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We develop a theory to describe the ferromagnetic resonance response of layered structures composed of
two ferromagnetic thin films separated by a nonferromagnetic spacer layer, when spin-polarized current ema-
nates from one layer and is injected into the second. The resulting spin torque influences both the frequency
and the linewidth of the ferromagnetic resonance response of the film into which the current is injected. We
derive explicit formulas that describe such effects, for arbitrary orientations of an external magnetic field and
directions of the magnetization of the polarizing ferromagnetic layer. This enables us to calculate the effect of
the spin-transfer torque on characteristic quantities such as the high-frequency susceptibility, ferromagnetic
resonance linewidth, ferromagnetic resonance frequency, and the equilibrium magnetization orientation. The
results demonstrate that ferromagnetic resonance investigations provide access to spin-transfer torque effects
by analyzing both the resonance frequency as well as the resonance linewidth. The latter can be used as a very
sensitive measure of spin-torque physics in the regime of small current densities, i.e., at the onset of spin-
transfer-torque-driven dynamics. The theory is compared quantitatively to experimental results obtained on
Py/Cu/Co-trilayer structures.

DOI: 10.1103/PhysRevB.81.214434 PACS number�s�: 76.50.�g, 75.76.�j, 85.75.�d

I. INTRODUCTION

When an electric current emerges from a metallic ferro-
magnetic �FM� layer with defined magnetization direction, it
exhibits a spin polarization along that direction. If such a
spin-polarized current is then injected into a second ferro-
magnetic film, the electrons will exert a torque on the
magnetization of the second layer. This effect is called
spin-transfer torque and was predicted theoretically by
Slonczewski1 and Berger2 in 1996 and observed by several
groups.3–5 The research on the spin-torque effect within mag-
netic nanostructures has become a focus of recent interest in
the field of nanomagnetism, mainly because of its relevance
for applications in technological devices such as magnetic
random access memory elements or high-frequency devices.6

It has been argued that the spin-torque effect may be used to
replace external magnetic fields as a means of manipulating
the magnetization in a film integrated in a device. Detailed
review articles of the topic including extensive bibliogra-
phies can be found elsewhere.6–9

A spin-polarized current has two effects on the magneti-
zation of a free layer. It transfers angular momentum to the
magnetization through the exchange field generated by the
polarized spins associated with the current, and in addition
there is a classical Oersted field present as well. Both effects
induce a torque on the magnetization. In this context, the
Oersted field might, in principle, induce a multidomain struc-
ture in the magnetic layers. However, since we are interested
in the ferromagnetic resonance �FMR� response in the pres-
ence of the current, a static applied Zeeman field is also
present. Under typical FMR conditions, this static field is
much larger than the Oersted field so that monodomain be-
havior of the magnetic moments in the sample is ensured

even for larger structure sizes. This fact can be viewed as an
advantage of using FMR to detect the spin-transfer-torque-
driven effects by a measurement of the dynamic response of
the specimen �changes in the high-frequency susceptibility�
as opposed to measurements of static properties such as the
dc electrical resistance.

Another property of the Oersted field is that by reversing
the direction of the electrical current only the direction
and not the magnitude of this field is changed. The Oersted
field is in general inhomogeneous; with the consequence that
it leads to a broadening of the FMR line independent of
current direction. On the contrary, the spin-transfer torque
efficiency is highly anisotropic relative to the current flow
direction, which is reflected by the critical current densities
for magnetization reversal being different for the two current
directions.3–5 As discussed below, this asymmetry results in a
decrease in the FMR linewidth for one current direction
while an increase is expected when the current is reversed.
As a consequence, the distinctly different effects of the Oer-
sted field and the spin-transfer torque can be well distin-
guished in an FMR experiment.

In this paper, we focus our attention on the description of
a trilayer structure like those fabricated by Posth et al.10

These pillars contain two FM metallic layers separated by a
nonmagnetic metallic spacer. One magnetic layer �called the
polarizer in the following� is assumed to be either pinned
along a given direction or free to follow the applied field. A
pinned polarizer may be achieved by exchange bias due to
direct contact with an antiferromagnet, by in-plane aniso-
tropy of the polarizer, which creates preferential magnetiza-
tion directions, or by an external magnetic field applied
along a certain direction. Since the latter is necessarily
present in an FMR measurement, the requirement of polar-
izer pinning is achieved by the external magnetic field. We
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will see that large external fields do not hinder the detection
of the spin-transfer torque effects when employing FMR to
examine the response of the free layer, in our samples.

The degree of spin polarization realized in an electric cur-
rent traversing the polarizer would be influenced by spin-
dependent scattering at the interface and spin-flip scattering
within the bulk of the polarizing material. Although, depend-
ing on the material of the polarizer, the spin polarization
might be either parallel or antiparallel to the polarizer’s mag-
netization �the latter may occur in case of preferential inter-
face reflection and bulk scattering of majority electrons with
spin orientation parallel to the magnetization direction, see,
e.g., Ref. 11�, we assume in the following the more common
case that the minority spins are scattered more strongly so
that the current will become spin polarized parallel to the
magnetization of the polarizer.

The spacer layer is assumed to be sufficiently thick that
one can neglect interlayer exchange coupling. In this limit
and as a first approach, the FM layers can be treated as
independent from each other and thus they can be character-
ized by different magnetic parameters. Hence, when an ex-
ternal field is applied, the two magnetizations will respond
differently to the field. In general, this will lead to a nonpar-
allel alignment of both magnetizations in case of different
anisotropies �shape and/or magnetocrystalline� in each film.
However, when polycrystalline materials are used and so in-
plane anisotropy is negligible, due to the shape of the trilayer
stack, both magnetizations will, in equilibrium, align parallel
to the in-plane external magnetic field direction.

To exert a torque on the second magnetic layer �called
free layer� a nonvanishing angle between polarizer and free
layer is required. In many investigations, this is achieved by
introducing in-plane shape anisotropy into the trilayer, e.g.,
by fabricating structures with elliptical or square shape,
rather than circular cross section. This reduction in symmetry
in turn results in a preferential direction for the in-plane ori-
entation of the magnetization with origin in shape anisotropy.
If the two magnetic layers consist of different materials or
have different thicknesses, they will respond differently to an
external magnetic field applied off-axis to the high-symmetry
direction of the ellipse or the edge of the square. This leads
to a nonzero angle between the magnetization of two layers
and induces a nonzero torque of the spin-polarized current on
the free layer. Another advantage of FMR detection of spin-
torque effects is that the requirement of an angle between the
two magnetic layers is not needed, as we shall see. This is
because in FMR one excites a precession of the magnetiza-
tion about the static equilibrium orientation. In case of dif-
ferent ferromagnetic materials such as Py and Co, the pre-
cession frequency is material specific. Thus, only the free
layer will undergo precession when excited in resonance
while the polarizer does not. Then, however, the dynamic
excitation will introduce an angle between the two magneti-
zations that induces a spin-transfer torque despite the same
static equilibrium angles of the two magnetic layers.

We finally emphasize that it is the dynamical response of
the free layer that includes information on the spin-torque
effect within an FMR experiment. No change in the static
equilibrium orientation is necessary for one to probe spin-
torque physics with this method. It is the case that this

technique is extremely sensitive and suitable for small cur-
rent densities, and it probes the system below the onset of the
spin-torque-driven magnetization reversal. In this regime,
since there is very little change in the static orientation, other
methods suffer from sensitivity problems. The reader should
note that the experimental approach we consider here as-
sumes a classical microwave-driven FMR experiment to
which the spin torque enters as a quantity that influences the
precessional orbit which in turn can be detected due to
changes in the FMR linewidth. The linear regime for small
current densities is considered for which the spin torque acts
as a positive or negative damping instead of driving a mag-
netic mode itself. Such an experiment is conceptually differ-
ent from the so-called spin-torque FMR that employs spin-
polarized ac currents in the gigahertz range to drive FMR
�see, e.g., Refs. 12 and 13 for details�.

As far as we know there is no complete theoretical de-
scription of how an external Zeeman field out of the film
plane affects the FMR response in the presence of a spin-
polarized current. We mention that spin-torque effects on the
linewidth in the linear response regime were shortly dis-
cussed already by Rezende et al.14 while this work focused
on the nonlinear regime. In papers published so far the effect
of spin-transfer torque on the dynamics and the magnetiza-
tion reversal in spin-valve pillars has been investigated only
for the case where the applied field is parallel to the film
plane.15,16 Peng-Bin He et al.17 consider an in-plane applied
field also but extend the theoretical description of the trilayer
structures by introducing tilted anisotropy in the polarizing
layer. Thus, an arbitrary orientation of the magnetization of
the polarizer is addressed in this paper. From the experimen-
tal point of view, a more convenient way to tune the direction
of the polarizer is by variation in the direction of an external
field.10 Our goal in the present paper is to describe the effect
of the spin torque on the FMR response of trilayer structures
for applied fields along arbitrary directions in the film plane
as well as out of the film plane. We also provide the reader
with simple analytical formulas to model the FMR response
through calculations of the FMR frequency, resonance field,
and FMR linewidth. We illustrate the predictions of the
theory by calculations performed for realistic experimental
parameters that assume a Co/Cu/Py system. We moreover
discuss the static behavior of the equilibrium magnetization
in presence of applied magnetic fields and spin currents. Fi-
nally, we calculate the dynamical high frequency response of
the system and compare our results with experimental data.

II. THEORETICAL DISCUSSION

The geometry we consider is displayed in Fig. 1. The
magnetization MS of the free layer points along the z direc-
tion, which is not in general parallel to the film plane. The y
axis lies in the plane spanned by the magnetization of the
free layer and the normal n̂ to the surface of the free layer.
The x axis is oriented parallel to the surface. The magnetiza-
tion MS, the applied Zeeman field H0, and the polarization p̂
of the injected spin current are oriented out of plane, given
by the polar angles �, �H, and �P with respect to the plane
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of the film. The azimuthal angles � and �P are the angles
between the projections of MS and p̂ onto the film plane and
the projection of the Zeeman field H0. The free FM layer
magnetization MS will experience a torque whose effect on
the FMR response and static magnetization is analyzed. Our
interest will be focused to the following two situations: �i�
the magnetization of the polarizing FM layer �being oriented
parallel to the direction of p̂� is fixed along a chosen direc-
tion, independent of the direction and magnitude of H0. This
means that the polarizer is fixed, e.g., by being coupled to a
pinning layer. �ii� The magnetization of the polarizing layer
�MP=MS

Pp̂� is free and may respond to the applied magnetic
field. For this case, we calculate the equilibrium orientation
of both magnetizations and explore the linear spin dynamics
of the free layer with respect to its FMR response in presence
of a spin-polarized current.

In the presence of an external field, the equilibrium mag-
netization of both magnetic layers can be obtained by setting
the static torque on the magnetization to zero, i.e., we require
dM /dt=0. We assume that the magnetization of the polariz-
ing layer is not influenced by the spin torque and the equi-
librium magnetization for a free polarizing layer is given by
�P=0 and �P which has to be determined by the relation:18,19

2H0 sin��H−�P�=MP sin�2�P�, where H0 is the magnitude
of the dc field and the effective magnetization for the polar-
izing layer is defined by MP�Ha

P+4�MS
P with Ha

P being a
uniaxial anisotropy field.

A. Linearization of the equations of motion

In this section, we write down the basic equations of mo-
tion for the magnetization of the free layer. We will then
derive the condition from which one deduces the equilibrium
orientation of the magnetization and then discuss the nature
of the ferromagnetic resonance response of the film. We
begin with the phenomenological Landau-Lifshitz-Gilbert
�LLG� equation including spin torque. This reads6,8,9

Ṁ = − �M � �He + bp̂� +
�

MS
M � Ṁ +

�	

MS
M � �M � p̂� ,

�1�

where He is the effective field, �
0 is the absolute value of

the gyromagnetic ratio, � is the Gilbert damping constant,
MS is the saturation magnetization of the free layer, and 	
=�JP / �2eMSd� is a spin torque parameter which has the
dimension of a magnetic field.6 The term bp̂ is the spin-
torque effective field derived by Zhang et al.20 While this
term is quantitatively small for the films that we address later
in the paper, we include it for completeness. The current
density J is positive if the electrons flow from the free layer
to the pinned one. P is the spin polarization of the current
injected into the free layer.6 Then d is the thickness of the
free layer and e
0 is the absolute value of the electron
charge. For the sake of simplicity and as a first approach, we
ignore the spatial variation and the magnetization depen-
dence of P, which may considerably complicate the
analysis.6 The effective field is given by He= �D /MS��2M
+H+Hd+Ha with D=2A /MS being the exchange stiffness.
Here H=H0+h�r ; t� is the applied magnetic field, where the
static dc field is H0=H0��x ,�y ,�z� with �x=−sin � cos �H,
�y =cos � sin �H−cos � sin � cos �H and �z=sin � sin �H
+cos � cos � cos �H. The small driving ac field is written as
h�r ; t�= �hx ,hy ,hz�. The dipole field is Hd=Hd0+hd�r ; t�,
where the static part is Hd0=−4�MS sin ��0,cos � , sin ��
and the dynamic dipole field is hd�r ; t�= �hx

d ,hy
d ,hz

d�.
The surface �or uniaxial� anisotropy field is given by Ha

=Ha0+ha�r ; t� with Ha0=−Ha sin ��0,cos � , sin �� and
ha�r ; t�=−�Ha cos � /MS��0,cos � , sin ��my�r ; t�. Finally,
the spin current polarization vector is written as p̂
= �px , py , pz� with px=−sin��+�P�cos �P, py =cos � sin �P
−cos��+�P�sin � cos �P, and pz=sin � sin �P+cos��
+�P�cos � cos �P.

To linearize the equations of motion, we write the mag-
netization of the free layer as M�r , t�=MSẑ+mx�r , t�x̂
+my�r , t�ŷ, such that the ẑ axis is always oriented parallel to
the equilibrium magnetization direction and mx,y MS. We
write the effective magnetic field as He=He0+he�mx,y� with
He0= �Hx

e0 ,Hy
e0 ,Hz

e0� including the zero-order contributions
and he�mx,y�= �hx

e ,hy
e ,hz

e� containing the first-order contribu-
tions proportional to mx,y. Thus, in the linear regime we can
write,

ṁx = − �myHz
e0 + �MShy

e − �ṁy + �	pzmx, �2a�

ṁy = �mxHz
e0 − �MShx

e + �ṁx + �	pzmy . �2b�

Here, Hz
e0=H0�z−M sin2 �, where M �4�MS+Ha is the ef-

fective magnetization of the free layer. From the requirement
that the equilibrium orientation of the magnetization must
have a form with vanishing zero order terms in the above
equations, we extract the equilibrium conditions for the mag-
netization of the free layer. We have two conditions,

Hy
e0 − 	px = 0 �3a�

and

Hx
e0 + 	py = 0, �3b�

using Hx
e0=H0�x and Hy

e0=H0�y −M sin � cos �. We further
assume that the driving ac field has a harmonic dependence

FIG. 1. �Color online� An illustration of the geometry used in
the present paper. H0 is the externally applied magnetic field and
MS the magnetization. The z axis points along the equilibrium mag-
netization direction while the x axis is chosen to be always in the
film plane.

ROLE OF THE SPIN TRANSFER IN THE FERROMAGNETIC… PHYSICAL REVIEW B 81, 214434 �2010�

214434-3



hx,y�r ; t�=hx,y�r�e−i�t with � as the angular frequency. Then,
it follows that mx,y�r ; t�=mx,y�r�e−i�t and the dipole field can
be also written as hx,y

d �r ; t�=hx,y
d �r�e−i�t. We are interested

here in the limit of vanishing wave vector. It can be shown19

that in this case, the dipole field components become hx
d�r�

=0 and hy
d�r�=−4�my�r�cos2 �. Thus, the dynamic compo-

nents of the effective field can be cast into the form hx
e�r�

=hx and hy
e�r�=hy − �M /MS�my�r�cos2 �. Our attention is di-

rected toward the uniform mode of the film so that exchange
does not enter. With the above considerations, we can write

the equations of motion for mx,y�r� in matrix form Ãm̃
=MSh̃ with Axx=Wx− i�� /�, Axy =	pz+ i� /�=−Ayx, and
Ayy =Wy − i�� /�. We have defined Wx�Hz

e0 and Wy �Hz
e0

+M cos2 �. After some minor manipulations and neglecting

the term ����2, the susceptibility tensor �̃=MSÃ−1 is there-
fore given by

�̃ =
�MS��FMR

2 − �2 − i��
��FMR

2 − �2�2 + �2 ��Wy − i�� − �	pz − �i��
�	pz + i� �Wx − i��

� ,

�4�

using ����Wx+Wy���−2	pz��. Then, we find that the
resonance frequency �FMR in presence of the spin current
can be expressed as

�FMR = ��WxWy + 	2pz
2. �5�

One should notice that the presence of the spin-polarized
current enters into the resonance frequency of the film. Thus,
at least in principle, one may also modulate or control the
FMR resonance frequency by injecting spin-polarized cur-
rents. We will discuss this issue later in the paper.

The matrix elements �xx and �xy of the susceptibility ten-
sor can be generally written as

�xx = �MS

�Wy��FMR
2 − �2� + ��� + i��Wy� − ����FMR

2 − �2��
��FMR

2 − �2�2 + �2 , �6a�

�xy = − �MS

�	pz��FMR
2 − �2� + �� + i����FMR

2 − �2� − �	pz��
��FMR

2 − �2�2 + �2 . �6b�

The power absorbed is proportional to the imaginary part of
the susceptibility,

Im��xx� = �MS

�Wy� − ����FMR
2 − �2�

��FMR
2 − �2�2 + �2 , �7a�

Im��xy� = �MS

�	pz� − ���FMR
2 − �2�

��FMR
2 − �2�2 + �2 . �7b�

B. Influence of spin-polarized current on the FMR
linewidth

At this point, we need to link the susceptibility to the
linewidth which will be the experimentally measured quan-
tity that we will compare with theory later in the paper. In the
experiment, the driving angular frequency � is fixed and the
dc field H0 is varied and swept through resonance. In essence
the factor �FMR is swept through � by varying H0. Suppose
the applied field is close to resonance, i.e., H0=H0

�r�+�H,
where H0

�r� is the resonance field �where �FMR=��. When
�H is small, we expand �FMR

2 obtaining the following ex-
pression:

�FMR
2 − �2 = �2�Wx

dWy

dH0
+ Wy

dWx

dH0
+ 2	2pz

dpz

dH0
��H . �8�

From the denominator of the susceptibility 	Eq. �4�
, we ob-
tain the FMR linewidth defined as the half width at half
maximum of the Lorentzian absorption line,

�H =
��

��
−

2�	pz

���Wx + Wy�
, �9�

where � is the so-called dragging function,21

� �
Wx

dWy

dH0
+ Wy

dWx

dH0
+ 2	2pz

dpz

dH0

Wx + Wy
. �10�

Note that in order to obtain the peak-to-peak linewidth in the
derivative of the absorption line, we need to multiply �H by
a factor 2 /�3 �assuming a Lorentzian line shape with �H
being the half width at half maximum linewidth�. To calcu-
late the linewidth, we need the dragging function, and the
total derivatives of the quantities Wx, Wy, and pz which have
to be calculated taking into account the variation in the
angles �, �, and �P, �P �in case of unpinned polarizer� with
the applied field H0. This can be obtained by an appropriate
use of the equilibrium conditions given by Eq. �3� in the
section above. In principle, one can obtain an analytic ex-
pression for the dragging function, as described in Eq. �6� of
Ref. 21. In the case of a pinned polarizer, the dragging func-
tion becomes

� � �z + H0��y
d�

dH0
+ �x cos �

d�

dH0
�

+
2	2pz

Wx + Wy
�py

d�

dH0
+ px cos �

d�

dH0
� . �11�

However, in the case of an unpinned polarizer, the dragging
function becomes a more complicated expression and for the
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sake of simplicity, we omit a more complete expression for
the linewidth of the unpinned polarizer.

The above equations represent the main theoretical results
presented in this paper. At first, the equations of motion 	Eq.
�2�
 allow us to obtain the macrospin dynamics of the mag-
netization in the linear regime. Equation �3� gives us the
orientation of the magnetization at equilibrium. The general
structure of the susceptibility tensor is provided by Eqs. �4�,
�6�, and �7� whereas the FMR resonance frequency and reso-
nance field can be obtained from Eq. �5�. Finally, the FMR
linewidth is given by Eqs. �9�–�11�.

III. RESULTS AND DISCUSSION

The analytical expressions we have obtained above allow
us to calculate the dependence of the FMR linewidth and
resonance frequency on the spin current. The expressions are
quite general and permit the analysis of the problem in a
rather general way and for any orientation of the dc external
magnetic field. Note that the relevant quantities such as the
susceptibility, the linewidth, the resonance field, the reso-
nance frequency, and the magnetization depend on the mag-
nitude of the spin current density and on the properties of the
polarizing layer.

In the following, we will present the results of calcula-
tions based on the formulas above. The purpose of these is to
explore the influence of polarized current on the FMR re-
sponse, for various geometries. Thus we discuss some spe-
cial cases of interest. We refer to case 1 as the situation for
which the polarizer magnetization is constrained to the film
plane and oriented parallel to the projection of the applied
magnetic field onto the film plane. Case 1 corresponds to
�P=0. We also discuss the case 2 for which the polarizer
magnetization is oriented perpendicular to the film plane,
which means �P=� /2.

We have also fitted our theory to the FMR experiments
performed at a frequency of 9.3 GHz. The measurements
were carried out with a commercial Bruker spectrometer and
at a temperature of 300 K. The sample is prepared by
electron-beam lithography in a multistep process in which
we fabricate an array of 420 pillar structures with a size of
4�4 �m2 and all structures are connected in series to in-
crease the current density �compared to a parallel connec-
tion� and to guarantee enough magnetic material for the
FMR measurement.10 The pillars consist of 20 nm Co, 10 nm
Cu, and 10 nm of Py. Since the upper electrical contact for
each pillar has a lateral size of 1�1 �m2 being smaller than
the lateral size of the pillar, we assume that the current flows
only in the volume of the pillar which is below the upper
contact. With this assumption, a maximum current density of
3.6�106 A /cm2 results. Within the FMR measurement, the
heating of the sample due to the high current density is
avoided by a cooling setup, consequently the magnetic pa-
rameters �e.g., the saturation magnetization� do not change
too much. The following parameters are found by the mea-
surements: the saturation magnetization is �0MS=857 mT
and the effective magnetization �0M =920 mT. The damp-
ing parameter � has a value of 0.0193 and the gyromagnetic
ratio is �=186.2 GHz /T. We estimate the field associated to

the spin transfer to be 	=0.45PJ. Using the polarization fac-
tor P of 0.4, we get a maximum spin torque field of about
0.65 mT.

Figure 2 shows the resonance field �a� and the FMR fre-
quency �b� calculated from Eq. �5� as a function of the spin
current density and for different in-plane directions of the
polarizer with respect to the applied field that is applied in
the film plane. This example corresponds to case 1 where the
magnetization of the polarizer is pinned and will not follow
the external field. A small shift in the resonance field and in
the resonance frequency is predicted if the current density is
increased. Note that the sign of this shift changes with the
angle between the external field and the direction of the po-
larizer.

It can be seen that for the current densities we are inter-
ested in this paper �at most 106 A /cm2�, the spin-torque
term has a very small effect on the equilibrium magnetiza-
tion of the free layer. This can be easily understood by noting
that the spin transfer enters in the equilibrium conditions for
the magnetization through the terms 	px and 	py, which are
in the order of 0.65 mT or less. Thus, in this limit, the spin
torque cannot compete with the effective field components in
Eq. �3�.

Compared to the relatively small effect in the resonance
field and frequency, the FMR linewidth changes considerably
due to the spin torque. Notice that the linewidth in Eq. �9�
contains two contributions. The first results from the Gilbert
damping and the second from the spin-torque effect. We find
that the magnitude of the term resulting from spin torque
	proportional to 2	pz / �Wx+Wy�
 is comparable to the term
having its origin from Gilbert damping �proportional to ��
and, therefore, the linewidth can be manipulated and tuned
with a proper control of the current density. Moreover, by an

FIG. 2. �Color online� In-plane angular dependence of the reso-
nance field �a� and FMR frequency �b� vs current density for case 1
and some orientations of the polarizer within the plane.
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inversion of the direction of the current the variation in the
linewidth can change in sign, meaning the linewidth in-
creases for negative current densities and decreases for posi-
tive current densities as illustrated in Fig. 3. Here the points
represent the experimental data, the solid line corresponds to
negative current densities �electrons flowing from the pinned
layer to the free one�, and the dashed line corresponds to
positive current densities. This plot represents the simplest
situation in which the polarizer magnetization is parallel to
the applied field lying in the film plane. One can see that the
experimental data fit very well to the calculated values for
the linewidth.

We turn now to discuss the angular dependence of the
FMR linewidth in presence of spin-transfer torque. In Fig. 4,
we show calculations of the linewidth vs the out-of-plane
angle of the applied field for different current densities, as
shown in the inset. We first observe that negative �positive�
currents increase �decrease� the linewidth for the overall an-
gular dependence and not just in the in-plane case of Fig. 3.
The peak in Figs. 4�a� and 4�b� is a consequence of the
dragging of the magnetization and occurs for approximately
81° independent of the current. In Fig. 4�a�, the polarizer
magnetization is held fixed in the plane while in Fig. 4�b�,
the polarizer magnetization is free to follow the applied field.
The difference in linewidth between pinned and unpinned
polarizers is small whenever the orientation of the applied
field is close to the film plane. However, as the field is tipped
out of the plane, the differences in linewidth are more im-
portant, as one can see in the limit of an applied field per-
pendicular to the plane. In this limit, and for a pinned polar-
izer, we observe from Fig. 4�a� that the linewidth is almost
independent of the current density. Otherwise, in the un-
pinned regime, the linewidth for �H→90° depends consid-
erably on the current density, as shown in Fig. 4�b�. This fact
can be easily understood from Eq. �9�. It can be shown that
for �H=90° the denominator of the linewidth is almost inde-
pendent of the current and the dependence of the linewidth
with J is controlled by the numerator of Eq. �9�, ��
−2�	pz / �Wx+Wy�. Then it follows that the difference we
observe in Fig. 4 resides in the factor pz=sin � sin �P

+cos � cos � cos �P. In the pinned case, we have �P=0,
then pz=cos � cos � and when the applied field is close to
the normal, the magnetization is aligned with the field ��
=� /2� and pz→0 making the linewidth independent of the
current density. On the other hand, in the unpinned regime,
and for an applied field close to the normal, we also have
�=� /2 but now �P is different from zero making pz
=sin �P nonzero and the linewidth depends on the current
density as shown in Fig. 4�b�.

We have also calculated the dependence of the FMR line-
width under the presence of a spin-polarized current for dif-
ferent directions of the applied field. In Fig. 5, the polarizer
is pinned parallel to the film and in Fig. 6 it is pinned per-
pendicular to the film plane. We observe that the linewidth is
practically linear with the current and the slope depends on
the direction of the applied field and on the orientation of the
polarizer. In both cases, the linewidth is maximum near �H
=81°, corresponding to the linewidth peaks in Fig. 4.

We have also solved numerically the equations of motion
	Eq. �2�
 in order to illustrate the influence of the spin-
polarized current on the precessional orbits of the magneti-
zation, induced by the microwave field. These orbits are dis-
played in Fig. 7, where the top panel corresponds to a
positive current density J=50�105 A /cm2, the central
panel to zero current, and the bottom panel corresponds to a
negative current density J=−50�105 A /cm2. The polarizer
is pinned along the direction of the applied field, which is
parallel to the plane and fulfill the resonance condition. Here

FIG. 3. �Color online� In-plane FMR linewidth vs current den-
sity �case 1�. Points represent the experimental data, and the solid
and dashed lines correspond to our theory for negative and positive
current densities, respectively.

FIG. 4. �Color online� FMR linewidth vs field angle for case 1
and different current densities. The solid lines correspond to zero
current density while the lines above �below� the solid line corre-
spond to negative �positive� currents as depicted in the figure. In �a�
the polarizer is pinned at �P=�P=0, and in �b� the polarizer is free
to follow the applied field.
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we have fixed the initial condition to a magnetization almost
aligned with the resonance field. The magnetization evolves
to a stable elliptic orbit, whose area is a measure of the
magnetic damping. Note that this ellipticity would be even
present without spin-torque contribution due to the presence
of magnetic anisotropy in the system. For J�0, the area of
the stable orbit is reduced compared to the case without cur-
rent. This means that the damping increases for negative cur-
rents in agreement with Fig. 3. On the other hand, for posi-
tive current, the radius of the orbit increases in relation to the
zero current case, implying that the damping decreases.

IV. FINAL REMARKS

In this paper, we have investigated the effect of a spin-
polarized current on the ferromagnetic resonance response of
magnetic thin films. We have formulated the problem ana-
lytically and in a rather general way, such that the theory
allows the reader to calculate the overall angular dependence
of characteristic FMR quantities such as the high frequency
susceptibility, FMR linewidth, and FMR frequency. Besides,
the theory enables us to consider a polarizer layer either free

or fixed. The spin torque influences the frequency and the
linewidth of the FMR response of the film and depending on
the direction of the electron flow, the additional damping
associated to the spin current can play the role of damping or
antidamping, in nice agreement with experimental results.
Finally we can conclude that ferromagnetic resonance is a
powerful tool to detect spin-transfer torque effects in the
small current limit, at the onset of spin-transfer-driven dy-
namics.
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FIG. 5. �Color online� FMR linewidth vs current density for
case that the polarizer is pinned parallel to the film. Different lines
represent different orientations of the applied field.

FIG. 6. �Color online� FMR linewidth vs current density for
case that polarizer is pinned perpendicular to the film. Different
lines represent different orientations of the applied field.

FIG. 7. �Color online� Precessional orbits of the magnetization
for positive �top panel�, zero �middle panel�, and negative �bottom
panel� current densities. The polarizer magnetization has been
pinned parallel to the in-plane resonance field. The absolute value
of the current density for cases �a� and �c� is J=50�105 A /cm2.
This figure illustrate that the spin-transfer torque can play the role
of damping for negative currents and antidamping for positive
currents.
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