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We study the magnetic structure of the ground state of an itinerant Fermi system of spin-1/2 particles with
magnetic dipole-dipole interactions. We show that, quite generally, the spin state of particles depend on its
momentum, i.e., spin and orbital degrees of freedom are entangled and taken separately are not “good”
quantum numbers. Specifically, we consider a uniform system with nonzero magnetization at zero temperature.
Assuming the magnetization is along z axis, the quantum spin states are k-dependent linear combinations of
eigenstates of the �z Pauli matrix. This leads to spin structures in momentum space and to the fact that the
Fermi surfaces for “up” and “down” spins are not well defined. The system still has a cylindrical axis of
symmetry along the magnetization axis. We also show that the self-energy has a universal structure which we
determine based on the symmetries of the dipolar interaction and we explicitly calculated it in the Hartree-Fock
approximation. We show that the bare magnetic moment of particles is renormalized due to particle-particle
interactions and we give order of magnitude estimates of this renormalization effect. We estimate that the
above mentioned dipolar effects are small but we discuss possible scenarios where this physics may be realized
in future experiments.
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I. INTRODUCTION

Interest in ultracold atoms with dipole-dipole interactions
arise due to the long range and anisotropic nature of dipolar
forces. If the dipolar Fermi gas is fully polarized the aniso-
tropic form of the interactions leads to a distortion of the
Fermi surface �FS� �Refs. 1 and 2 and Appendix A� and to a
mixing of the collective excitations due to the structure of
the Fermi-liquid parameters.2 Although this system can be
described in terms of the standard Landau theory of the
Fermi liquid3 important changes are needed to account for
the effects of the dipolar forces.2,4–6 Recent theoretical work
has revealed that gases of dipolar Fermi atomic systems can
exhibit interesting and unconventional properties, including
novel ordered quantum liquid-crystal states, such as biaxial
nematic and ferronematic phases.2,7 Quantum liquid-crystal
phases have been conjectured to play an important role in the
physics of strongly correlated systems.8 Recent experimental
progress in trapping strongly magnetic dipolar Fermi gases
in magnetic traps opens the way to study these interesting
physical systems in the laboratory.9

Dipolar Fermi systems where spin degrees of freedom are
allowed to play a dynamical role7,10,11 are much less studied.
Magnetic dipole-dipole interactions, unlike electric dipole-
dipole interactions, conserve total angular momentum, spin
+orbital, �J=L+S�,12 and hence mix the spin and orbital
degrees of freedom. Interactions in dense nuclear matter with
noncentral forces are similar. In fact, many of the above ef-
fects have been studied theoretically in the nuclear physics
literature.13

In this work we consider, in perturbation theory, the ef-
fects of magnetic dipolar forces on a spin-1/2 Fermi system
with a population imbalance of particles originally in eigen-
states of the �z Pauli matrix, corresponding to a partially
polarized ferronematic state.7 To first order in the interaction,
the local spin quantization axis is not along ẑ, leading to an
effective spin-orbit type interaction for the quasiparticles,

whose self-energy develops a spin structure in momentum
space. In an earlier publication we showed that the qualita-
tive physics of the ferronematic phase can be captured by the
structure of the Fermi surfaces. The results we present here
show that the nature of the ordered state at partial polariza-
tion has a complex, unconventional �i.e., a spin triplet
particle-hole condensate anisotropic in orbital space�, mag-
netic order associated with the dynamically generated spin-
orbit type interactions. Such a system can be simulated ex-
perimentally with two hyperfine levels of 163Dy in an optical
trap at zero external magnetic field.9

We define the dipolar interaction parameter as �
= n̄�2 / �̄F, where � is the magnetic moment of the particles,

n̄� k̄F
3 / �3�2�, and k̄F is defined by the average chemical po-

tential �̄���1+�2� /2� �̄F��2k̄F
2 /2m. Our calculations are

to first order in �, but the physical principles we describe are
quite general. We do not consider here important questions
such as pairing effects, collapse instabilities,14 temperature,
or optical trap effects. The physics we describe does not rely
on trap parameters; such effects could be taken into account
using Thomas-Fermi functionals.15 Collapse instabilities, that
we will not consider here, require a finite dipolar coupling
strength even for long range forces,7 whereas the phenomena
we study occurs for infinitesimal dipolar couplings.

Before presenting the details we summarize the physical
picture that emerges as follows. A fixed difference of par-
ticles in the eigenstates of �z creates a net magnetization of
the system which then acts, as far as static processes are
concerned, as a uniform external magnetic field along ẑ. In
the absence of magnetic field the dipole interaction con-
serves the spin+orbital angular momentum �S+L�. Cru-
cially, in the presence of a net magnetization the colliding
particles still conserve the z projection of the total angular
momentum, Jz=Lz+Sz along the magnetization. Recall that
the magnetic dipole interaction is an L=2 object under rota-
tions of the spatial coordinates12 and that, unlike contact,
Coulomb or exchange interactions, the dipolar forces can flip
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the spin of one of the two interacting particles. To conserve
angular momentum the missing momentum is taken from the
orbital degrees of freedom. In a many-body system this
means that any given particle will “feel” an average mag-
netic field due to the interaction with other particles. In other
words, the mean field is a vector not a scalar. This molecular
magnetic field is capable of flipping the spin of the spin-1/2
and hence it must point away from the z axis. Moreover
since Jz must be conserved the change in spin angular mo-
mentum due to a spin flip process must be accompanied by a
corresponding change in orbital �momentum space� angular
momentum. In this way we arrive at the conclusion that the
distribution in momentum space of the particles must be an-
isotropic and that the spin state of the particle will depend on
its velocity.

Since the local spin quantization axis is not parallel to the
polarization direction ẑ, the k-dependent spin state of the
particles becomes a linear combinations of eigenstates of �z,
i.e., the spins tilt. Interestingly, we find that neither the tilting
angle nor the momentum distribution of the quasiparticles
are isotropic in momentum space, and vary with direction as

��Y2�1�k̂�� and Y20�k̂�, respectively, because of the mixing
of orbital and spin degrees of freedom. This can be described
in perturbation theory as arising from two processes: �a�
�↑ �→ �↑ � �no spin flip�, with 	Lz=0; since we consider par-
ticles with no internal structure, the quasiparticle self-energy

acquires a correction of the form Y20�k̂�, �b� �↑ �→ �↓ � �spin
flip� with 	Lz= 
1, the quasiparticle self-energy gets a cor-

rection of the form �Y2,�1�k̂��. Therefore the self-energy now
has an off-diagonal momentum-dependent component. These
changes in the structure of the self-energy lead to qualitative
modifications to the quasiparticle distribution functions and
of the Fermi surface. In particular it is no longer possible to
define separate Fermi surfaces for up and down fermions
independently.

This work is organized as follows. In Sec. II we investi-
gate the structure of the single particles states and show how
the orbital and spin degrees of freedom become entangled
due to the presence of nondiagonal elements in the self-
energy of particles. In Sec. III we show that particle interac-
tions lead to a renormalization of the bare magnetic moment.
In Sec. IV we compute the occupation number in momentum
space noting that this quantity is a 2�2 tensor in spin space.
In Sec. V we provide possible scenarios where dipolar ef-
fects may be observed. Finally the appendices provide the
details of the self-energy computations for the fully polarized
and partially polarized case �Appendixes C and D�, an intui-
tive explanation of the FS distortion �Appendix A�, and de-
tails of the Fourier transform of the dipolar interaction �Ap-
pendix B�.

II. STRUCTURE OF THE QUASIPARTICLE
SELF-ENERGY

The excitations of a gas of fermions at finite density are
quasiparticles with the same quantum numbers as the fermi-
ons. However their dynamics is strongly affected by their
mutual interactions. These physical effects are captured by

the quasiparticle self-energy. In the presence of dipole-dipole
interactions the form of the self-energy is determined by
symmetry arguments. We thus require that the quasiparticle
self-energy be invariant under simultaneous rotations of the
net magnetic field and the quasiparticle momentum, which
leads to an expression of the form

�ij�k,
� = �0�k,
��ij +
�T�k,
�

2
�3k̂ik̂ j − �ij� , �2.1�

where �O and �T are functions of the wave vector and fre-
quency, i=x ,y ,z is the direction of the effective magnetic
field and j=x ,y ,z is the direction of the spin polarization.
The form of this expression is valid to all orders in pertur-
bation theory.

Without loss of generality, we consider a microscopic
Hamiltonian with a population imbalance of particles in
eigenstates of �z, i.e., we will assume a state with a fixed
total polarization. The Hamiltonian is

Ĥ = �
k,�

�kck.�
† ck,� + g�

k
nk,↑nk↓ +

1

2V
�
q

Ŝi�q�Vij�q�Ŝj�− q� ,

�2.2�

where �k= q2k2

2m are the singe particle energies, nk,↑ and nk,↓
are the occupation numbers of the single particle states with
momentum k with both spin projections, and g is the
strength of the repulsive short-range s-wave interaction. The
last term is the dipolar interaction. In Fourier space it is
given by �see Appendix B�

Vij�q� = �4��2/3��3q̂iq̂ j − �ij� , �2.3�

where q̂ is the unit vector in the direction of q, ���� /2 is
the bare magnetic moment of particles, and � the gyromag-
netic ratio, e.g., for electron spins, �=2�B. Repeated indices

are to be summed over. Ŝi�q�=�kck+q,�
† ���

i ck,� is the spin
density in momentum space. �i are Pauli matrices and �, �
are spin indexes that label the eigenstates of �z.

In what follows we will assume that either the system is
prepared in a state of finite polarization or that g is large
enough for the ground state to be a ferronematic with finite
polarization �as discussed in Ref. 7� and compute the fer-
mion self-energy perturbatively in the dipolar interaction. To
first order, the self-energy is given by

�����k� = −� d3k�

�2��3

1

��
�
n�

ei
n�0
+

� G��
0 �k�,i
n��Vij�k − k�����

i ���
j . �2.4�

Explicitly �see Appendix D�

��11 = − ��22 = − f�k��3k̂z
2 − 1� ,

��12 = ��21
� = − f�k�3k̂z�k̂x + ik̂y� . �2.5�

Being a 2�2 matrix we can expand �����k� in Pauli matri-

ces, ����=�zi�k����
i , where we found �zi�k�=−f�k��3k̂ik̂z

−�i,z� �Figs. 1 and 2�. The angles of k are defined in Fig. 3.
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Comparing with the general expression �2.4�, we conclude
that in the Hartree-Fock approximation

�0 = 0,

�T = − 2f�k� . �2.6�

We assumed a fixed population imbalance of particles in
the two eigenstates of �z by introducing two chemical poten-
tials �1 and �2. G��

0 �k , i
n�=��� / �i
n−�k�� is the free tem-
perature Green’s function, where ��k�=�k

0 −�� is the bare
single particle dispersion relation and �k

0 =�2k2 /2m. In Eq.
�2.6� f�k� is a smooth monotonic function of the magnitude
of the wave vector:

f�k� =
2�2

�
�

0

�

k�2dk��
0

� dr

r
j2�kr�j0�k�r�

� 	nF��k�
0 − �1� − nF��k�

0 − �2�
 , �2.7�

where nF�x�= 	exp��x�+1
−1 is the Fermi function. The self-
energy vanishes for an equal number of particles in each
eigenstate of �z. This means that dipole torques exist only
when there is a net magnetization in the system, as we would
expect.

The diagonal matrix elements of the self-energy, propor-
tional to ��3 cos2 �k−1�, give anisotropic renormalization to
the single-particle energies. It was show that for partial po-
larization the majority-component FS is elongated while the
minority-component FS compression along the polarization

axis.7 The feature of Eq. �2.5� is its nondiagonal matrix ele-
ments. They are not zero because the dipole interaction can
flip one of the two interacting particles. This means that the
mean field acting on a given particle’s spin can flip it. In turn
this imply that such an effective molecular vector field is not

along z axis. The structure of the terms: �12�k��Y2,−1�k̂�
and �21�k��Y2,1�k̂� of the nondiagonal matrix elements can
be understood as a consequence of angular momentum con-
servation. Since the magnetic dipole-dipole interaction con-
serves Jz=Lz+Sz in the presence of a net polarization along z
axis, a change in the spin angular momentum 	Sz= �1 in
accompanied by a corresponding change in the orbital angu-
lar momentum 	Lz= 
1.

The particle energy, ��k���, have a tensorial structure and
is given by the equation ��k����+�����k����k���− �̄���.
Expanding in Pauli matrices we obtain

��k��� � �k
0��� + �k

i ���
i , �2.8�

we see that there is an the effective magnetic field, hk, given
by �k

i =�hk
i , that acts on the particle’s magnetic moment.

This k-dependent field has a contribution from the external
field long ẑ �i.e., �r� and a molecular contribution due to
interactions with other particles. This field is necessarily not
along ẑ. We explicitly write the components �k

i in Fig. 3 and
we plotted hk in Fig. 4.

III. QUASIPARTICLE MAGNETIC MOMENT

As we remarked above the problem of a system with a
fixed population imbalance is equivalent to have a static
magnetic field in the system. Hence it is of interest to know
what is the magnetic response of the system. In a small ex-
ternal field we define the effective magnetic moment of the
particle as
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FIG. 2. �Color online� Characteristic form of f�k� �blue-solid�
and its derivative �red-dashed� for two values of �r and �̄, Eq.
�2.7�. Main panel: kF1=1.1, kF2=0.9, inset: kF1=1.8, kF2=0.3 in

units of k̄F.

−µr + h̄Σ11

h̄ReΣ12

−h̄ImΣ12

µhk
Θk

φk

ky

kx

kz

O

k
θk

φk

FIG. 3. �Color online� Effective magnetic field �red arrow� at
point k in momentum space. The local spin quantization axis is
tilted with respect to ẑ because the dipole-dipole interaction induce
nondiagonal matrix elements, �12�k�, in the self-energy 	Eq. �2.5�
.

σi
αδ

σj
γβ

Vij(q) =
4πµ2

3
(3q̂iq̂j − δij)

k′

q = 0
q ≡ k− k′

FIG. 1. Feynman diagrams for Hartree �left� and Fock �right�
terms of the self-energy.
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�̃ij�k� � −
��k

i

�hext
j = − �

��k
i

��r
j . �3.1�

Where we defined the external field along ẑ by �hext
z =�r.

The effective magnetic moment of the particles is not the
bare magnetic moment �. In fact, when dipole-dipole inter-
actions are present we can guess the form of the magnetic
moment carried by the particle by symmetry arguments.13

We require that the magnetic moment be invariant under si-
multaneous rotations of the magnetic field and the momen-
tum of the particle, i.e.,

�̃ij�k,
� = �̃0�ij +
�̃T�k,
�

2
�3k̂ik̂ j − �ij� , �3.2�

where we find �̃0=� and �̃T=2���f�k� /��r�. f�k� is given
by Eq. �2.7�. For the values used in Fig. 4 we find �̃T / �̃0
�0.3 at the outer FS. For small dipolar couplings, where our
microscopic calculations are accurate, the occupied states in
momentum space lie outside the singularity see Fig. 4. The
line singularity is a ring in the kx, ky plane with radius, k0,
given by �r= f�k0�. This wave vector, k0���r /�2�1/3, is per-
pendicular to the polarization axis, assumed long ẑ, and natu-
rally introduces a length scale, 1 /k0 into the system. In the
regime were our calculation is valid the length scale is much
sorter than the interparticle distance, 1 /k0�1 /max�kF1 ,kF2�
and hence it is related to microscopic effects not considered
by our long-distance microscopic dipole-dipole Hamiltonian.

For strong dipolar couplings, our calculation suggests that
the radius of the ring penetrates the FSs. In this case, par-
ticles would occupy spin states with nontrivial topological
structure. At a critical coupling the system may eventually
acquire a spatial modulation.16 The strongly coupled regime,
�→�, can be accessed by increasing the dipole interaction
or by reducing the kinetic energy. The latter possibility can
be experimentally engineer in the laboratory by placing the
atoms in an optical lattice.

IV. ONE-BODY DENSITY MATRIX

In this section we compute the one-body density matrix in
Hartree-Fock approximation. The distribution function of
particles, �nk���, is now a 2�2 matrix in spin space. Dyson
equation, �G−1���= �i
n−�k�����−����k�
, with Hartree-
Fock self-energy corrections provide a conserving
approximation17 to the Green’s function. Defining ��k�

=Ek�− �̄, explicit calculation gives

G11�k,i
n� =
uk

2

i
n − �k+
+

vk
2

i
n − �k−
,

G22�k,i
n� =
vk

2

i
n − �k+
+

uk
2

i
n − �k−
,

G12�k,i
n� = ukvke−i�k� 1

i
n − �k+
−

1

i
n − �k−
� ,

G21�k,i
n� = ukvkei�k� 1

i
n − �k+
−

1

i
n − �k−
� , �4.1�

where Ek�=�k
0 � 	���11�k�−�r�2+ ���12�k��2
1/2 and uk

=cos��k /2�, vk=sin��k /2� and 0��k�� is defined in Fig.
3. uk

2 is the probability of up-spin propagation and vk
2 is the

probability of down-spin propagation. Equating G=G01
+G1�x+G2�y +G3�z and collecting like terms we can write in
compact form

G�k,i
n� =
�i
n − �kM�1 + �krĥk · �

�i
n − �k+��i
n − �k−�
, �4.2�

where �kM ���k++�k−� /2= ��k
0 − �̄� /� and �kr���k+−�k−� /2.

ĥk is a unit vector along the effective magnetic field param-
etrized by the polar angles �k ,�k, see Fig. 3. 1 is the 2
�2 identity matrix. In our case the one-body density matrix
is given by �nk����
�d
 /2��nF�
�����k ,
�, where ��� is
a 2�2 tensor of spectral functions and nF�
�= 	exp��
�
+1
−1. The spectral functions are given by

i��,��k,x� = G�k,
n��i
n=x−i0+ − G�k,
n��i
n=x+i0+. �4.3�

In Hartree-Fock, we obtain two simple delta functions corre-
sponding to the poles of the Green’s functions. It is useful to
expand the density matrix in Pauli matrices,

�nk��� = n̄k��� +
1

�
�Sk

i ����
i , �4.4�

where n̄k��1 /2�tr	�nk�
 is the average occupation of state
with momentum k, and �Sk

i ���nk
i ��� /2�tr	�i�nk�
 is the ith

�2 �1 0 1 2

�2

�1

0

1

2

ky

kz

k0

FIG. 4. �Color online� 2D view of points in k-space where
Ek�= �̄ �red and blue�. FSs of free system: �k

0 = �̄��r �dashed
lines�. Superposed are stream lines of magnetic moment field car-
ried by particles in momentum space 	Eq. �3.2�
. This field re-
sembles the magnetic field produced by an electric current circulat-
ing counterclockwise in a ring placed in the horizontal plane. Values

for these plots are kF1=1.1 and kF2=0.9, in units of k̄F, and �
=0.3�1.
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spin density component. �Sk
i � has a clear physical interpreta-

tion, namely, it is a vector field with polar angles defined in
Fig. 3 and plotted in Fig. 4, which gives the k-dependent
quantum-mechanical average of the spin state of the particle.
Explicitly,

n̄k =
1

2
	nF�Ek+� + nF�Ek−�
 ,

�Sk
x� = �ukvk cos �k	nF�Ek+� − nF�Ek−�
 ,

�Sk
y� = �ukvk sin �k	nF�Ek+� − nF�Ek−�
 ,

�Sk
z � =

�

2
�uk

2 − vk
2�	nF�Ek+� − nF�Ek−�
 .

Note that in these expressions we define nF�x�= 	exp��x
− �̄�+1
−1. Since nk

x �0 and nk
y �0, there is a nonzero aver-

age probability that the spin is pointing along the xy plane in
the region between the blue and red curves in Fig. 4. One can
check that

�
k

�Sk
x� = �

k
�Sk

y� = 0, �4.5�

i.e., there is no overall spin magnetization of the gas in the xy
plane. The system has cylindrical symmetry along the mag-
netization axis, see Fig. 4.

The net spin magnetization is along ẑ and is given by
�k�Sk

z �. The average occupation number of state k and spin
projection along ẑ: nk↑� n̄k+nk

z and nk↓� n̄k−nk
z are

nk,↑ = uk
2nF�Ek+� + vk

2nF�Ek−� ,

nk,↓ = vk
2nF�Ek+� + uk

2nF�Ek−� . �4.6�

Figure 5 is a density plot of the occupation probabilities of z
component of the spin in momentum space. Note that the
average occupation of spin states is not uniform in momen-
tum space as it would in a noninteracting Fermi gas in which
case there would be two concentric spheres uniformly occu-
pied with the up or down eigenstates of �z. Note also that
dipole-dipole interactions cause the spins to tilt predomi-
nantly along the diagonals, see also Fig. 4, in such a way that
measurement of quantum spin state will yield down with
nonvanishing probability even in regions in momentum
space originally occupied only by spins pointing up.

Equation �4.6� implies that the ground state wave function
which evolves adiabatically from the noninteracting system
is of the form

���D = �
k��kF

�ukck,↑
† + vkck,↓

† ��0� ,

where uk is the k-dependent amplitude for the spin to be the
eigenstate up of �z and vk the k-dependent amplitude for the
spin to be the eigenstate down �Fig. 6�. In this work we
computed these coefficients to first order in the dipole inter-
action. As we see the spin states of particles are linear com-
binations of eigenstates of �z. The true FS, the one which
separates the occupied from unoccupied single particle

states, is given by the red curve in Fig. 4, i.e., by the values
of kF that satisfy Ek+− �̄��k

0 + 	���11�k�−�r�2

+ ���12�k��2
1/2− �̄=0. There are sharp discontinuities in mo-
mentum space, see Fig. 5. In this sense they define ellipti-
cally distorted FSs such as those found in Ref. 7. We com-
ment that as the polarization of the gas increases vk
decreases and for a fully polarized gas we recover the ellip-
tical shape, red curve in Fig. 4 found in Refs. 1 and 2.

V. DISCUSSION

We have used perturbation theory to find the magnetic
structure of the ground state of an itinerant magnetized spin-

(a)

(b)

FIG. 5. �Color online� Density plot of the occupation probability
in momentum space of z projection of spin, nk↑ �a� and nk↓ �b� 	Eq.
�4.6�
. Values for these plots are the same as those of Fig. 4.
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1/2 Fermi gas with dipole forces. Our calculations are the
first step in the analogous perturbative calculations of Gell-
Mann and Brückner of the energy of electron gas and hence
are of general theoretical interest in themselves. However,
we have ultracold atomic gases with strong magnetic mo-
ments, such as 163Dy �10�B� as a specific candidate.9 The
dipole interaction of two magnetic dipoles in a Fermi gas
with density 1013 cm−3 is �10 nK and may be too small
compared with other energy scales in the system. We expect
that it is an experimental challenge so observe directly dipole
effects. In fact, direct evidence of this unconventional mag-
netism may become possible using a variation in NMR ex-
periment on ultracold dipolar gases as in the superfluid phase
just as in 3He-A phase.18 We briefly consider the following
scenarios of possible realization of dipolar effects in Fermi
systems.

The “spin” states could be two hyperfine levels of 163Dy
in an optical trap. In its ground state, 163Dy has spin, orbital,
nuclear, and total electronic angular momentum of S=2, L
=6, I=5 /2, and J=8, respectively. The total angular momen-
tum of the atom can be F=11 /2, . . . ,21 /2. However, the
energy gaps are several orders of magnitude larger that the
typical dipole-dipole energy per particle attained with current
experimental densities and its possible that the spin struc-
tures we describe here are washed out. However, since we
are operating in an optical trap, it may be possible to use the
low field limit from the same hyperfine-Zeeman manifold, in
which case, the splitting between hyperfine-Zeeman states is
not large. Now, if we operate in the high field limit �as we
may want as=0, the Feshbach resonance in Dy� then clearly
the effects of dipole interaction are suppressed. At the time
of writing little is known about the theory Feshbach reso-
nances in Dy. In a closely related problem we assumed that
the imbalanced Fermi gas was metastable. A possible stabi-
lizing mechanism is provided by a Stoner type of effective
interaction19,20 which was not considered in the present
work. Another possibility is to choose two hyperfine states
for which conservation of angular momentum would
strongly limit the phase space available for particles to decay
into. If this is true for Dy then there is no need to invoke the
Stoner mechanism.

A second possibility is the use of an optical lattice loaded
with hyperfine states of 163Dy. This method has certain ad-
vantages as far as stability is concerned21 and might also
make the dipolar effects much more pronounced. By work-
ing with a small filling fraction to avoid a large same-site
interaction and umklapp processes it may be possible to
make the dipole interaction be the dominant energy scale

Another important experimental question is the possible
presence of external stray magnetic fields. In the present
work we already assumed a fixed external Zeeman field.
Hence, the same considerations apply as regards to the ob-
servability of dipolar effects under stray magnetic fields. In
particular if Eex�Ed, the external field will pin the overall
axis of symmetry of the system but will not modify signifi-
cantly the spin structures described here. We only considered
zero temperature effects. We known that temperature effects
decrease the FS distortions.2,22–24 In general we expect the
spin structures we found to be very sensitive to temperature.
For example, for current attainable densities �1013 cm−3� the
dipolar energy per particle is Ed�10 nK. Boundary effects
are also known to be very important for long range forces
such as dipolar. If a degenerate dipolar Fermi gas is realized
one will obtain images that resemble Fig. 5 in time-of-flight
experiments. Lastly, as mentioned in the introduction, the
physics we describe is of general relevance to future theoret-
ical and experimental studies of two component Fermi dipo-
lar gases.
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APPENDIX A: THE DISTORTION OF THE FERMI
SURFACE OF A ONE-COMPONENT DIPOLAR FERMI GAS

One of the most interesting theoretical predictions is a FS
which is elliptical in shape with symmetry along the magne-
tization of the system. Such predictions have been made for
a dipolar one component Fermi gases1,2 and recently for two
component Fermi gases.7 The fact that the ground state FS
have elliptical shape in fully polarized systems can be under-
stood in several ways �a� by calculation of the self-energy
corrections to the single particle energy levels,2 see Appen-
dix C for details, �b� by noting that if the density is kept
constant it acts as a source field which entangles itself with
the quadrupolar mode,2 �c� by noting that the symmetry of
the bare interactions in a fully polarized system is invariant
under rotations about the net magnetization axis. An ellipti-
cal FS with the same axis of symmetry is consistent with the
symmetry is a possible ground state. This argument, how-
ever, does not tell whether the FS is prolate or oblate.2 Here
we provide perhaps the simples qualitative argument to un-
derstand the effect. It is based on elementary kinematics of a
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FIG. 6. �Color online� Momentum distribution along a line with
polar angle �k=60° �see Fig. 3� for nk↑ �red-solid� and nk↓
�blue-dashed�.
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particle in an anisotropic potential and the Pauli principle.
Consider a gas uniformly polarized along z axis. The Pauli
principle prevents occupation of the same single particle
states and hence gives some stability to the system.14 The
interaction between two dipoles is V�r�
= ��2 /r3��1–3 cos2 �r�, where �r is the angle of the relative
position vector with the z axis. As we see, the energy of
particles in a region close to the xy-plane ��r�� /2� experi-
ence, on average, a repulsive interaction, i.e., they move “up
the hill.” The total energy per particle is �2�kxy

2 � /2m+n�2

=E. The mean separation between particles is n−1/3 and
hence �r−3�=n, the particle density. However, particles in the
spatial region close to the z axis ��r�0� experience on av-
erage an attraction, i.e., they move “down the hill” and hence
the total energy per particle is �2�kz

2� /2m−2n�2=E. Com-
paring this two expression we find for particles with same
total energy �kz

2�� �kxy
2 �. Of course �kz�= �kxy�=0 because of

translational invariance. This suggests that the kinetic energy
and hence the Fermi wave vector of particles close to the z
axis is bigger than the kinetic energy of particles close to the
xy plane. Defining KFx=�2�kFxy

2 � /2m and KFz=�2�kFz
2 � /2m

from the relations shown above we obtain

KFz − KFx � 3nd2. �A1�

As we would expect, the difference in the Fermi energies
along the z axis and xy plane is proportional to the dipolar
energy per particle. For spin-independent forces in a transla-
tional invariant system the wave vector of particles, k, is a
“good” quantum number. The FS, which concerns only with
this quantum number is decoupled from the spin state of the
particles. Surprisingly, dipole-dipole interaction furnish an
example where this is no longer true and k is entangled with
the spin.

APPENDIX B: FOURIER TRANSFORM OF THE
DIPOLAR INTERACTION

The Fourier transform of the dipole-dipole interaction is
obtained by Fourier transforming the left-hand side of the
identity

−
�2

�xi � xj
� 1

�x − x��
� −

4�

3
�ij��x − x�� =

1

r3 ��ij − 3r̂ir̂ j� ,

�B1�

and using the well-known results that the Fourier transform
of 1 / �x−x�� is 4� /q2. Here r�x−x�, r��x−x��, and r̂ is a
unit vector along r. The contact term does not contribute for
finite separation between dipoles but is required because the
diagonal elements �i= j� on the left-hand side must satisfy the
Poisson equation −�2�1 / �x−x���=4���x−x��. This makes
the left- and right-hand side traceless. It is also required be-
cause the magnetic field is divergence free. One could see
this property directly from Eq. �2.3�. Note also that the di-
pole interaction is only valid at long distances and hence
here we only consider the physics of a system of particles
whose separation is larger that the Bohr radius, i.e., the elec-
tronic clouds of the atoms do not overlap.

APPENDIX C: SELF-ENERGY OF FULLY POLARIZED
DIPOLAR GAS

In this section we consider a homogeneous Fermi gas in-
teracting with dipolar forces. The results of this section apply
to electric as well as magnetic dipoles. The calculation below
was outlined in Ref. 2. Using the formula for the decompo-
sition of a plane wave into a sum of spherical harmonics we
can show that the Fourier transform of the dipolar interaction
Vd�r�= ��2 /r3��1–3 cos2 �r�, can be written as

Vd�k − k�� =� d3re−i�k−k��·rVd�r�

= �
lm;l�m�

Vlm;l�m��k,k��Ylm
� �k̂��Yl�m��k̂� , �C1�

where

Vlm,l�m��k,k�� = − 2d2�4��2�− i�lil� � �� dr

r
jl�kr�jl��k�r��

� �� d�Ylm
� �r̂�Yl�m��r̂�P2�r̂�� . �C2�

The Hartree contribution to the self-energy vanishes because
Vd�q=0�=0. The Fock term can be written as

�HF�k�� = −� d3k

�2��3V�k − k��nk
0 � �

lm

�lm�k�Ylm�k̂�� ,

�C3�

where we defined

�l,m�k� = − �
l�m�

� d3k

�2��3Vlm,l�m��k,k��Yl�m��k̂�nk
0. �C4�

In perturbation theory we use the spherical distribution nk
0 in

momentum space. We calculate the term V00,lm and substitute
into Eq. �C4� to obtain

�lm = − �l,2�m,0
4d2

�
�4�

5
�

0

kF
0

k�2dk� � �
0

� dr

r
j0�kr�j2�k�r� ,

�C5�

where kF
0 is the undistorted �spherical� Fermi wave vector.

We conclude that the Hartree-Fock self-energy is �P2�k̂�,
explicitly

�HF�k� = ��k�P2�k̂� , �C6�

where ��k� is a smooth slowly varying function of the mag-
nitude of the wave vector

��k� =
− d2

36�k3�3k5kF
0 + 8k3�kF

0�3 − 3k�kF
0�5

− 3	k2 − �kF
0�2
3arctan� k�

k�
�� . �C7�

This equation is valid for all k with k� being the least of kF
0

and k. One can check that ��k� is continuous and twice dif-
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ferentiable at kF
0 . We conclude that the single-particle disper-

sion to first order is given

�k = �k
0 + �HF�k� =

k2

2m
+ ��k�P2�cos �k� . �C8�

In particular the Fermi wave vector can be written as

kF = n̂kF
0 + n̂�kF. �C9�

To first order in the dipolar interaction the chemical potential
is unchanged, �= �kF

0�2 /2m. The first correction to the chemi-
cal potential is quadratic order in the interaction. The Fermi
wave vector is given

kF
2

2m
+ ��kF�P2�k̂F� = � . �C10�

Solving to first order in �kF we obtain

�kF =
md2�kF

0�2

9�
�3 cos2 �k − 1� , �C11�

which means that the FS is elliptical in the weak coupling
limit for fully polarized dipolar gas.

APPENDIX D: SELF-ENERGY OF AN IMBALANCED
TWO-COMPONENT DIPOLAR FERMI GAS

In this section we compute in Hartree-Fock the self-
energy of a polarized spin-1/2 system. Starting from the ex-
pression

�����k� = −� d3k�

�2��3

1

��
�
n�

ei
n�0
+

� G��
0 �k�,i
n��Vij�k − k�����

i ���
j , �D1�

one can show that �21=�12
� and �22=−�11. Performing the

spin indexes summation and the Matsubara sums we obtain

��11�k� = −
4��2

3
� d3k�

�2��3 �3 cos2 �k−k� − 1�

�	nF��k�
0 − �1� − nF��k�

0 − �2�
 ,

��12�k� = −
4��2

3
� d3k�

�2��33 cos �k−k�

�sin �k−k�e
−i�k−k�	nF��k�

0 − �1� − nF��k�
0 − �2�
 .

�D2�

Note that these expressions vanish for a system with equal
number of particles in each of the �z eigenstates. By expand-
ing the dipolar interaction in spherical harmonics and using
the unperturbed momentum distribution of particles, the in-
tegrals can be calculated analytically with the result

��11�k� = − f�k��3k̂z
2 − 1� ,

��12�k� = − f�k�3k̂z�k̂x − ik̂y� , �D3�

where f�k� is a smooth function of the magnitude of the
wave vector,

f�k� =
2�2

�
�

0

�

k�2dk��
0

� dr

r
j2�kr�j0�k�r�

� 	nF��k�
0 − �1� − nF��k�

0 − �2�
 . �D4�

The self-energy can be expanded in Pauli matrices as �
=�01+�1�x+�2�y +�3�z, and we obtain

���k� = ���11 ��12

��12
� − ��11

� = �i�
i, �D5�

where �i�k�=−f�k��3k̂ik̂z−�i,z�. We know give an explicit
derivation of Eq. �D3�. Starting from Eq. �D2� and expand-
ing in spherical harmonics

V20�k − k�� �
4��2

3
�3 cos2 �k−k� − 1�

= �
lm

�
l�m�

V20
lm;l�m��k,k��Ylm

� �k̂��Yl�m��k̂� .

�D6�

Substituting back into Eq. �D2�, we obtain the form of �11 is

��11�k� = − �
l�m�

�l�m��k�Yl�m��k̂� , �D7�

where �l�m��k�, depend only on the magnitude of the wave
vector, k,

�l�m��k� = �
lm
� d3k�

�2��3V20
lm;l�m��k,k��Ylm

� �k̂��

� 	nF��k�
0 − �1� − nF��k�

0 − �2�
 . �D8�

The angular integration is simplified because the unperturbed
distribution function is spherically symmetric. We obtain

�l�m��k� =
�4�

�2��3� k�2dk�V20
00;l�m��k,k��

� 	nF��k�
0 − �1� − nF��k�

0 − �2�
 . �D9�

The terms V20
00;l�m��k ,k�� can be found by noticing that the

Fourier transform of V20�r�= ��2 /r3��1–3 cos2 �r� is V20�q�
= �4��2 /3��3 cos2 �q−1� and by definition one can write

V20�k − k�� =� dr3e−i�k−k��·rV20�r� . �D10�

Note that V�r� can also be written as

V20�r� = −
�2

r3 2�4�

5
Y20�r̂� �D11�

and substituting the spherical wave expansion of a plane
wave

e−ik·r = 4��
lm

�− i�l jl�kr�Ylm�k̂�Ylm
� �r̂� �D12�

into Eq. �D10� we can read the only nonvanishing coefficient
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V20
00;20�k,k�� = �4��2�22�4�

5
Y00�

0

� dr

r
j2�kr�j0�k�r� .

�D13�

Substituting back into Eq. �D9� we obtain the only nonvan-
ishing coefficient

�20�k� = 2�4�

5

2

�
�2� k�2dk�� dr

r
j2�kr�j0�k�r�

� 	nF��k�
0 − �1� − nF��k�

0 − �2�


= 2�4�

5
f�k� . �D14�

At zero temperature the unperturbed Fermi surfaces are

sharply defined by wave vectors kF1= �6�2n1�1/3 and kF2
= �6�2n2�1/3 and f�k� can be analytically computed as f�k�
=g�k ,kF1�−g�k ,kF2� where g�x ,y� is given by

g�x,y� =
�2

76�

1

x3�3x5y + 8x3y3 − 3xy5

−
3

2
�x2 − y2�3ln� y + x

y − x
�� . �D15�

Finally,

��11�k� = − f�k��3 cos2 �k − 1� = − f�k��3k̂z
2 − 1� .

�D16�

If �1��2 then kF1�kF2 and f�k��0. A similar calculation
yields the quoted result for �12.
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