the
Husimi cactus is a tightly bound state of two antikinks with
total S=0. Lowest-energy spin excitations correspond to
breaking up the pair into two mobile antikinks. The spin gap
is set by the binding energy of the pair, 0.06J. This value,
obtained for a single defect on a cactus, agrees with the
spin-gap estimates for kagome based on a series expansion8

�0.08J�0.02J� and the density matrix renormalization group
�Ref. 6� �0.055J�0.005J�. This agreement suggests that
viewing the kagome antiferromagnet as a dilute ensemble of
spinon pairs is a useful point of departure for further explo-
rations of this model.

We would like to stress that antikink spinons are not el-
ementary excitations of the kagome antiferromagnet but
rather its building blocks. �In the same way, quarks are build-
ing blocks of a baryon but not its elementary excitations.�
One in four triangles carrying a spinon pair translates into
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FIG. 1. A dimer covering of kagome. Defect triangles �D� lack
dimers.

PHYSICAL REVIEW B 81, 214445 �2010�

1098-0121/2010/81�21�/214445�8� ©2010 The American Physical Society214445-1

http://dx.doi.org/10.1103/PhysRevB.81.214445


1/3 of an antikink per site. We have found that antikinks
exhibit fermionic statistics. The minus sign upon an ex-
change of two antikinks comes from the “Berry phase” as-
sociated with the adiabatic motion of singlet bonds. While
this picture of fermionic spinons resembles some of the pre-
vious proposals inspired by fermionic large-N expansions
�e.g., Hastings10�, there are important differences. We find
that fermions experience a strong exchange-mediated attrac-
tion in the singlet channel, which causes them to form tightly
bound pairs, thus invalidating the picture of a fermion sea
with a Fermi surface or Dirac points. We also find that the
emergent compact U�1� gauge field manifests itself not as a
background magnetic flux but as a quantized electric field of
unit strength whose presence strongly constrains the motion
of antikinks carrying a U�1� charge of +2 and even more
strongly affects antikink pairs �charge +4�. It remains to be
seen whether further progress can be made in the problem of
spinons interacting with one another and the gauge field, a
many-body problem with strong interactions.

In the present work, we calculate the dynamical structure
factor of low-energy spin excitations in a kagome antiferro-
magnet observable by inelastic neutron scattering. The physi-
cal process responsible for the lowest-energy magnetic scat-
tering is the breaking up of a S=0 antikink pair into two
antikinks with parallel spins that subsequently move away
from each other. If the ground state of the system is a
valence-bond crystal the moving spinons disturb the pre-
ferred valence-bond arrangement. The resulting energy in-
crease leads to spinon confinement. We neglect this effect
because numerical diagonalization5 and series expansion8 in-
dicate that the energy differences between various valence-
bond configurations are very small, on the order of 10−3J per
site. We therefore expect that the confinement length is long
and that its effects can be neglected in the first approxima-
tion.

We also neglect the influence of antikink pairs on one
another. Although the liberated antikinks may run into other
pairs present on the lattice, this is not a severe problem. The
structure factor is determined by the overlap of the initial and
final wave functions of the antikink pair. Because the initial
state is well localized, the result of the calculation is not
sensitive to the long-distance behavior of the final state. We
compute the dynamical spin correlations in real space in the
presence of a single antikink pair on the Husimi cactus. The
resulting correlation function decays quickly as we move
away from the defect triangle. Assuming that the spin corre-
lations have similarly local nature on kagome proper, we
translate the obtained spin correlations to kagome using the
correspondence depicted in Fig. 2. Finally, after a spatial
Fourier transform, we obtain the structure factor in k space at
the edge of the spin gap.

The paper is organized as follows. In Sec. II, we review
the calculations of the wave functions of two antikinks with
total spin S=0 and 1 on the Husimi cactus. Section III de-
scribes the calculation of the dynamical structure factor. We
discuss the results in Sec. IV

II. CALCULATIONS OF WAVE FUNCTIONS

In order to study a defect triangle in isolation, Elser and
Zeng2 examined kagome lattices in two-dimensional spaces

of constant curvature where hexagonal loops of the familiar
kagome are replaced with loops of length L. Lattices with
L�6 are finite and can be embedded in a two-dimensional
sphere,31 whereas lattices with L�6 are infinite and live in
two-dimensional hyperbolic spaces.2 The L=� structure is a
tree of corner-sharing triangles known as the Husimi
cactus26,27 �Fig. 2�. It has just the right ratio between the
numbers of sites and links to permit the construction of a
static valence-bond ground state and to study a defect tri-
angle in isolation.

A single defect triangle turns out to be a bound state of
two antikink spinons with total spin 0. The bound state is
formed because spinons with antiparallel spins experience
exchange-mediated attraction. In contrast, two antikinks with
total spin 1 repel and thus do not form a bound state.

A. Two antikinks with S=0

1. Hilbert space

We begin by characterizing the Hilbert space to which the
defect triangle state belongs. Upon applying the exchange
Hamiltonian on the defect triangle state once, the defect tri-
angle breaks into two defects of a new type connected by a
long-range singlet. For example, exchange of the upper and

� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � � � �
� � � � � � � � �

� � �
� � �
� � �
� � �
� � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � �
� � �
� � �
� � �
� � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � �
� � � � � � �

� � � � � �
� � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �

(a)

(b)
D

D

4

4

y5

x2

x3

x4

x5

z1

z2
z3

z4
z5

z1

z2
z3

z4

z5

x

2x

3x

2

1x

1

y

1y

5y
4y3y

2y

1y

3y

5

x

x

y

FIG. 2. �Color online� A correspondence between spinon trails
on the �a� Husimi cactus and �b� kagome. Spins along the three
shaded trails are labeled S�n. Here �=x ,y ,z denotes a trail and n
=1,2 ,3. . . enumerates the spins along it. The correspondence
breaks down for n�5 because trails on kagome may begin to over-
lap. Further complications are brought by the presence of other
defect triangles �labeled D� next to the trails.
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lower left spins of the center triangle in Fig. 3�a� yields the
state shown in Fig. 3�b�. These defects are close analogs of
antikinks found in the one-dimensional � chain.29,30 They are
domain walls separating the two distinct ground states of the
� chain. The antikinks carry spin 1/2 and are thus spinons.
Under the action of the exchange Hamiltonian, the two anti-
kinks can move along three one-dimensional paths that meet
at the defect triangle. We will identify the three trails as x, y,
and z �Fig. 4�. The two antikinks can never be on the same
trail. A generic state can therefore be written as �x ,y ,z�,
where x, y, and z are integers whose product vanishes. For
example, in the state �2,3 ,0�, one of the antikinks is on the
second triangle of the x trail, while the other is on the third
triangle of the y trail. Note that states �0,0 ,1�, �0,1 ,0�, or
�1,0 ,0� are identical to �0,0 ,0� �the original defect triangle�,
so they can be omitted altogether. It is the mathematical
equivalence of the fact that any of the three singlets adjacent
to the defect triangle can be viewed as a bound state of two
antikinks. The resulting Hilbert space is denoted A2

0. Gener-
ally, An

S is the Hilbert space of n antikinks with total spin S.
The Hilbert space A2

0 is illustrated in Fig. 4.
Two basis states �r���x ,y ,z� and �r����x� ,y� ,z�� are not

orthogonal to one another because they are not eigenstates of
the same Hermitian operator. Their overlap can be computed
by following the standard recipe,32

�r�r�� = �
c

�c2
1−Lc/2, �2�

where the product is over loops formed by superimposing the
dimer coverings of states �r� and �r��, Lc is the length of loop
c, and �c= �1 is a Z2 phase factor dependent on the sign
convention for spin singlets. The S=0 state of two spins on
sites i and j is antisymmetric under exchange: ��i , j��
���↑i↓ j�− �↓i↑ j�� /	2=−��j , i��. To remove the ambiguity, the

state ��i , j�� is shown as an arrow pointing from i to j. The
singlet phases need to be specified on the central triangle and
along the three trails; all the other singlets are localized and
their Z2 phases are irrelevant. Because the three trails can be
regarded as sawtooth chains, we choose the following phase
convention.28 A singlet points from the base of a triangle on
the sawtooth chain to its vertex. In states �x ,y ,0�, �0,y ,z�,
and �x ,0 ,z�, the long-range singlet has the same direction
with the singlet on the center triangle, as shown in Fig. 4. In
states �x ,0 ,0�, �0,y ,0�, and �0,0 ,z�, the long-range singlet
points from the central triangle to the triangle on one of the
trails. Overlaps of various valence-bond states have the fol-
lowing values:

�x,y,0�x�,y�,0� = 2−�x−x��−�y−y��, �3a�

�x,0,0�0,y,z� = 22−x−y−z, �3b�

�x,y,0�x�,0,z�� = 2−�x−x��−y−z�, �3c�

�x,y,0�0,0,0� = 21−x−y , �3d�

(d)

(b)

(c)

(a)

FIG. 3. Valence-bond states of the Husimi cactus. The state with
a single defect triangle �a� evolves into states with two antikinks

�b�–�d�� traveling through the cactus. The dashed line indicates that
the two antikinks have total spin 0.
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FIG. 4. �Color online� Hilbert space A2
0 of two antikinks with

S=0. �a� Two antikinks can move among three trails of the cactus
labeled as x, y, and z trails. �b� The lattice of �x ,y ,z� states with
xyz=0 resembles the corner of a cube. States �1,0 ,0�, �0,1 ,0�, and
�0,0 ,1� are identical to �0,0 ,0�. Links emanating from these sites
are shown as dashed lines.
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�x,0,0�x�,0,0� = 2−�x−x��, �3e�

�x,0,0�0,y�,0� = 22−x−y�, �3f�

�x,0,0�x�,y�,0� = 2−�x−x��−y , �3g�

�x,0,0�0,0,0� = 21−x. �3h�

The rest of the overlaps can be obtained by using permuta-
tions of x, y, and z.

With two antikinks in the three trails, at least one of the
“coordinates” x, y, and z is zero. For that reason, the motion
of two antikinks can be mapped onto the motion of a single
particle on three faces of an infinite cube, Fig. 4�b�. This
mapping reveals a simple rule that can be used to determine
the overlap in all cases described in Eq. �3�. Let n�r ,r�� be
the length of the shortest path �expressed as the number of
links� that connects points r and r� in Fig. 4�b�. The overlap
between the two states is

�r�r�� = 2−n�r,r��. �4�

2. Orthonormal basis

The basis states �x ,y ,z� can be orthogonalized by per-
forming a simple rotation. We will denote the orthogonalized
basis states as �x ,y ,z�o and the orthonormalized states as
�x ,y ,z�on. In the orthogonalization procedure, the defect tri-
angle state remains the same,

�0,0,0�o = �0,0,0� . �5a�

Its nearest neighbors are transformed as follows:

�1,1,0�o = �1,1,0� −
1

2
�0,0,0� . �5b�

The resulting states �0,1 ,1�o, �1,0 ,1�o, and �1,1 ,0�o are or-
thogonal to �0,0 ,0�o and to each other.

The transformation for states along cube edges is

�x,0,0�o = �x,0,0� −
1

2
�x − 1,0,0� . �5c�

The resulting state �x ,0 ,0�o is orthogonal to any state �0,y ,z�
with no antikink in the x trail. It is also orthogonal to any
state �x� ,y ,0� with an antikink closer to the origin, x��x.
From that it follows that edge states �x ,0 ,0�o, �0,y ,0�o, and
�0,0 ,z�o are orthogonal to one another and to the four states
with antikinks near the origin.

Finally, states �x ,y ,0� with antikinks away from the origin
�x ,y�1� are transformed by combining translations in two
directions,

�x,y,0�o = �x,y,0� −
1

2
�x − 1,y,0� −

1

2
�x,y − 1,0�

+
1

4
�x − 1,y − 1,0� . �5d�

The orthonormal basis ��x ,y ,0�on is now easily obtained
by normalization,

�0,0,0�on = �0,0,0�o, �6a�

�1,1,0�on =
2
	3

�1,1,0�o, �6b�

�x,0,0�on =
2
	3

�x,0,0�o, �6c�

�x,y,0�on =
4

3
�x,y,0�o. �6d�

3. Effective Hamiltonian and the spectrum

In the bulk, the Hamiltonian matrix is very simple,

H�x,y,0�on = −
J

2
�x + 1,y,0�on −

J

2
�x − 1,y,0�on

−
J

2
�x,y + 1,0�on −

J

2
�x,y − 1,0�on +

5J

2
�x,y,0�on.

�7a�

The Hamiltonian can be loosely understood as follows: two
particles �antikinks� hop on the three one-dimensional trails
with −J /2 as their hopping amplitude and an attractive short-
range potential. �We measure the energy from its value in the
ground state.�

The action of the Hamiltonian on the state with a defect
triangle is as follows:

H�0,0,0�on = −
	3J

4
�1,1,0�on −

	3J

4
�1,0,1�on

−
	3J

4
�0,1,1�on +

3J

4
�0,0,0�on. �7b�

�Note the reduced diagonal term.�
For a state with one of the antikinks next to the defect

triangle and the other farther away, �x ,1 ,0�on with x�1, y
=1, we have

H�x,1,0�on = −
J

2
�x + 1,1,0�on −

J

2
�x − 1,1,0�on −

J

2
�x,2,0�on

−
	3J

4
�x,0,0�on +

5J

2
�x,1,0�on +

J

4
�x,0,1�on.

�7c�

For a state with one antikink on the original defect triangle
and the other somewhere in trail x, �x ,0 ,0�on,

H�x,0,0�on = −
J

2
�x + 1,0,0�on −

J

2
�x − 1,0,0�on

−
	3J

4
�x,1,0�on −

	3J

4
�x,0,1�on + 2J�x,0,0�on.

�7d�

Other special cases involve states around the center such as
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�2,0 ,0�on, �2,1 ,0�on, �1,1 ,0�on, and �0,0 ,0�on as well as their
symmetric counterparts. They are listed in the supplemental
material of Ref. 28.

To determine the energy spectrum, we truncated the cac-
tus at a finite radius R and diagonalized the Hamiltonian
numerically. In the limit R→�, the spectrum for a singlet
pair of antikinks consists of a two-particle continuum start-
ing at E=J /2 and a nondegenerate bound state at E=0.44J,
i.e., 0.06J below the bottom of the continuum. The diameter
of the bound state, obtained by fitting its energy E�R� to the
form E+�E exp�−2R /	�, is 	=2.8 lattice spacings. The prob-
ability to find both antikinks on the same triangle is 0.72,
which implies a tight bound state.

B. Two antikinks with S=1

The energy spectrum of two antikinks in a S=1 state was
computed in the same fashion. We mapped out the Hilbert
space A2

1 for a triplet pair by breaking one of the three sin-
glets adjacent to the defect triangle at the center and letting
the resulting spinons propagate along the three trails. The
basis states ��x ,y ,z� again form a lattice resembling the cor-
ner of a cube. This time, there is no �0,0 ,0� state, while
�1,0 ,0�, �0,1 ,0�, and �0,0 ,1� states do exist and are physi-
cally distinct. Here are some examples of the overlap matrix
elements between the states in A2

1,

�x,y,0�0,y�,0� = 2−x−�y−y��, �8a�

�x,y,0�x�,0,0� = − 2−y−�x−x��, �8b�

�x,y,0�x�,y�,0� = 2−�x−x��−�y−y��, �8c�

�x,y,0�0,0,z�� = 0, �8d�

�x,0,0�x�,0,0� = 2−�x−x��, �8e�

�x,0,0�0,y�,0� = 0, �8f�

�x,y,0�0,y�,z�� = − 2−x−�y−y��−z�. �8g�

Other cases can be obtained by making use of the permuta-
tional symmetry.

A similar procedure can be followed to orthogonalize
most of the states. However, we did not find an obvious way
to orthogonalize the states with spinons next to the original
defect triangle, namely, �1,0 ,0�, �0,1 ,0�, �0,0 ,1�, �1,1 ,0�,
�1,0 ,1�, and �0,1 ,1�. We orthogonalize the rest of the basis
states as exemplified by

�x,1,0�o = �x,1,0� +
1

2
�x,0,0� −

1

2
�x − 1,1,0� −

1

4
�x − 1,0,0� .

�9�

Because some of the basis states are not orthogonal, the en-
ergy spectrum is obtained by solving the generalized eigen-
value problem: H
=EO
, where H is the Hamiltonian ma-
trix, O is the overlap matrix, and 
 is an eigenvector.

The low-energy effective Hamiltonian is similar to that of
the S=0 sector, with two important differences. First, the
hopping amplitude between two states with a negative over-
lap is positive instead of negative. Most of these “wrong”
signs can be corrected by a gauge transformation. However,
the total phase accumulated on a loop containing the center
in Fig. 5 adds up to a flux �, which reflects the fermionic
nature of the antikinks. Second, in the singlet case the “po-
tential” energy of the two antikinks is lowered by 3J /4 when
they both reside on the central triangle. In contrast, antikinks
with parallel spins repel each other: the energy of the system
is raised by J /4 when they share the central triangle. Conse-
quently, the spectrum of a triplet pair of antikinks consists of
a two-particle continuum starting at E=J /2 with no bound
states. The ground state in the S=1 sector is doubly degen-
erate. Both of these ground states have a line of nodes. The
symmetry and degeneracy of the ground states are consistent
with the Fermi statistics of antikinks.

III. DYNAMICAL STRUCTURE FACTOR CALCULATION

The real-space dynamical structure factor is defined as
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FIG. 5. �Color online� Hilbert space A2
1 of two antikinks with

S=1. �a� Minus signs denote bonds with the inverted sign of the
hopping amplitude, t�0. �b� Making a loop around the center
changes sign of the wave function.
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S��,R,R�� = �
f

��Ef − Ei − ���i�SR
− �f��f �SR�

+ �i� . �10�

Inelastic neutron scattering directly measures its Fourier
transform,

SN��,q� = �
f

��Ef − Ei − ����
R

�f �SR
+ �i�eiq·R�2

. �11�

In both the initial state �i� and in final states �f�, the motion of
the antikinks is restricted to three one-dimensional paths.
Singlet bonds along these trails shift as the spinons move
past them. In contrast, singlet bonds off the trails remain
stationary. If R is located off a spinon trail, states SR

+ �i� and
�f� are orthogonal because the former has a triplet on a bond
involving site R, whereas the latter has a singlet there. For
that reason, the structure factor, Eq. �10�, is nonzero only
when both R and R� are on the spinon trails. Spins along the
trail will be labeled S�n, where �=x, y, or z is the trail index
and n=1,2 ,3. . . is the position along the trail �Fig. 2�. R�n is
the physical location of that spin on kagome.

We evaluate the real-space structure factor, Eq. �10�, on
the cactus for the lowest-energy transfer equal to the binding
energy of an antikink pair. These dynamic correlations turn
out to be sufficiently short ranged to justify the extrapolation
of the result to a pair of antikinks on kagome via the corre-
spondence illustrated in Fig. 2. We assume that antikink pairs
are randomly distributed over the lattice and therefore the net
scattering intensity is the sum of scattering intensities of in-
dividual pairs �no interference�. Because different pairs live
in different valence-bond backgrounds, we average the struc-
ture factor over all possible configurations of the spinon
trails.

To simplify the calculations, we only approximate the sin-
glet ground state as a superposition of four states �0,0 ,0 ;s�
�the defect triangle�, �1,1 ,0 ;s�, �0,1 ,1 ;s�, and �1,0 ,1 ;s�
�spinons hop to adjacent triangles�. The singlet basis states
and triplet basis states are labeled as �x ,y ,z ; s� and �x ,y ,z ; t�,
respectively. The truncated ground state has the overlap of
0.92 with the actual one. No truncation is done for the final
triplet states, in which the spinons are delocalized.

The form factor now reduces to

SN��,q� = �
f

��Ef − Ei − ��

� ��
�

�
n=1

N

�f �S�n
+ �i�exp�iq · R�n��2

. �12�

In this expression, we include spins S�n located along the
trails with n�N. In theory, one would like to take the limit
N→�. In practice, we can only go to N=5; for larger values
of N trails may start overlapping on kagome. Fortunately, it
can be seen in Fig. 6 that the structure factor changes little
between N=4 and N=5, so we use the N=5 result as our
final answer.

The matrix elements �f �S�n
+ �i� are calculated as follows.

The initial singlet ground state is a linear combination of
four states �x ,y ,z ; s� from the singlet space A2

0. The final
states are linear combinations of �x ,y ,z ; t� in the triplet space
A2

1. �As in previous sections, we use the shorthand r for the

three “coordinates” of the antikink pair x, y, and z. The
physical coordinates of a site on kagome are denoted R�n.�
We first expand the initial and final states in the nonorthogo-
nal singlet basis ��r ; s� and partially orthogonalized triplet
basis ��r ; t�on,

�i� = �
r

cr�s��r;s� , �13a�

�f� = �
r

cr,f�t��r;t�on, �13b�

where f labels the two final states. After a computation of
matrix elements

M�n�r,r�� � on�r;t�S�n
+ �r�;s� , �14�

listed in the Appendix, we obtain
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FIG. 6. �Color� Top four panels: dynamical structure factor
SN�� ,q� for a single pair of antikinks with N=2, 3, 4, and 5 layers
�see text�. Bottom panel: the structure factor Sd�� ,q� for a single
dimer averaged over three possible dimer orientations. Wave num-
bers are measured in units of 2� /a, where a is the lattice constant.
Points K are corners of the first Brillouin zone, e.g., q
= �4� /3a ,0�. Ke are corners of an extended Brillouin zone, e.g.,
q= �8� /3a ,0�.
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�f �S�n
+ �i� = �

r,r�

cr,f
� �t�M�n�r,r��cr�s� , �15�

and use it in Eq. �12�.
The dynamical structure factor is displayed in Fig. 6. The

maxima of intensity are located at the corners of the ex-
tended Brillouin zone Ke and its counterparts.

IV. DISCUSSION

We have computed the q dependence of the dynamical
structure factor S�� ,q� at the edge of the spin gap, �
=0.06J. Excitations responsible for this spectral weight are
pairs of antikinks with parallel spins freed from their S=0
bound state. The wave-vector dependence of the dynamical
structure factor resembles that of isolated pairs of spins in-
teracting via Heisenberg exchange,

Sd��,q� = �
a

2
1 − cos�q · a����� − J� , �16�

where a are separations of spins within a pair and the sum-
mation is over the three bond directions on kagome. For
comparison, Fig. 6 also shows the dimer structure factor
Sd�� ,q�. The resemblance is not surprising because the
ground state of the Heisenberg model on kagome can be
pictured as a collection of slowly resonating valence bonds.
The structure factor of the inelastic neutron scattering in
powder herbertsmithite indeed bears resemblance to that of
isolated dimers.23 A somewhat similar q dependence was
found for the instantaneous �frequency-integrated� structure
factor by Lhuillier and co-workers who used exact
diagonalization33 and a large-N mean-field theory.34 Singh35

computed the dynamical structure factor due to another kind
of excitations, viz., creation of kink-antikink pairs with a
larger onset energy, ��=0.25J, and found a similar intensity
distribution.

Our calculation is based on several assumptions. �1� We
neglect the effects of virtual excitations in the form of kink-
antikink pairs near a moving antikink. Our previous study28

of a related one-dimensional system �the � chain29,30�
showed that these excitations create a small renormalization
of the antikink parameters but are otherwise harmless. �2�
We assumed that the bound pairs of two antikinks with S
=0 are sufficiently small so that their properties on a periodic
kagome lattice and its treelike analog are essentially the
same. The small diameter of a pair, 	=2.8 lattice spacings,
provides assurance that this approximation is not unreason-
able. �3� We neglected the dynamics of the pairs in the
ground state of the Heisenberg model on kagome. This as-
sumption is justified if the pairs move slowly on the time
scale of the inverse spin gap. Some indications that this is so
come from numerical work indicating a large density of sin-
glet states at low energy.5 Series expansion also indicates that
the energy splittings between low-lying singlet states are
very small with energy differences as small as 10−3J per
site.36 �4� We assumed that pair positions exhibit no long-
range order and thus their scattering amplitudes add incoher-
ently. This may not be the case if the system indeed has
valence-bond order, which requires a periodic arrangement

of spinon pairs in the ground state. However, the closeness of
energy levels in the singlet sector suggests that the valence-
bond crystal is fragile and can easily turn into a disordered
solid under the influence of bond disorder or nonmagnetic
impurities.35,37 �5� We ignored the possibility of interactions
between adjacent pairs of antikinks. The dynamics of anti-
kinks may be altered if their trails pass close to another de-
fect triangle �Fig. 2�. This is a many-body problem that we
hope to address in future work.
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APPENDIX: MATRIX ELEMENTS

Before we give a list of matrix elements M�n�r ;r��, we
need to specify a convention of labeling the spins. The three
one-dimensional trails on which the antikinks are moving
can be viewed as three sawtooth chains originating at the
center triangle. We name a spin using the trail it’s on and the
distance between it and the center triangle. The three vertices
of the center triangle are labeled Sx,1, Sy,1, and Sz,1, Fig. 2.

Since we write the initial state as a linear combination of
�0,0 ,0 ;s�, �1,1 ,0 ;s�, �0,1 ,1 ;s�, and �1,0 ,1 ;s� and our con-
vention for basis states respects the symmetry of permuta-
tions among “coordinates” x, y, and z, we only list nonzero
matrix elements involving states �0,0 ,0 ;s� and �1,1 ,0 ;s�.
For �0,0 ,0 ;s�,

�1,0,0;t�Sx,1
+ �0,0,0;s� = −

1
	2

,

�0,1,0;t�Sy,1
+ �0,0,0;s� = −

1
	2

,

�0,0,1;t�Sz,1
+ �0,0,0;s� = −

1
	2

,

on�n,0,0;t�Sx,2n−1
+ �0,0,0;s� = −

1
	6

�1

2
�n−2

,

on�0,n,0;t�Sy,2n−1
+ �0,0,0;s� = −

1
	6

�1

2
�n−2

,

on�0,0,n;t�Sz,2n−1
+ �0,0,0;s� = −

1
	6

�1

2
�n−2

, �A1�

with n�2. Similarly for �1,1 ,0 ;s�,

on�n,1,0;t�Sx,2n−1
+ �1,1,0;s� =

1
	2

�1

2
�n

,
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on�n,0,0;t�Sx,2n−1
+ �1,1,0;s� = −

1
	6

�1

2
�n−1

,

on�1,n,0;t�Sy,2n−1
+ �1,1,0;s� = −

1
	2

�1

2
�n

,

on�0,n,0;t�Sy,2n−1
+ �1,1,0;s� = −

1
	6

�1

2
�n−1

,

on�0,0,n;t�Sz,2n−1
+ �1,1,0;s� = −

1
	6

�1

2
�n−1

,

�1,0,0;t�Sx,1
+ �1,1,0;s� = −

1

2	2
,

�0,1,0;t�Sx,1
+ �1,1,0;s� =

1

2	2
,

�1,0,1;t�Sx,1
+ �1,1,0;s� = −

1

4	2
,

�0,1,1;t�Sx,1
+ �1,1,0;s� = −

1

4	2
,

�1,0,0;t�Sx,2
+ �1,1,0;s� =

1

2	2
,

�0,1,0;t�Sx,2
+ �1,1,0;s� = −

1

2	2
,

�1,0,1;t�Sx,2
+ �1,1,0;s� =

1

4	2
,

�0,1,1;t�Sx,2
+ �1,1,0;s� =

1

2	2
,

�1,1,0;t�Sx,2
+ �1,1,0;s� = −

1
	2

. �A2�
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