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Since the Lorentz force is perpendicular to the magnetic field, it should not affect the motion of a charge
along the field. This argument seems to imply absence of longitudinal magnetoresistance �LMR� which is,
however, observed in many materials and reproduced by standard semiclassical transport theory applied to
particular metals. We derive a necessary and sufficient condition on the shape of the Fermi surface for nonzero
LMR. Although an anisotropic spectrum is a prerequisite for LMR, not all types of anisotropy can give rise to
the effect: a spectrum should not be separable in any sense. More precisely, the combination k�v� /v�, where k�

is the radial component of the momentum in a cylindrical system with the z axis along the magnetic field and
v��v�� is the radial �tangential� component of the velocity, should depend on the momentum along the field.
For some lattice types, this condition is satisfied already at the level of nearest-neighbor hopping; for others,
the required non-separabality occurs only if next-to-nearest-neighbor hopping is taken into account.

DOI: 10.1103/PhysRevB.81.214438 PACS number�s�: 72.15.Gd, 73.50.�h

I. INTRODUCTION

Magnetoresistance, i.e., a change in the resistance due to a
magnetic field, can be distinguished into two types depend-
ing on the mutual orientation of the current and the magnetic
field: transverse �TMR� and longitudinal �LMR�. Although a
change in the transverse resistance due to a magnetic field is
natural because electrons experience Lorentz force in that
direction, the very existence of LMR is somewhat surprising,
at least at first glance. Indeed, since Lorentz force is perpen-
dicular to the field, one does not expect the motion of elec-
trons along the field to be affected. A weak point of this
argument is that it applies, strictly speaking, only to free
electrons but not to electrons in metals. Moreover, LMR is
absent in a more realistic �yet still incomplete� “damped
Bloch electrons model” �DBEM�, in which a phenomeno-
logical damping term is introduced into the semiclassical
equations of motion for an arbitrary electron spectrum.1–3

However, we will argue in this paper that the “damped Bloch
electrons model” is not equivalent to the Boltzmann equa-
tion, which provides the only complete description of semi-
classical dynamics of electrons in solids in the presence of
scattering. Therefore, absence of LMR in DBEM does not
imply its absence in reality.

Experimentally, LMR has been observed in many
materials.4,5 Theoretically, a general solution of the Boltz-
mann equation in the magnetic field does not exclude LMR
�Ref. 6�; calculations performed for particular metals, e.g.,
copper, do yield finite LMR.4,5 However, it is not clear from
this general solution which symmetries must be broken, i.e.,
how anisotropic the electron spectrum should be for LMR to
occur. It is probably why LMR is sometimes viewed as a
kind of surprise.7,8 In addition to anisotropic spectrum, sev-
eral more special models have been invoked to explain
LMR. It was shown, for example, that LMR can arise due to
anisotropic scattering,9 macroscopic inhomegeneities,10 in-
cluding barrier inhomogeneities in superlattices,8 as well as
due to a modification of the density of states by the magnetic
field in the ultraquantum regime, when all but the lowest
Landau levels are depopulated.11 Whereas observed LMR in

many cases is likely to be caused by these more evolved
mechanisms, it is still necessary to explore whether LMR
can arise simply due to anisotropy of the Fermi surface �FS�
and to formulate a minimal condition for LMR to occur.

Magnetotransport in nonquantizing fields is described by
the Boltzmann equation which gives the conductivity tensor.
To find magnetoresistance, one inverts this tensor. It is well
known that for any isotropic spectrum and also for isotropic
scattering, the magnetic field dependences of the diagonal
and off-diagonal conductivities cancel out, so that both TMR
and LMR are absent. While TMR can be made finite by
either invoking any kind of anisotropy of the Fermi surface
or introducing a multiband picture while keeping the spec-
trum isotropic, the story with LMR is not so simple. As is
shown in this paper, not all types of anisotropy give rise to
LMR, e.g., deforming a spherical Fermi surface into an el-
lipsoidal one is not enough. We derive the necessary and
sufficient condition the spectrum must satisfy for LMR to
occur and discuss the implications of this condition for sev-
eral types of band structure. The condition serves as a mini-
mal condition, demonstrating how LMR can arise purely due
to Fermi surface geometry even if scattering is simply iso-
tropic. For example, metals with face-centered cubic �FCC�
and body-centered cubic �BCC� lattices satisfy the necessary
and sufficient condition even if only nearest-neighbor hop-
ping is taken into account, whereas a simple cubic �SC� lat-
tice has LMR only due to hopping between next-to-nearest
neighbors. The same is true for layered structures, such as
hexagonal planes stacked on top of each other, where one has
to include out-of-plane next-nearest-neighbor interactions to
see the effect.

The rest of the paper is organized as follows. In Sec. II we
show that LMR is absent in DBEM and analyze the differ-
ences between this and Boltzmann-equation approach. In
Sec. III, we derive the necessary and sufficient condition for
LMR in the Boltzmann-equation formalism and discuss the
implications of this condition. As a particular example, we
consider the case of Bernal-stacked graphite in Sec. IV. In
graphite, the necessary and sufficient condition is satisfied
due to trigonal warping of the Fermi surface. We find, how-
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ever, that strong non-parabolic LMR observed in highly ori-
ented pyrolytic graphite �HOPG� samples12 cannot be ac-
counted for LMR arising simply from anisotropy of the
Fermi surface. Our conclusions are given in Sec. V.

II. SEMICLASSICAL EQUATIONS OF MOTION

The effect of weak electric and magnetic fields on elec-
trons in solids can be described by the semiclassical equa-
tions of motion13

v =
��k

�k
, �1a�

dk

dt
= e�E + v � B� , �1b�

where e is the electron charge and we set �=1. We neglect
here the anomalous terms in the velocity which, even if
present, are small in weak magnetic fields.14,15 In the absence
of scattering, Eqs. �1a� and �1b� are valid for an arbitrary
spectrum ��k� and provide an invaluable tool for analyzing
collisionless dynamics of electrons in solids. To account for
scattering of electrons by impurities, phonons, etc., it is cus-
tomary to replace Eqs. �1a� and �1b� by a phenomenological
“damped Bloch electrons model” �DBEM� with a damping
term −k /� inserted into the right-hand side of Eq. �1b�.1–3 In
steady-state, DBEM reduces to

k

�
= e�E + v � B� . �2�

We are now going to show that this approach eliminates
LMR not only for an isotropic but also for an arbitrary spec-
trum. To find LMR, we assume that the current j=encv,
where nc is the number density of conduction electrons, is
along B chosen as the z-axis. Then,

vz�kx,ky,kz� =
jz

nce
, �3a�

vx�kx,ky,kz� = 0, �3b�

vy�kx,ky,kz� = 0. �3c�

Furthermore, the equation of motion �2� for the kz component
gives

kz = e�Ez. �4�

The set of four Eqs. �3a�–�3c� and �4� defines an inhomoge-
neous system for four unknowns: kx, ky, kz, and Ez. In gen-
eral, such a system has a unique solution. Therefore, Ez can
be found as a function of jz using only Eqs. �3a�–�3c� and
�4�. Since none of these equations involve the magnetic field,
the longitudinal resistivity �zz= jz /Ez does not depend on B
either, which implies that LMR is absent for an arbitrary
spectrum. On the other hand, components Ex and Ey have to
be found from the equations of motion for kx and ky which do
involve B, and hence TMR is not zero for an arbitrary spec-
trum.

If the above conclusion were correct, it would be in vari-
ance with experimental observations. As we will show
shortly, nonzero LMR can be understood only by using the
Boltzmann equation

dfk

dt
=

� fk

�t
+ v ·

� fk

�r
+ k̇ ·

� fk

�k
= Ic�fk� , �5�

where Ic denotes the collision integral. Although the Boltz-
mann equation is a semi-classical description just like the
previous method, there is some conceptual difference be-
tween the two approaches. The problem is that while the
equations of motions in the absence of scattering can be de-
rived from the Schrödinger equation, the DBEM does not
follow from any microscopic approach. Indeed, the momen-
tum k in the absence of scattering still has the meaning of the
quantum number parameterizing the Bloch state �k�r�.
Hence a �slow� evolution of k with time in the presence of
electric and magnetic fields describes the evolution of �k�r�.
In the presence of scattering, e.g., by disorder, �k�r� be-
comes a random quantity whose average over disorder real-
izations does not have a particular meaning. Therefore, it is
not surprising that an ad hoc insertion of the damping term
into the equation of motion does not capture essential phys-
ics. Even in the absence of the magnetic field the shortcom-
ings of this procedure become obvious—e.g., it is easy to
show that the conductivity calculated by DBEM method
does not coincide with that calculated from the Boltzmann
equation for a general band structure, the exception being
only in the case of a simple isotropic spectrum.

III. MINIMAL CONDITIONS FOR LONGITUDINAL
MAGNETORESISTANCE

A. Necessary condition

Having dealt with the inconsistencies of the “damped
Bloch electrons model,” we now return to the original prob-
lem of finding the minimum requirement for nonzero LMR
for an arbitrary spectrum �=��k�. In the linear-response re-
gime, one can rewrite Eq. �5� for the nonequilibrium part of
the distribution function g�k�= fk− fk

0 as

�1 + 	̂�g�k� � �1 + e��v � B� ·
�

�k
�g�k� = − eE · v

� fk
0

��k
,

�6�

where we have also adopted the relaxation-time approxima-
tion �which is exact for isotropic impurity scattering�. Since
we are interested in the minimal condition, we allow � to
depend only on � but not on the direction of k and assume
that all components of k relax at the same rate, i.e., that 1 /�
is a scalar rather than a tensor. We will come back to this
point later in the paper. For B � ẑ,

	̂ = �e�v � B� ·
�

�k
= e�B	vy

�

�kx
− vx

�

�ky

 . �7�

Following the Zener-Jones method,16 we express g�k� via an

infinite series in the operator 	̂:
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g�k� = �1 + 	̂�−1	− �eE · v
� fk

0

��k

 = �

n=0




�− 	̂�n	− �eE · v
� fk

0

��k

 .

�8�

Note that the operator 	̂ always yields zero when it acts on

any function that depends on �k only. Hence, in Eq. �8�, 	̂
acts only on v. Substituting Eq. �8� into the current j
=2e�d3kvg�k� / �2��3, we find the conductivity as

�� = 2e2� d3k

�2��3	−
� fk

0

��k

v�

n=0




�− 	̂�nv�. �9�

In the LMR geometry, E �B � ẑ. If 	̂vz=0, all but the n=0
term in Eq. �9� are equal to zero. Therefore, a necessary
condition for �zz to depend on the magnetic field is

	̂vz � 0. �10�

Rewriting 	̂ in cylindrical coordinates, the condition �10�
can be re-expressed as

	 ��

��

�

�k�

−
��

�k�

�

��

vz � 0, �11�

or

�

�kz
	 ��/��

��/�k�

 � 0. �12�

On the other hand, Eq. �12� is not a sufficient condition

because even if 	̂nvz�0 for the nth term in the series, the
contribution of this term to �zz may vanish upon integrating
over the Fermi surface. For example, since �zz must be an
even function of B, all odd terms in the series must vanish.

Equation �12� implies that the minimum condition on the
spectrum is that the ratio of �� /�� and �� /�k� �equal to
k�v� /v�� must depend on kz. Geometrically, this means that
the angle between the component of velocity perpendicular
to the field and the radial direction at a given point on the
Fermi surface must vary with kz �Fig. 1�. It can be easily seen
that if the spectrum does not depend on �, condition �12� is
trivially violated and there is no LMR. Therefore, angular

anisotropy of the FS about the magnetic-field direction is a
prerequisite. However, anisotropy must be of a special kind.
For example, spectra such as �k=�1�k� ,��+�2�kz� and �k
=�1�k� ,���2�kz�, which are arbitrarily anisotropic in the �
direction but separable in kz, violate condition �12� and thus
do not lead to LMR. As an example, let us consider a SC
lattice with lattice parameter a. In the tight-binding model
with nearest-neighbor hopping �parameterized by coupling
t1�, the energy spectrum is given by �k=−2t1�cos�kxa�
+cos�kya�+cos�kza�� which, being separable in all three co-
ordinates, clearly violates the LMR condition. If next-to-
nearest-neighbor hopping �parameterized by coupling t2� is
taken into account, additional terms −4t2�cos�kxa�cos�kya�
+cos�kya�cos�kza�+cos�kza�cos�kxa�� occur in the spectrum,
which no more violates the LMR condition. Thus, the effect
comes only from next-to-nearest-neighbor hopping for an
SC lattice. On the other hand, an FCC lattice satisfies the
condition already at the nearest-neighbor level because the
spectrum in this case �k=−4t1�cos�kxa /2�cos�kya /2�
+cos�kya /2�cos�kza /2�+cos�kza /2�cos�kxa /2�� is non-
separable; the same is true for a BCC lattice. On the other
hand, layered, e.g., hexagonal, structures, will require cou-
pling between an atom located in one plane and another atom
in the adjacent plane but situated obliquely from the former,
if the magnetic field is perpendicular to the planes �more on
this later for the specific case of graphite�.

A quantity measured in a typical experiment is not the
conductivity but the resistivity. Generally speaking, the de-
pendence of the conductivity on the magnetic field does not
automatically imply a dependence of the resistivity on the
field—a well known case is the isotropic spectrum, when the
�transverse� diagonal components of the conductivity depend
on B but the diagonal components of the resistivity do not. It
is necessary, therefore, to make sure that Eq. �12� is not only
a necessary condition for longitudinal magnetoconductance
but also for magnetoresistance. It is difficult to prove that
nonzero magnetoconductance implies nonzero LMR for an
arbitrary spectrum. To proceed further, we relax a condition
on the energy spectrum, assuming that B is perpendicular to
the plane of symmetry, i.e., that ��kx ,ky ,kz�=��kx ,ky ,−kz�.
This constraint is stronger than that imposed by time reversal
symmetry �in the absence of the spin-orbit interaction and
magnetic structure�, i.e., In this case, vz is odd while vx and
vy are even in kz, and the off-diagonal components �z �
�z� vanish both in zero and finite magnetic fields. For ex-
ample, all terms in the expression for �xz vanish upon inte-
gration over kz:

�xz = 2e2��
n=0




�− e�B�n d3k

�2��3vx	vy
�

�kx
− vx

�

�ky

n

vz

� fk
0

��k
= 0.

�13�

By the Onsager principle, �z=as well. Therefore, the matrix
of �� is block-diagonal and �zz=1 /�zz. Thus Eq. �12� is a
necessary condition for nonzero LMR as well, provided that
the spectrum is symmetric on inversion of kz.

FIG. 1. �Color online� Geometric interpretation of the necessary
condition for longitudinal magnetoresistance. Here, v� is the com-
ponent of the electron velocity perpendicular to the field.
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B. Sufficient condition

The condition presented in Eq. �12� is only a necessary
condition for LMR, as the integral in Eq. �9� may still vanish
due to some symmetry even if the integrand satisfies Eq.
�12�. To formulate a sufficient condition, we approach the
problem from the strong-magnetic-field limit. In this limit, it
is convenient to use the method of Lifshitz, Azbel’ and
Kaganov,6,17,18 in which the k-space is mapped onto a space
defined by the set of variables ���k, kz and t1, where t1,
defined by the equation

dk

dt1
= ev � B , �14�

is the time spent by an electron on the orbit in the k-space in
the presence of the magnetic field only. Accordingly, the in-
tegration measure is transformed as

   dkxdkxdkz = eB   dt1d�dkz. �15�

The nonequilibrium correction to the distribution function
can be written as

g = e
� f0

��
E · s , �16�

where s satisfies

�s

�t1
= Ic�s� + v . �17�

Adopting the relaxation-time approximation for Ic and keep-
ing only the leading term in 1 /B, it is easy to see that6

sz = ��vz� , �18�

where �vz�= 1
T�vzdt1 with T being either the period of an

orbit �for closed orbits� or the time over which an orbit
reaches the boundary of the Brillouin zone �for open orbits�.
The �zz component of the conductivity tensor in this limit is
then equal to

�zz�
� =
2e2�

�2��3eB   d�dkzdt1vz�vz�	−
� f0

��



=
2e2�

�2��3� d� dkz d�

v�

vz�vz�	−
� f0

��

 , �19�

where d� is a line element along the orbit and v�=�vx
2+vy

2.
Obviously, �zz�
� does not depend on B. On the other hand,
the zero-field value of �zz is

�zz�0� =
2e2�

�2��3 d3kvz
2	−

� f0

��

 . �20�

Pippard5 suggested that the ratio �zz�
� /�zz�0� may be used
to get information about the scattering mechanisms on the
FS. We, however, use this ratio to construct a sufficient con-
dition for LMR. Keeping the same constraint on the energy
spectrum ��kx ,ky ,kz�=��kx ,ky ,−kz� so that �zz=1 /�zz, the
sufficient condition for LMR can now be formulated as fol-
lows: if �zz�
���zz�0�, we have nonzero LMR. It is only a

sufficient condition because, even if it is violated, LMR can
still exist. Indeed, even if asymptotic limits of the function
�zz�B� coincide, it is not necessarily a constant. To formulate
the sufficient condition in more transparent terms, we use the
following trick. The integration measure in the expression
�20� for the zero-field conductivity can formally be rewritten
in terms of variables �, kz and t1, as specified by transforma-
tion �Eq. �15��. Since the result does not depend on the mag-
netic field, this transformation can be applied for any value
of the field but, to compare the zero- and strong-field values,
we choose the same B as in the first line of Eq. �19�. Then,

�zz�0� =
2e2�

�2��3eB   d�dkzdt1vz
2	−

� f0

��

 . �21�

Comparing this equation with the first line of Eq. �19�, we
see that the sufficient condition is equivalent to

   d�dkzdt1	−
� f0

��

�vz�vz� − vz

2� � 0. �22�

Integrating over t1, we rewrite the last equation as

  d�dkz	−
� f0

��

��vz

2� − �vz�2�

=  d�dkz	−
� f0

��

��vz − �vz��2� � 0.

Since the integrand is non-negative, the integral can only
vanish if vz= �vz�, which is the case if vz does not depend on
t1. Hence, the sufficient condition is equivalent to the re-
quirement that

�vz

�t1
=

�vz

�kx

�kx

�t1
+

�vz

�ky

�ky

�t1
+

�vz

�kz

�kz

�t1
� 0. �23�

Recalling that k satisfies Eq. �14�, we re-write the last equa-
tion as

	vy
�

�kx
− vx

�

�ky

vz � 0 �24�

or, recalling the definition of the operator 	̂ in Eq. �7�, as

	̂vz � 0. �25�

Since the sufficient condition �25� coincides with the neces-
sary condition in Eq. �10�, we conclude that Eq. �12� is both
a necessary and sufficient condition for LMR. As a corollary,
it also follows that the strong-field value �zz�
� is always
smaller than or equal to �zz�0�, implying that if LMR is
finite, it is positive.

Before concluding this section, we would like to comment
that our aim was to establish a minimal condition for the
appearance of LMR in materials. Specifically, we wanted to
explore whether, in the simplest model for scattering, aniso-
tropy of the bandstructure alone can give rise to LMR; the
answer turns out to be in the affirmative. It should be pointed
out that LMR can also occur due to anisotropic scattering.
Indeed, as was shown by Jones and Sondheimer19 who chose
a special form of the scattering probability to solve the Bolt-
zmann equation exactly, nonzero LMR can occur even for an

H. K. PAL AND D. L. MASLOV PHYSICAL REVIEW B 81, 214438 �2010�

214438-4



isotropic spectrum, if the scattering probability is appropri-
ately anisotropic. In general, scattering of Bloch electrons is
to be described by a tensor of relaxation times, because dif-
ferent components of momentum relax at different rates. In
lieu of a fully microscopic description, we adopt here a
heuristic model, in which the relaxation time, being still a
scalar, depends on the point in the k space, �=��k�. It is easy
to see that the necessary condition for nonzero LMR in this
case is modified to:

	̂��vz� � 0, . �26�

That means that even if the spectrum alone violates our pre-

vious condition �12�, i.e., 	̂vz=0, Eq. �26� may still be sat-

isfied because 	̂� may be nonzero. If this is the case, LMR is
finite as well. On the other hand, an attempt to prove that Eq.
�26� is also a sufficient condition in this case fails because of
the following reason. With �=��k�, expressions for the high-
field and zero-field longitudinal conductivities are still given
by Eqs. �19� and �21�, except that now � is inside the inte-
grals. Following same reasoning as before, a sufficient con-
dition for nonzero LMR would be �zz�B=
���zz�B=0�,
which now implies that ���−�f0 /�����vz

2��− �vz��vz���d�dkz
�0. Unlike the previous case, however, the integrand cannot
be proven to be a positive function; therefore, a nonzero
integrand does not guarantee that the integral is also nonzero.
Therefore, the sufficient condition can only be formulated in
the integral form, as given above.

IV. EXAMPLE: LONGITUDINAL MAGNETORESISTANCE
IN GRAPHITE

As a particular example of a material with significant
LMR, we consider the case of graphite, where a huge—up to
three orders of magnitude—LMR effect is observed when
both the current and magnetic field are along the c axis.12

The crystal structure of graphite consists of Carbon atoms
arranged in hexagonal layers stacked on top of each other in
the Bernal way �ABABAB…�. Each unit cell has 4 C atoms
with two inequivalent C atoms in each layer. The resulting
Brillouin zone is a hexagonal prism with very thin elongated
FSs along the edges of the Brillouin zone extended in the
direction perpendicular to the plane of the layers. The energy
spectrum of graphite is well described by the Slonczewski
Weiss McClure �SWMc� model12 which involves seven pa-
rameters �0 , . . . ,�6, describing different kinds of interactions
between lattice points. Here, �0 and �1 denote in- and out-
of-plane nearest-neighbor interactions, respectively,
�2 , . . . ,�5 describe various next-nearest neighbor interac-
tions, while �6 embodies the difference in the on-site ener-
gies of two inequivalent C atoms in each layer. Parameter �3
plays a special role as it breaks rotational symmetry of the
FS. Without �3, the FS is cylindrically symmetric about the
Brillouin zone edge. Therefore, the LMR condition is clearly
violated. However, finite �3 leads to “trigonal warping,” i.e.,
a threefold deformation of the FS. An expression for energy
spectrum of electrons and holes with �3 included in a pertur-
bative way can be written as20

� = �3
0 + A�2 � �B2�4 + 2B�3��3 cos�3� + �3

2�2�2�1/2,

�27�

where �=�3a0k� /2, �=cos�kzc0 /2�, and =� /2+�, with a0
and c0 being the in-plane and out-of-plane lattice constants,
respectively. Also in Eq. �27�, �3

0, A and B are all functions of
kz and contain other interaction parameters. Neglecting all
the next-to-nearest-neighbor couplings except for �3 in the
spectrum, we have �3

0=A=0 and B=�0
2 /�1�. With this ap-

proximation, Eq. �27� can be rewritten �up to O��3
2�� as:

� = � � k�
2

2m�kz�
+ �3�� cos�3� +

�1�3
2�3

2�0
2 sin2�3�� ,

�28�

where m�kz�=2�1� /3a0
2�0

2. As is obvious from Eq. �27�, the
terms containing  introduce the trigonal warping effect in
the spectrum. Due to the presence of these terms, the condi-
tion for nonzero LMR is satisfied. Figure 2 shows the calcu-
lated dependence of LMR on the magnetic field in units of
�c�, where �c=3eB /m0 with m0�m�kz=0� in graphite at
zero temperature �for �0=3.16 eV, �1=0.39 eV, and �3
=0.315 eV�.12 As expected, LMR is quadratic at small fields
and eventually saturates at large fields. However, we note
that although this explains qualitatively why graphite has
nonzero LMR in the first place, the curve does not nearly
match the experiment quantitatively. Namely, we find
that relative magnetoresistance ��zz�B� /�zz�0����zz�B�
−�zz�0�� /�zz�0� saturates approximately at a value of 0.2.
However, observed value of this ratio is higher by orders of
magnitude.22 This implies that the mechanism of LMR in
real graphite �as opposed to ideal graphite described by the
SWMc model� is not simply anisotropy of the FS. The dis-
agreement is not surprising in light of the fact that the
mechanism of c-axis transport in graphite �not only in finite
but also in zero magnetic field� is still not completely under-
stood and generally believed to be due to processes
not described by the standard Boltzmann equations, e.g.,
phonon-assisted resonant tunneling through macroscopic
defects, e.g., stacking faults,21,23,24 or disorder-assisted
delocalization.25
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FIG. 2. Calculated dependence of LMR on magnetic field in
graphite.
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V. CONCLUDING REMARKS

To conclude, we have derived a necessary and sufficient
condition that an electronic spectrum should satisfy in order
to show nonzero longitudinal magnetoresistance within the
semiclassical regime of electron transport. We find that an-
isotropy is essential for nonzero LMR although this aniso-
tropy is to be of a special kind, namely, the spectrum must
satisfy a particular nonseparability condition given by Eq.
�12�. We also show that a phenomenological “damped Bloch
electrons” model does not capture essential physics of semi-
classical transport in anisotropic materials. In particular, this
model predicts that LMR is absent not only for isotropic but
also for anisotropic transport, which is not consistent either
with the predictions of the Boltzmann-equation theory or ex-
periment.

In general, the limiting values of the longitudinal conduc-
tivities in the zero- and high-field limits differ only in how
the square of the z-component of the electron velocity is
averaged over the FS. Excluding some pathological situa-

tions, these two averages can only differ by a numerical co-
efficient on the order of unity. Therefore, an LMR effect can,
in principle, result from FS anisotropy if its magnitude does
not exceed or comparable to 100%. If, an addition, the lattice
structure is such that LMR is only possible only due nearest-
neighbor-hopping, one should expect even smaller values of
LMR. In many materials, e.g., copper4 and Sr2RuO4,7 the
observed LMR effect is on the order of 10%, which is well
within the anisotropic-FS mechanism. However, gigantic
LMR effects, such as the one observed in graphite, require
explanations which involve macroscopic inhomogeneities of
the sample.
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