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The magnetic and thermodynamic properties of a ferrimagnetic decorated spin-� 1
2 ,1� Heisenberg chain with

spin-1 pendant spins are investigated for three cases: �A� J1 ,J2�0; �B� J1�0 and J2�0; and �C� J1�0 and
J2�0, where J1 and J2 are the exchange couplings between spins in the chain and along the rung, respectively.
The low-lying and magnetic properties are explored jointly by the real-space renormalization group, spin wave,
and density-matrix renormalization-group methods, while the transfer-matrix renormalization-group method is
invoked to study the thermodynamics. It is found that the magnon spectra consist of a gapless and two gapped
branches. Two branches in case �C� have intersections. The coupling dependence of low-energy gaps are
analyzed. In a magnetic field, a m= 3

2 �m is the magnetization per unit cell� plateau is observed for case �A�,
while two plateaux at m= 1

2 and 3
2 are observed for cases �B� and �C�. Between the two plateaux in cases �B�

and �C�, the sublattice magnetizations for the spins coupled by ferromagnetic interactions have decreasing
regions with increasing the magnetic field. At finite temperature, the zero-field susceptibility temperature
product �T and specific heat exhibit distinct exotic features with varying the couplings and temperature for
different cases. �T is found to converge as T→0, which is different from the divergent behavior in the
spin-� 1

2 ,1� mixed-spin chain without pendants. The observed thermodynamic behaviors are also discussed with
the help of their low-lying excitations.
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I. INTRODUCTION

In recent years, one-dimensional �1D� quantum ferrimag-
nets with two kinds of antiferromagnetically exchange-
coupled centers have attracted much attention due to their
exotic properties. The large families of compounds
ACu�pba��H2O�3 ·nH2O and ACu�pbaOH��H2O�3 ·nH2O,
where A=Mn,Fe,Co,Ni,Zn, pba=1,3-propylenebis, and
pbaOH=2-hydroxy-1,3-propylenebis, have been extensively
explored in chemistry,1 which are good realizations of the
mixed-spin chains. These compounds exhibit typically the
1D ferrimagnetic �FI� behavior of �T �� is the magnetic
susceptibility and T is the temperature� that shows a rounded
minimum with temperature.1

As a simple model to describe the mixed-spin chains, the
antiferromagnetically coupled spin-� 1

2 ,1� Heisenberg chain
have also been extensively studied by various methods, such
as the spin-wave theory,2,3 Schwinger boson mean field,4

density-matrix renormalization group �DMRG�,2 quantum
Monte Carlo,5 and so on.6–8 It has been found that its ground
state has a spontaneous magnetization at m= 1

2 �m is the mag-
netization per unit cell� that is consistent with the Lieb-
Mattis theorem,9 and the system has a FI long-range order.
The one-magnon excitation spectra consist of a gapless fer-
romagnetic �FM� branch from SG to SG−1 �SG is the good
quantum number of total spin in z component in the ground
state� and a gapped antiferromagnetic �AFM� branch from SG
to SG+1.10 This magnon gap was numerically found to be
1.759J �J is the exchange coupling�.2 In a magnetic field, the
system exhibits a magnetization plateau at m= 1

2 with the
width of 1.759J, corresponding to the gap of the AFM mag-
non branch.11 Different from the S=1 Haldane chain, in this
mixed-spin chain the spin gap �1.2795J� from the ground
state to the lowest state in the subspace of SG+1 is less than

the magnon gap �1.759J� and thus is not a magnonlike
excitation.2 The thermodynamic properties in the coexistence
of the AFM and FM excitations5,12 and in the critical phase
under a magnetic field7,13 have also been investigated.

Recently, another interesting family of cyanide-bridged
coordination compounds with pendant magnetic ions are
synthesized in experiment.14,15 One of them is the cyanide-
bridged Ni�II�-Fe�III� complex with an unusual building
block �Fe�1-CH3im��CN�5�2−,16 which can be treated as the
1D structure as shown schematically in Fig. 1 owing to the
weak interchain interactions, where the Ni�II� �Si and �i� and
Fe�III� ��i� ions have spin 1 and 1

2 , respectively. This com-
pound realizes a decorated spin-� 1

2 ,1� mixed-spin chain with
spin-1 pendant spins. Although the intrachain couplings J1
�0 and J2�0 are both FM interactions in the present com-
pound, it is noticed that any other couplings �i.e., J1 ,J2�0,
J1�0 and J2�0, and J1�0 and J2�0� would give rise to
ferrimagnets, making the realization of such a FI structure
more accessible to the experiment. This family of mixed-spin
chains with pendant spins provides a scheme to study the 1D
quantum ferrimagnetism, which may have exotic properties.
Although the influences of pendant spins on magnetism have
been discussed in some antiferromagnets,17 the studies on
such ferrimagnets are still rare till now.

In this paper, we shall explore the physical properties of
this ferrimagnetic structure, and compare with the spin-� 1

2 ,1�

FIG. 1. �Color online� Sketch of the spin-�� ,S� decorated
Heisenberg chain with spin-� pendant spins.
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mixed-spin chain without pendants. The low-lying, magnetic
and thermodynamic properties of the spin-� 1

2 ,1� decorated
Heisenberg chain with spin-1 pendant spins for three cases:
�A� J1 ,J2�0; �B� J1�0 and J2�0; and �C� J1�0 and J2
�0 will be studied using various techniques. It is unveiled
that due to the pendant spins, the ferrimagnets exhibit rather
distinct magnetic and thermodynamic behaviors from those
of the spin-� 1

2 ,1� mixed-spin chain. The three cases with
different couplings are uncovered to have their own features,
which are expected to observe in experiments. The exotic
properties of this system will also shed light on further un-
derstandings of quantum ferrimagnetism.

This paper is organized as follows. In Sec. II, the model
Hamiltonian is introduced. In Sec. III, the low-energy effec-
tive Hamiltonians in both strong and weak couplings are
analyzed utilizing the real-space RG �RSRG� method. The
low-lying excitations and magnetic properties are investi-
gated by the linear spin-wave �LSW� theory and DMRG in
Sec. IV. In Sec. V, we shall study the zero-field thermody-
namics by means of the transfer-matrix RG �TMRG�. Fi-
nally, a summary and discussion will be given in Sec. VI.

II. MODEL HAMILTONIAN

The Hamiltonian of the spin-� 1
2 ,1� decorated Heisenberg

chain with spin-1 pendant spins in a magnetic field can be
written as

H = �
i=1

N

�J1��i · S� i + J1S� i · ��i+1 + J2��i · �� i� − h�
i=1

N

��i
z + Si

z + �i
z� ,

�1�

where �� i is the �=1 pendant spin, ��i and S� i are the spins in
the chain with �= 1

2 and S=1, respectively, J1,2�0 ��0� de-
note the AFM �FM� couplings, and h is the magnetic field.
Throughout the context, we take J1 as an energy scale and
g�B=1. The schematic representation of the model is shown
in Fig. 1.

Analogous to the spin-� 1
2 ,1� mixed-spin chain without

pendants, the system with Hamiltonian �1� has a spontaneous
magnetization in the absence of magnetic field according to
the Lieb-Mattis theorem.9 In case �A� �J1,2�0� the sponta-
neous magnetization per unit cell is m= 3

2 while in both cases
�B� �J1�0,J2�0� and �C� �J1�0,J2�0� it is spontane-
ously magnetized at m= 1

2 . The Goldstone theorem18 allows
gapless excitations in these cases owing to the spontaneous
breaking of the SU�2� symmetry.

III. REAL-SPACE RENORMALIZATION-GROUP
ANALYSIS

In this section, the low-energy effective Hamiltonians of
the three cases in both strong- and weak-coupling limits are
derived utilizing the RSRG.19 In the RSRG procedure, the
Hamiltonian is divided into intrablock �HB� and interblock
�HBB� parts. By diagonalizing HB, a number of low-energy
states are kept to project the full Hamiltonian into the renor-
malized Hilbert space. Although RSRG cannot give the re-

sults as accurate as the numerical approaches, it can give a
good qualitative description for low-energy properties.

A. J1�0 and J2�0

Let us first consider the strong-coupling limit �J2�J1�.
Since the interaction between �i and �i is strong, each rung
can be considered as the isolated block in the first step of
RG. Each block consists of two multiplets whose total spins
are 1/2 and 3/2 with energies −J2 and J2 /2, respectively. The
spin-1

2 doublets are kept as the basis to construct the embed-
ding operator T to project the full Hamiltonian onto the trun-
cated Hilbert space. The effective Hamiltonian can be ob-
tained as

H̃A
strong,1 = − NJ2 −

1

3
J1�

i=1

N

�S� i� · S� i + S� i · S� i+1� � , �2�

where Si�=1 /2 is the renormalized spin truncated from the
rung block. Hamiltonian �2� describes a spin-� 1

2 ,1� mixed-
spin chain with a renormalized FM coupling − 1

3J1. In the
next step of RG procedure, Hamiltonian �2� is further pro-
jected onto a S�=3 /2 FM Heisenberg chain,

H̃A
strong,2 = − �J2 +

J1

6
�N −

2

27
J1�

i=1

N

S� i� · S� i+1� . �3�

The magnon excitations in this FM Hamiltonian correspond
to the magnons from SG to SG−1 in the original system,
which are hence expected to be gapless with a quadratic
dispersion in low energies. The RG can also give the sublat-
tice magnetization mS=1, m�=− 1

6 , and m�= 2
3 . The sum of

them gives 3
2 , recovering the spontaneous magnetization of

the original system.
In the weak-coupling limit �J2�J1�, the spins ��i and S� i are

taken as a block, and the doublets with spin 1/2 are kept to
truncate the block Hilbert space. The effective Hamiltonian
is

H̃A
weak,1 = − NJ1 − �

i=1

N �4

9
J1S� i� · S� i+1� +

1

3
J2S� i� · �� i� , �4�

where Si�=1 /2 is the renormalized block spin. The Hamil-
tonian is mapped onto a spin-1/2 FM Heisenberg chain with
�=1 pendants coupled by the renormalized FM interaction
− 1

3J2. The spin-wave analysis unveils that it has a gapless
FM excitation with the dispersion

	k �
2

27
J1k2 �5�

for k→0, which corresponds to the magnon excitation from
SG to SG−1 of the original system. The sublattice magneti-
zation is obtained as mS= 2

3 , m�=− 1
6 , and m�=1, and the sum

of them is also 3
2 .

From Eqs. �2� and �5� it can be seen that in the two cou-
pling limits, the low-energy behaviors of the gapless branch
are both dominated by J1. Besides, mS and m� exchange their
values in the two limits, and m� is unchanged, implying a
possible crossing of m� in the intermediate region of J2 /J1,
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which would be confirmed by the DMRG results in the next
section.

B. J1�0 and J2�0

In the strong-coupling limit �	J2	�J1�, owing to the strong
FM J2, the low-energy multiplets with total spin 3/2 are kept
to project the Hamiltonian in the first step of RG. The effec-
tive Hamiltonian is obtained as

H̃B
strong,1 =

1

2
J2N +

1

3
J1�

i=1

N

�S� i� · S� i + S� i · S� i+1� � �6�

with the renormalized spin of rung block Si�=3 /2, which
depicts a spin-� 3

2 ,1� Heisenberg chain with a renormalized
AFM coupling 1

3J1. In the next step of RG procedure Hamil-
tonian �6� is projected to a S�=1 /2 FM Heisenberg chain,

H̃B
strong,2 =

1

6
�3J2 − 5J1�N −

10

27
J1�

i=1

N

S� i� · S� i+1� , �7�

whose FM excitations imply that the magnon excitations of
the original system from SG to SG−1 are gapless with a qua-
dratic dispersion relation in low energies. The sublattice
magnetization is obtained as mS=− 1

3 , m�= 5
18, and m�= 5

9 ,
giving the spontaneous magnetization per unit cell m= 1

2 .
In the weak-coupling limit �	J2	�J1�, we perform the RG

on the block spins S� i and ��i with the doublet of total spin 1/2.
The effective Hamiltonian is

H̃B
weak,1 = − NJ1 − �

i=1

N �4

9
J1S� i� · S� i+1� +

1

3
J2S� i� · �� i� �8�

with the renormalized spin Si�=1 /2, which describes a spin-
1/2 FM Heisenberg chain with �=1 pendant spins coupled
by the renormalized AFM interaction − 1

3J2. The spin-wave
results show that the excitations that correspond to those
from SG to SG−1 in the original system are also gapless with

	k �
2

9
J1k2 �9�

for k→0. In the two limits, it is observed from Eqs. �6� and
�9� that the low-energy behaviors of the gapless excitation
are both dominated by J1.

C. J1�0 and J2�0

For the strong-coupling limit �J2� 	J1	�, because of the
strong AFM J2, �� i and ��i are renormalized by the doublet
with total spin 1/2. The effective Hamiltonian is given by

H̃C
strong,1 = − NJ2 −

1

3
J1�

i=1

N

�S� i� · S� i + S� i · S� i+1� � �10�

with S�=1 /2. Equation �10� describes a spin-� 1
2 ,1� Heisen-

berg chain coupled by the renormalized AFM interaction
− 1

3J1. In the second step of RG, Hamiltonian �10� is pro-
jected to a S�=1 /2 FM Heisenberg chain,

H̃C
strong,2 = − �J2 −

J1

3
�N +

4

27
J1�

i=1

N

S� i� · S� i+1� , �11�

which unveils the gapless excitations from SG to SG−1 of the
original system. The sublattice magnetization is obtained as
mS= 2

3 , m�= 1
18, and m�=− 2

9 , giving rise to the spontaneous
magnetization per unit cell m= 1

2 .
In the weak-coupling limit �J2� 	J1	�, the spins S� i and ��i

are taken as a block, and the multiplet with spin 3/2 are kept
to truncate the block Hilbert space. The effective Hamil-
tonian is obtained as

H̃C
weak,1 =

1

2
NJ1 + �

i=1

N �2

9
J1S� i� · S� i+1� +

1

3
J2S� i� · �� i� , �12�

which describes a spin-3/2 FM Heisenberg chain with anti-
ferromagnetically coupled pendant spins �i. The spin-wave
analysis indicates that the effective system has a FM gapless
excitation with

	k � − J1k2 �13�

for k→0. Analogous to the above cases, the low-energy be-
havior of the gapless branch in the two limits are determined
by J1, which can be seen from Eqs. �10� and �13�.

Based on the RSRG analyses, one may observe that the
different cases have distinct low-energy effective Hamilto-
nians, and the magnon excitations from SG to SG−1 are al-
ways FM and gapless, being consistent with those of the
spin-� 1

2 ,1� mixed-spin chain. The dispersion relations near
k=0 are found to be dominated by J1 in both strong and
weak couplings. The low-energy effective Hamiltonians for
cases �B� and �C� in the strong-coupling limit are analogous
except the magnitude of spin, whose thermodynamic proper-
ties will be compared in Sec. V.

IV. LOW-LYING EXCITATIONS AND MAGNETIC
PROPERTIES

In this section, the low-lying excitations and magnetic
properties are explored by means of the LSW �Refs. 2 and 3�
and DMRG.20,21 During the DMRG calculations, the chain
length is taken as L=300, and the Hilbert space is truncated
to 240 most relevant states. Open boundary conditions are
adopted and the truncation error is less than 10−8 in all cal-
culations.

A. J1�0 and J2�0

The Holstein-Primakoff �HP� transformations are intro-
duced as follows:

�i
z = s1 − ai

†ai,

�i
+ = 
2s1 − ai

†aiai,

�i
− = ai

†
2s1 − ai
†ai �14�

for the sublattice of �� i spins with s1=1, and
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�i
z = − s2 + bi

†bi,

�i
+ = bi

†
2s2 − bi
†bi,

�i
− = 
2s2 − bi

†bibi �15�

for the sublattice of spins ��i with s2= 1
2 , where the operators

ai and bi are bosons. The spins S� i are transformed in the
similar way as Eq. �14� with bosonic operators ci and ci

†.
Thus, the magnon spectra can be obtained by diagonalizing
the Hamiltonian after performing the Fourier and Bogoliu-
bov transformations. As shown in Fig. 2�a�, the magnon
spectra consist of a gapless branch 	1,k and two gapped ones
	2,k and 	3,k. In the presence of a magnetic field h, both 	1,k
and 	2,k increase, while 	3,k decreases, indicating that 	1,k
and 	2,k describe the magnons from SG to SG−1 while 	3,k
are those from SG to SG+1. For J2=0, the spectra are re-
duced to a gapped and a gapless excitations, which agree
exactly with those of the spin-� 1

2 ,1� mixed-spin chain. When
J2 is set in, the gapless branch splits into 	1,k and 	2,k. With
increasing J2, both 	2,k and 	3,k enhance. It is found that the
low-energy dispersions near k=0 of the gapless branch 	1,k
are insensitive to J2 but dominated by J1 in a wide range of
the coupling ratio, which covers the result obtained from the
RSRG.

The magnetic curve m�h� and low-energy gaps are then
studied by the DMRG method. As shown in Fig. 2�b�, m�h�
has a plateau at the spontaneous magnetization m= 3

2 , whose
width 
MP increases with increasing J2. In this figure, hc1
denotes the field where the plateau disappears, and hs is the
saturation field. For J2=0, 
MP reduces to 1.759J1 of the
spin-� 1

2 ,1� mixed-spin chain, which is exactly the gap of its

massive magnon branch.10,11 The coupling dependence of

MP is illustrated in the inset of Fig. 2�b�, showing that 
MP
increases almost as a linear behavior. The J1 dependence of

MP is also studied by taking J2 as the energy scale, which is
not presented here. It is found that 
MP /J2 varies rather
slowly with J1, which means that 
MP is mainly scaled by J2
in this case. The gap of the massive magnon branch 	3,k
�
SW� is also shown in the inset of Fig. 2�b� in comparison to

MP. The magnon gap obtained from the LSW appears to be
smaller than 
MP, where the deviation increases for stronger
J2. It appears that the LSW underestimates the magnon gap
from SG to SG+1.

We also compute the spin gap 
SG+1 from the ground state
to the lowest state in the SG+1 subspace, as shown in the
inset of Fig. 2�b�. Analogous to the spin-� 1

2 ,1� mixed-spin
chain, 
SG+1 is smaller than 
MP, indicating that 
SG+1 is also
not a magnonlike excitation. But, it has a similar behavior
with coupling to 
MP, which can thus be used to describe the
low-energy behaviors. The spin gap from the ground state to
the lowest state in the SG−1 subspace is computed, which is
found always vanishing and is consistent with the gapless
branch 	1,k.

Next let us discuss the spin-spin correlation function and
local magnetization in ground states. Figure 2�c� shows the
local magnetization as a function of lattice site for h�hc1. In
the ground state, the spin-correlation functions along the
chain have a long-range order and the spin fluctuations
�Si

zSj
z�-�Si

z��Sj
z� decay rather rapidly �not presented here�.

Hence it is adequate to study only the local magnetization in
the ground state. For J2=0, it gives m�=−0.29248 and mS
=0.79248, exactly in agreement with the previous result.2

After tuning on J2, the coupling dependence of sublattice
magnetization is shown in Fig. 2�d�. The pendant spin mag-
netization m� is suppressed by the quantum fluctuations after
tuning J2, while mS increases and approaches saturation for
large J2, confirming the results of the RSRG. The interesting
phenomenon is the behavior of m�. As shown by the arrow in
Fig. 2�d�, m� decreases for J2 /J1�1, and turns to increase
when J2 /J1�1, which has a turning point at J2 /J1=1, as
suggested by the result of the RSRG. Meanwhile, it can be
seen that m� and mS intersect near J2 /J1=1. The changes in
coupling dependence of the magnetic moments near J2 /J1
=1 may be owing to the competition of the two AFM inter-
actions.

B. J1�0 and J2�0

To perform the LSW calculation, SG and ��i spins are
transformed as the form of Eq. �14� by the bosonic operators
�ai ,ai

†� and �bi ,bi
†� with s1=1 and 1

2 , respectively, while S� i
are transformed as the form of Eq. �15� by �ci ,ci

†� with s2
=1. As shown in Fig. 3�a�, the spectra consist of a gapless
and two gapped branches. In the presence of magnetic field,
the gapless branch 	1,k and the gapped branch 	3,k increase,
while the gapped branch 	2,k decreases, indicating that 	1,k
and 	3,k are the excitations from the sector SG to SG−1 while
	2,k describes the excitations from SG to SG+1. It can be
seen that the spectra in this case are quite different from
those of case �A�. The branch 	2,k from SG to SG+1 is close

FIG. 2. �Color online� �a� Magnon excitation dispersion for case
�a� with J1=J2=1 under different magnetic fields. �b� Magnetization
curves for different J2. The inset shows the coupling dependence of
the gap 
MP, 
SW, and 
SG+1. �c� Local magnetization as a function
of lattice site for h�hc1. �d� Coupling dependence of sublattice
magnetization for J2 /J1=1 and h�hc.
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to the gapless branch 	1,k for the present case, and with
increasing 	J2	, it increases slightly. The resulting distinctions
in the thermodynamics would be explored in Sec. V. With
changing the couplings, it is found that the low-energy dis-
persions of the gapless branch 	1,k near k=0 are dominated
by J1, which is consistent with the RSRG result.

The magnetic curve m�h� and low-energy gaps are shown
in Fig. 3�b�. It can be seen that m�h� exhibits two plateaux at
m= 1

2 and 3
2 . We denote the field where the m= 1

2 plateau
vanishes as hc1, the lower and upper critical fields for the
m= 3

2 plateau as hc2 and hc3, respectively, and hs as the satu-
ration field. With increasing 	J2	, the width of the m= 1

2 pla-
teau 
MP is enlarged slightly, while the m= 3

2 plateau de-
creases and smears when 	J2	 /J1�2.0. It should be noted
that in some quasi-one-dimensional polymerized Heisenberg
antiferromagnets, there might be a transition from the plateau
state to the nonplateau state that is usually of the Kosterlitz-
Thouless type.22 Such a transition point cannot be numeri-
cally determined accurately owing to the finite-size length of
the chain. Therefore, in the present case, whether a plateau-
nonplateau transition with couplings at the m= 3

2 plateau ex-
ists cannot be safely judged from our DMRG numerical re-
sults. The coupling dependence of 
MP is illustrated in the
inset of Fig. 3�b�, showing that 
MP increases with enhanc-
ing 	J2	, and different from case �A�, 
MP goes to saturate at
large 	J2	, which suggests that 
MP is mainly scaled by J1 for
large 	J2	 /J1. The coupling dependence of the magnon gap
	2,k=0 �
SW� is also shown in the inset of Fig. 3�b�. It can be
seen that the spin wave is capable of describing the coupling
dependence of magnon gap qualitatively, though it underes-
timates the value like in the case �A�. The spin gap 
SG+1

from the ground state to the lowest state in the SG+1 sub-
space is also computed. As shown in the inset of Fig. 3,

SG+1 is less than 
MP, indicating that it is also not a mag-

nonlike excitation, and its behavior for different coupling
ratios is consistent with 
MP and 
SW.

The coupling dependence of sublattice magnetization in
the ground states is shown in Fig. 3�c�. As the quantum fluc-
tuations become strong after tuning J2, the pendant spin mag-
netization m� decreases with increasing 	J2	, which is analo-
gous to case �A�. However, the FM coupling has different
effects on the spins in the chain compared with the AFM J2.
With increasing 	J2	, both m� and mS increase slightly, and m�

does not show an extremum like in the case �A�.
In the m= 3

2 plateau region �hc2�h�hc3�, the local mag-
netization is shown in Fig. 3�d� for 	J2	 /J1=1 as an example.
It may be expected that all the local magnetic moments
would increase from hc1 to hc2. However, by comparing the
local magnetization below hc1 �Fig. 3�c�� and in the plateau
�Fig. 3�d��, it is surprising to notice that m� decreases from
0.3156 below hc1 to −0.0046 in hc2. Therefore, the field de-
pendence of sublattice magnetization is studied, as shown by
mS, m�, and m� for 	J2	 /J1=1 and 2.5 in Fig. 4. It can be seen
that m� decreases continuously from hc1 to hc2 while m�

decreases in a short range above hc1. For a comparison, we
also calculated the sublattice magnetization as a function of
field for both the spin-� 1

2 ,1� mixed-spin chain and the case
�A�. The results shows that the above behavior is not seen.
Therefore, this decreasing behavior may be owing to the
competition between the FM and AFM interactions in a mag-
netic field.

C. J1�0 and J2�0

For J1�0 and J2�0, the HP transformations are applied
on the spins S� i and ��i with the form of Eq. �14� by �bi ,bi

†�
and �ci ,ci

†� for s1=1 and 1
2 , respectively, and that with the

form of Eq. �15� is applied on �� i for s2=1 with �ai ,ai
†�. As

shown in Fig. 5�a�, the spectra consist of a gapless �	1,k� and
a gapped �	3,k� magnon branches from the sector SG to SG
−1, as well as a gapped one �	2,k� from SG to SG+1, which
can be identified by the shifts of the branches with the mag-
netic field. It is noticed that the gapped branch 	2,k from SG

FIG. 3. �Color online� �a� Magnon excitation dispersion for case
�b� with J1=1 and J2=−1. �b� Magnetization curves for different J2.
The inset shows the coupling dependence of the gap 
MP, 
SW, and

SG+1. �c� Coupling dependence of sublattice magnetization. �d�
Local magnetization as a function of lattice site for hc2�h�hc3.

FIG. 4. �Color online� Magnetic field dependence of the sublat-
tice magnetization mS, m�, and m� for 	J2	 /J1=1 and 2.5. The ar-
rows indicate the minimum of m�, where the magnetization per unit
cell is m=3 /2.
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to SG+1 is close to the gapless branch 	1,k, which is similar
to the case �B�, but 	2,k has lower energies than 	1,k for large
wave momenta k in the present case. With increasing J2 / 	J1	,
	2,k enhances and the intersected momenta of the two
branches shift to higher values. A similar intersection of
magnon branches has also been observed in the spin-� 1

2 ,1�
mixed-spin chain with AFM nearest-neighbor and FM next-
nearest-neighbor interactions.23 The influences of this inter-
section on the thermodynamics would be discussed in the
next section. For 	1,k, it is found that the low-energy disper-
sions near k=0 are also dominated by J1, which agrees with
the RSRG analysis.

In Fig. 5�b�, the magnetic curves m�h� for different cou-
plings are shown. Similar to case �B�, m�h� has two plateaux
at m= 1

2 and 3
2 , whose critical fields are denoted by the same

symbols as the case �B�. With increasing J2 / 	J1	, the width of
the m= 1

2 plateau �
MP� extends, while that of the m= 3
2 pla-

teau is enlarged, which differs from the case �B� where the
m= 3

2 plateau decreases with increasing the coupling ratio.
The inset of Fig. 5�b� shows the coupling dependence of the
low-energy gaps 
MP, 
SW, and 
SG+1. It can be seen that the
gaps behave similarly to those in the case �B�. The gaps
approach to the saturation for large J2 / 	J1	, indicating that
they are mainly scaled by J1 in the large J2 limit. The LSW
also underestimates the magnon gap of 	2,k as 
SW is smaller
than 
MP. 
SG+1 appears to be smaller than 
MP, which
means that the spin gap from the ground state to the lowest
state in the subspace with SG+1 is also not a magnonlike
excitation. In the ground states, the coupling dependence of
the sublattice magnetization is displayed in Fig. 5�c�. It can
be seen that as the quantum fluctuations are induced by J2,
mS and m� decrease with increasing J2, while m� increases.
In this case, the sublattice magnetic moments have more
prominent variations with the change in the couplings than
the previous cases.

In the m= 3
2 plateau �hc2�h�hc3�, the local magnetic mo-

ments for J2 / 	J1	=1 are shown in Fig. 5�d�. By comparing
the local magnetization below hc1 �Fig. 5�c�� and in the pla-
teau �Fig. 5�d��, it is found that the decreasing feature of
magnetization m� found in case �B� is also observed in the
present case. The field dependence of sublattice magnetiza-
tion is also studied. As illustrated in Fig. 6 for J2 / 	J1	=0.5
and 1.0, both m� and mS have decreasing regions from hc1 to
hc2. Comparing with the sublattice magnetization of case �B�,
we notice that the two sublattice magnetizations that have a
decreasing region from hc1 and hc2 are those coupled by FM
interactions, and the decreasing behavior is only observed
below the m= 3

2 plateau.

V. TEMPERATURE DEPENDENCE OF SUSCEPTIBILITY
AND SPECIFIC HEAT

From the above results, it can be seen that although the
three cases entirely exhibit FI ground states, the low-lying
excitations and magnetic properties are rather distinct. Thus,
in this section, the temperature dependences of zero-field
magnetic susceptibility and specific heat are explored by the
TMRG method.24 In the following calculations, the width of
the imaginary time slice is taken as �=0.1, and the error
caused by the Trotter-Suzuki decomposition is less than 10−3.
During the TMRG iterations, 120 and 200 states are retained
for the evaluation of the susceptibility and specific heat, re-
spectively, and the temperature is down to kBT=0.025	J1	 in
general. The truncation error is less than 10−4 in all calcula-
tions.

The temperature dependence of the susceptibility � and
susceptibility temperature product �T for the cases are
shown in Figs. 7�a�–7�c�. For case �A�, the susceptibility, as
shown in the inset of Fig. 7�a�, diverges as T→0 due to the
gapless branch 	1,k �Fig. 2�a��. Upon lowering temperature,
�T decreases to a broad minimum at a temperature Tmin, and
then increases to a peak at low temperature Tpeak. The mini-
mum of �T is an indicative of the FI-like behavior similar to
that in the spin-� 1

2 ,1� mixed-spin chain. With increasing

FIG. 5. �Color online� �a� Magnon excitation dispersion for case
�c� with J1=−1 and J2=1. �b� Magnetization curves for different J2.
The inset shows the coupling dependence of the gap 
MP, 
SW, and

SG+1. �c� Coupling dependence of sublattice magnetization. �d�
Local magnetization as a function of lattice site for hc2�h�hc3.

FIG. 6. �Color online� Magnetic field dependence of the sublat-
tice magnetization mS, m�, and m� for J2 / 	J1	=0.5 and 1. The ar-
rows indicate the magnetic field hc2, where the magnetization per
unit m=3 /2.
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J2 /J1, Tmin shifts to higher temperatures, corresponding to
the enhancement of the branches 	2,k and 	3,k with the in-
crease in coupling ratios. Meanwhile, �Tmin increases for
J2 /J1�1 and decreases for J2 /J1�1. The maximum of
�Tmin is reached at Tmin=1.25J1 when J2 /J1=1. It is also
noticed that the �T curves for different couplings intersect at
the same temperature 1.25J1, as shown by the arrow in Fig.
7�a�. At low temperature, �T does not diverge, like that in the
spin-� 1

2 ,1� mixed-spin chain,5 but has a sharp peak, which
indicates that � diverges equally or slower than 1

T as T→0.25

For the low-temperature peak, it is unveiled that Tpeak moves
to higher temperatures with the increase in the height for
J2 /J1�1, while it approaches lower temperatures with the
height decreasing for J2 /J1�1. It can be seen that the finite-
temperature magnetic properties have transition behaviors
with the change in the couplings at J2 /J1=1, which was also
noted in the ground states in Sec. IV A.

For case �B�, � also goes to infinity as T→0 owing to the
gapless branch 	1,k �the inset of Fig. 7�b��. As shown in Fig.
7�b�, �T decreases rapidly to a minimum at Tmin with de-
creasing temperature, and then increases to a peak at lower

temperature, which is quite different from that in the case
�A�. With increasing 	J2	 /J1, both Tmin and �Tmin enhance. As
indicated by the arrow in Fig. 7�b�, �T curves for different
couplings also intersect at a temperature T�1.15J1. At low
temperature, both the peak temperature and height of �T
increase with increasing 	J2	 /J1. The peak suggests that �
diverges equally or slower than 1

T as T→0. Different from
the case �A�, the variation in �T in the present case with FM
coupled pendants does not exhibit a transition behavior. It
can be seen that J2 has a great impact on the low-lying ex-
citations as well as the magnetic properties at finite tempera-
ture.

Figure 7�c� illustrates the behaviors of �T for case �C�.
Although � also diverges as T→0 �the inset of Fig. 7�c��, �T
has rather distinct behaviors from cases �B� and �C� with
J1�0. For J2 / 	J1	=0.2, �T increases to a broad maximum
with decreasing temperature, and then declines. When
J2 / 	J1	�0.5, a minimum of �T emerges, and a small peak
appears at a lower temperature. For J2 / 	J1	�1, �T decreases
to a minimum with declining temperature, showing the AFM
feature, and then increases to a small peak, which is similar
to that in the case �B�. The minimum temperature Tmin also
increases with enhancing J2 / 	J1	. The convergence of �T as
T→0 indicates that � diverges equally or slower than 1

T as
T→0 in this case. Compared with the above cases, no inter-
section of �T is observed for the present case with J1�0. It
should be noted that the similar behavior of �T has also been
observed in the spin-� 1

2 ,1� AFM chain with FM next-nearest-
neighbor coupling,23 which has an analogous low-lying ex-
citations. As shown in Fig. 5�a�, the gapped magnon branch
	2,k has lower energies than the gapless branch 	1,k for large
wave momenta k. Thus, the low-lying excitations are domi-
nated by 	2,k for small J2. With increasing J2 / 	J1	, 	2,k en-
hances and 	1,k gradually dominates the low-lying excita-
tions. The branches 	1,k and 	2,k become analogous to that
of the case �B� �Fig. 3�a�� for large J2 / 	J1	, yielding the be-
haviors of �T for J2 / 	J1	�1 similar to that of the case �B�
�Fig. 7�b��.

In Figs. 8�a�–8�c�, the temperature dependences of the
specific heat for the three cases are shown explicitly. For
case �A�, the specific heat has a prominent double-peak
structure. When J2 /J1=0.5, the high-temperature peak of
specific heat is close to the peak temperature of that in the
spin-� 1

2 ,1� mixed-spin chain. With further increasing J2, the
low-temperature peak shifts to higher temperatures when
J2 /J1�1, while it keeps nearly intact for J2 /J1�1. Mean-
while, the high-temperature peak continuously moves to
higher temperatures, which might be owing to the enhance-
ment of the gapped branch 	2,k and 	3,k.

The temperature dependence of specific heat for case �B�
is shown in Fig. 8�b�. When 	J2	 /J1=0.5, the specific heat has
double peaks, and the high-temperature peak is also close to
the peak temperature of that in the spin-� 1

2 ,1� mixed-spin
chain. Compared with the specific heat of the case �A� with
J2 /J1=0.5 �Fig. 8�a��, it can be seen that the high-
temperature behaviors above the high-temperature peak of
the two cases agree well with each other, but the low-
temperature behaviors are distinct. With increasing 	J2	 /J1
for 	J2	 /J1�1, the low-temperature peak moves to higher-

FIG. 7. �Color online� Temperature dependence of �T for �a�
J1 ,J2�0; �b� J1�0 and J2�0; and �c� J1�0 and J2�0. The insets
show the susceptibility as a function of temperature.
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temperature side, while the high-temperature peak keeps
nearly intact. For 	J2	 /J1�1, the double peaks merge into a
single peak, which moves to higher temperatures slightly
with increasing 	J2	 /J1. Analogous to �T, J2 has also an es-
sential effect on the behaviors of specific heat.

For case �C�, the specific heat behaves quite differently
from the above cases. For J2 / 	J1	=0.5, the specific heat
shows a single peak instead of double peaks at low tempera-
ture. With increasing J2 below J2 / 	J1	=1, the specific heat
below the peak temperature keeps nearly unchanged, while
the part above the peak temperature decreases more slowly,
as shown in Fig. 8�c�. For J2 / 	J1	�1, a high-temperature
peak emerges, which moves to higher temperatures with in-
creasing J2 / 	J1	. Meanwhile, the behaviors of specific heat
below the low-temperature peak still retains nearly intact.
The low-temperature peak seems to be insensitive to J2 and
is dominated by J1.

For a comparison, we also calculated the thermal quanti-
ties by the LSW theory, which give rise to the similar behav-
iors for the three different cases. The results show that �T
diverges as T→0 and the specific heat always exhibits
double peaks. Although the obtained low-lying excitations
are helpful to understand the thermodynamics, the quantita-

tive results obtained from the LSW are not so good, which
are thus not presented here.

VI. SUMMARY AND DISCUSSION

In this paper, the low-lying, magnetic and thermodynamic
properties of the spin-� 1

2 ,1� decorated mixed-spin chain with
spin-1 pendant spins are systematically studied for three
cases: �A� J1 ,J2�0; �B� J1�0 and J2�0; and �C� J1�0
and J2�0 by jointly using a few different methods. By
means of the RSRG analysis, the low-energy effective
Hamiltonians for each case in strong and weak couplings are
obtained. It is found that although the effective Hamiltonians
are different for three cases, their magnon excitations from
SG to SG−1 are all FM and gapless, which agree with that of
the spin-� 1

2 ,1� mixed-spin chain without pendants. The low-
energy dispersions of the gapless branch near k=0 are domi-
nated by J1 for each case, which is confirmed by the LSW
results.

The low-lying excitations and magnetic properties are
then investigated by the LSW and DMRG methods, respec-
tively. The magnon spectra are found to consist of a gapless
and a gapped branches from SG to SG−1, as well as a gapped
branch from SG to SG+1, which have different features for
three cases. For case �C�, two low-energy branches have an
unusual intersection. In a magnetic field, case �A� has a m
= 3

2 plateau, while both cases �B� and �C� exhibit two pla-
teaux at m= 1

2 and 3
2 . The low-energy gap of case �A� in-

creases almost linearly with increasing the coupling ratio,
while those of cases �B� and �C� increase and go to saturation
for large 	J2	, which implies that the low-energy gap of the
case �A� is mainly scaled by J2, and those of the cases �B�
and �C� are scaled by J1 for large 	J2	. The sublattice magne-
tization of the spins coupled by FM interactions for cases �B�
and �C� are found to decrease in some regions from hc1 to hc2
with the increase in the magnetic field, which may be attrib-
uted to the competition of the AFM and FM interactions in a
magnetic field.

The zero-field thermodynamics are also explored by
means of the TMRG method. It is unveiled that although �
diverges as T→0, �T has rather different behaviors for each
cases. For case �A�, �T has a broad minimum and a peak at
low temperature. The curves of �T for different couplings
intersect at a common temperature 1.25J1 and �T has a tran-
sition behavior with the couplings at J2 /J1=1. For case �B�,
�T has a narrow minimum and a sharp peak at low tempera-
ture. The curves of �T for different couplings also intersect
at a common temperature but �T never show a crossing be-
havior. For case �C�, �T has a broad peak for J2 / 	J1	�1, and
exhibits a broad minimum and a peak for J2 / 	J1	�1, show-
ing two distinct features with changing the couplings due to
the intersection of two low-lying excitations. Compared with
the spin-� 1

2 ,1� mixed-spin chain, there is a common feature
for the three cases that �T converges as T→0, which implies
that � diverges equally or slower than 1

T as T→0.
The specific heat for case �A� has double peaks. For case

�B�, the specific heat has double peaks when 	J2	 /J1�1,
which merge into a single peak as 	J2	 /J1�1. For case �C�,
however, the specific heat has a single peak when J2 / 	J1	

FIG. 8. �Color online� Temperature dependence of the specific
heat C for �a� J1 ,J2�0; �b� J1�0 and J2�0; and �c� J1�0 and
J2�0.
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�1, while double peaks emerge when J2 / 	J1	�1. In a wide
range of the coupling for case �C�, the low-temperature peak
appears to be insensitive to J2, which mainly affects the
high-temperature behaviors of the specific heat.

Based on the above results, it can be seen that the case
�A� of the present system preserves some features of the
spin-� 1

2 ,1� mixed-spin chain, while the cases �B� and �C�
exhibit more exotic properties that have not been observed in
the mixed-spin chains. We expect that the magnetic and ther-
modynamic properties presented in this paper could be tested

experimentally in future to unveil the effects induced by the
pendant spins in the mixed-spin chains.
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