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This paper studies the physical basis of the giant-spin Hamiltonian, which is usually used to describe the
anisotropy of single-molecule magnets. A rigorous extraction of the model has been performed in the weak-
exchange limit of a binuclear centrosymmetric Ni�II� complex, using correlated ab initio calculations and
effective Hamiltonian theory. It is shown that the giant-spin Hamiltonian is not appropriate to describe poly-
nuclear complexes as soon as spin mixing becomes non-negligible. A relevant model is proposed involving
fourth-order operators, different from the traditionally used Stevens operators. The new giant-spin Hamiltonian
correctly reproduces the effects of the spin mixing in the weak-exchange limit. A procedure to switch on and
off the spin mixing in the extraction has been implemented in order to separate this effect from other aniso-
tropic effects and to numerically evaluate both contributions to the tunnel splitting. Furthermore, the new
giant-spin Hamiltonian has been derived analytically from the multispin Hamiltonian at the second order of
perturbation and the theoretical link between the two models is studied to gain understanding concerning the
microscopic origin of the fourth-order interaction in terms of axial, rhombic, or mixed �axial-rhombic� char-
acter. Finally, an adequate method is proposed to extract the proper magnetic axes frame for polynuclear
anisotropic systems.
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I. INTRODUCTION

Since the early 1990s,1,2 single-molecule magnets
�SMMs� have generated continuous interest of a large scien-
tific community as their properties proved to be challenging
from both technological and fundamental points of view.
Their main remarkable property is the slow relaxation of
their magnetization at low temperature,3 which is interpreted
in terms of a lift of degeneracy of the Ms components of the
ground state of spin S and to a long lifetime of the Msmax

and
Msmin

components. The relaxation is usually governed by di-
rect or thermally assisted tunneling,4,5 or is permitted ther-
mally if the energy of the system is greater than the barrier
required to reverse the magnetization.

From a theoretical point of view, the description of these
systems is particularly difficult. In the first place, SMMs are
magnetic systems with localized spin moments and in gen-
eral highly correlated methods are required to calculate their
properties. Second, the lift of degeneracy of the Ms compo-
nents in absence of magnetic field is originated by relativistic
effects and, in particular, by spin-orbit interaction. These
facts, combined with the large size of most of the SMMs,
makes practically impossible the use of the all-electron rela-
tivistic Hamiltonian, and normally model Hamiltonians are
used both for the interpretation of experiments and to theo-
retically model their properties. Two models are commonly
used: �i� the multispin Hamiltonian �MSH� and �ii� the giant-
spin Hamiltonian �GSH�. Both are phenomenological and
their relevance should be validated by theoretical studies. As
shown in previous studies,6–8 it is possible to establish the
relevance of any model Hamiltonian owing to the effective
Hamiltonian theory. In combination with correlated ab initio

calculations performed using the all-electron Hamiltonian,
the effective Hamiltonian theory can also be used to propose
a more appropriate model when the usual one is flawed.

This method has successfully been applied to Ni�II� and
Co�II� mononuclear complexes9 for which the appropriate-
ness of the anisotropic spin Hamiltonian involving a second-
order tensor has been confirmed. Recently, the method has
also been used to check the validity of the multispin
Hamiltonian to describe the magnetic properties of the
�Ni2�en�4Cl2�2+ �en=ethylenediamine� binuclear complex.10

This model Hamiltonian explicitly considers the anisotropy

second-order tensor D� i of the magnetic centers and their iso-
tropic and anisotropic interactions.11–13 The model deals with
the energies and wave functions of all the states resulting
from the interactions between the local spins. It has been
shown10 that the multispin Hamiltonian was not appropriate
for the description of the anisotropy of the studied complex
and a distinct Hamiltonian involving an anisotropic biqua-
dratic operator has been proposed.

The present work is essentially focused on the giant-spin
Hamiltonian. This model is more commonly used than the
multispin, despite the fact that it neither explicitly considers
the single-ion anisotropies nor their interactions and can
therefore be considered as being less microscopic than the
multispin Hamiltonian. Indeed, the model only describes the
Ms components of the ground spin state and can be numeri-
cally solved for very large systems. As a consequence, an-
isotropy parameters of polynuclear SMMs determined from
electron paramagnetic resonance spectroscopy are mostly �if
not always� extracted using the giant-spin Hamiltonian,
eventually involving standard Stevens operators up to order
2S.14 While the physical meaning of fourth-order operators is
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still a matter of debate in the literature,15–19 it is usually
considered that they account for the spin mixing between the
ground state and low-lying excited states which are not ex-
plicitly included in the model.

The objective of the present work is twofold: in the first
place, the most accurate effective Hamiltonian matrix work-
ing in the giant-spin model space will be extracted from ab
initio calculations performed on the �Ni2�en�4Cl2�2+ complex
and the relevance of the GSH �Refs. 3, 15, 20, and 21� will
be discussed. In the second place, the GSH will be derived
analytically from the MSH at the second order of perturba-
tions and the role of the spin mixing between the ground
quintet state and the excited singlet state will be studied. As
a consequence of this analytical development, an appropriate
GSH will be proposed. The physical nature of its constitutive
interactions will be discussed, in particular, the physical link
between the interactions appearing in the MSH and those
appearing in this new GSH will be established.

II. METHODS OF EXTRACTION OF MODEL
HAMILTONIANS AND COMPUTATIONAL INFORMATION

The effective Hamiltonian theory22,23 can check the valid-
ity of any model Hamiltonian. It consists in the extraction
from accurate ab initio calculations of the most rigorous ef-
fective Hamiltonian working in the same model space as the
model Hamiltonian. This effective Hamiltonian is then com-
pared to the model. In the des Cloizeaux formalism,23 the
general expression of the effective Hamiltonian is

Ĥef f = �
i

��̃i�Ei��̃i� , �1�

where �̃i are the orthonormalized projections onto the model
space of the all-electron Hamiltonian eigenvectors �i and Ei
are the corresponding eigenenergies. This formulation en-
sures that the eigenvectors of the effective Hamiltonian are
the projections onto the model space of the all-electron
Hamiltonian eigenvectors and that its eigenvalues are the
eigenenergies of the all-electron Hamiltonian such that

Ĥef f��̃i� = Ei��̃i� . �2�

The method provides more information than the spectrum of
the energies only since it is possible to calculate all the ma-
trix elements of the effective Hamiltonian as

�i�Ĥef f�j� = �i��
i

��̃i�Ei��̃i�j� . �3�

The consistency of model Hamiltonians can be recognized
by confronting these numerical matrix elements to their ana-
lytical expression in the model Hamiltonian.

The ab initio calculations were performed using the spin-
orbit state-interaction �SI� method24 implemented in the MOL-

CAS package.25 The method performs a variational treatment
of the spin-orbit couplings between the lowest states and a
collection of excited states. The preliminary spin-orbit free
calculations account for both nondynamic and dynamic cor-
relation effects. The complete active space self-consistent
field method is used to determine nondynamically correlated

wave functions. The spin-orbit free dynamically correlated
energies used in the SI step are computed using �i� the highly
accurate difference dedicated configuration interaction26

method for the lowest singlet, triplet, and quintet states and
�ii� the CASPT2 method27 for the other excited states. More
technical information is available in Ref. 10. The so-obtained
ab initio low-energy spectrum of the �Ni2�en�4Cl2�2+ com-
plex is represented in the central column of Fig. 1.

III. MODEL HAMILTONIANS

A. Multispin Hamiltonian

Since the giant-spin Hamiltonian will be analytically de-
rived from the multispin one, we first shortly review the
commonly applied multispin Hamiltonian and the recently
proposed modification to it. The multispin Hamiltonian has
originally been proposed to rationalize the properties of cop-
per binuclear complexes28,29 and has later been generalized
to magnetic systems involving spins larger than 1/2. For a
binuclear complex, constituted of sites a and b, it has the
following expression:

ĤMS = JŜa · Ŝb + ŜaD� aŜa + ŜbD� bŜb + ŜaD� abŜb + d̄abŜa � Ŝb,

�4�

where J is the isotropic magnetic exchange, D� a and D� b are

local zero-field splitting �ZFS� tensors, D� ab is the symmetric

anisotropic tensor and d̄ab is the antisymmetric anisotropic
term,11–13 known as the Dzyaloshinskii Moriya vector. Since
our studied complex exhibits a center of symmetry, both lo-
cal tensors are equal and the antisymmetric term vanishes.

This Hamiltonian works on the basis of the �MSa
,MSb

�
functions and is designed to reproduce the energy of all the
states resulting from the coupling between the ground spin
states of each magnetic sites. In the present study, the Hamil-
tonian should reproduce the energy of all Ms components of
the singlet, triplet, and quintet states. Due to the parity rule,
spin-orbit interactions cannot couple the triplet �of ungerade

FIG. 1. �Color online� Comparison of model spectra obtained
using different parameterizations with the ab initio spectrum.
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symmetry� and the singlet and quintet �of gerade symmetry�,
hence the spin mixing only concerns the quintet and singlet
Ms components.

In the strong-exchange limit �i.e., when the isotropic ex-
change integral is large in comparison to the anisotropic in-
teractions�, the eigenvalues and eigenvectors of the model
can be expressed analytically in a rather simple way leading
to an easy extraction of the anisotropic axial Da, Dab and
rhombic Ea, Eab interactions.11–13 These parameters are func-
tions of the diagonal elements Dxx, Dyy, and Dzz of each
tensor defined in its proper magnetic axes frame and for a
traceless tensor,

D = Dzz −
1

2
�Dxx − Dyy� =

3

2
Dzz, �5�

E =
1

2
�Dxx − Dyy� . �6�

In the weak-exchange limit �i.e., when the anisotropic pa-
rameters are of the same order of magnitude as the exchange
integral�, the extraction should be performed by solving ana-
lytically the model matrix built in the uncoupled �MSa

,MSb
�

basis in order to accurately account for spin-mixing
effects.10,12,13 The parameters extracted from the ab initio
energies only �i.e., without using the effective Hamiltonian
matrix� lead to a perfect reproduction of the spectrum.10 A
comparison of the spectra obtained using the strong ex-
change approximation and this weak-exchange limit ap-
proach with the ab initio one is proposed in Fig. 1.

Recently, the use of the effective Hamiltonian theory for a
rigorous extraction of this model10 has led to a revision of
the MSH since the analytical matrix of the Hamiltonian of
Eq. �4� and the numerical effective matrix extracted from the
ab initio results were exhibiting numerous incompatibilities.
Some matrix elements having the same analytical expression
had different numerical values in the effective matrix. More-
over, some zero analytical elements were actually corre-
sponding to quite large values in the effective Hamiltonian. It
has been shown that a biquadratic anisotropic exchange ten-

sor D�� aabb should be added to the usual Hamiltonian in order
to accurately reproduce the matrix elements of the effective
Hamiltonian. This new model is unfortunately not usable in a
practical way due to the large number of parameters in-
volved. Its determination is however of fundamental impor-
tance to understand the physics of polynuclear anisotropic
molecules and will also be useful in order to derive an ad-

equate GSH. Its analytical matrix elements are reported in
Appendix A.

B. Giant-spin Hamiltonian

A second, simpler approach to describe the magnetic an-
isotropy in polynuclear systems is provided by the giant-spin
approximation.3,15,20,21 Instead of considering the anisotropy
as resulting from the coupling of localized spin moments, the
properties are interpreted as to arise from the spin of the
ground state of the whole molecule, i.e., the giant spin. The
basic assumption for using the GSH is that the lowest spin
multiplet of the molecule is sufficiently separated in energy
from the other spin multiplets such that the magnetic prop-
erties can be described using a single-spin ground state. The
studied complex which pertains to the weak-exchange limit
constitutes an interesting case to analyze the physical content
of the model.

The GSH is commonly expressed in terms of the standard

Stevens equivalent operators Ôk
m�Ŝz , Ŝ��,14 i.e., as linear

combinations of spin operators of symmetry m �m=0 is
axial, m=2 is rhombic, and m=4 is tetragonal� and order k.
The expansion up to fourth order gives

ĤGSH
1 = �

k=0,2,4
�
m=0

k

Bk
mÔk

m, �7�

where the operators Ok
m have the following expressions:

Ô0
0 = S�S + 1� Ô2

0 = 3Ŝz
2 − S�S + 1� Ô2

2 =
1

2
�Ŝ+

2 + Ŝ−
2� ,

Ô4
0 = 35Ŝz

4 + �25 − 30S�S + 1��Ŝz
2 − 6S�S + 1� + 3S2�S + 1�2,

Ô4
2 =

1

4
	�7Ŝz

2 − S�S + 1� − 5��Ŝ+
2 + Ŝ−

2� + �Ŝ+
2 + Ŝ−

2��7Ŝz
2 − S�S

+ 1� − 5�
 ,

Ô4
4 =

1

2
�Ŝ+

4 + Ŝ−
4� . �8�

The second-order terms are related to the axial and rhombic

parameters of the ZFS D� tensor such that D=3B2
0 and E

=B2
2. The fourth-order terms are usually attributed to spin

mixing, i.e., the admixture of higher multiplets to the
ground-state manifold. The model space of this Hamiltonian

TABLE I. Analytical matrix elements of the giant-spin Hamiltonian for high-spin binuclear Ni�II� com-
plexes expressed in the proper magnetic axes frame.

�S ,MS� �2,−2� �2,−1� �2,0� �2,1� �2,2�

�2,−2� 9B2
0+60B4

0 0 �6B2
2+3�6B4

2 0 12B4
4

�2,−1� 0 0 0 3B2
2−12B4

2 0

�2,0� �6B2
2+3�6B4

2 0 −3B2
0+120B4

0 0 �6B2
2+3�6B4

2

�2,1� 0 3B2
2−12B4

2 0 0 0

�2,2� 12B4
4 0 �6B2

2+3�6B4
2 0 9B2

0+60B4
0
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is considerably smaller than for the MSH and is only
spanned by the five �2,MS� determinants for Ni�II� binuclear
complexes. Table I shows the matrix representation of the
GSH. Since we are only interested in state-energy differ-
ences, the trace of the matrix is an irrelevant parameter and
the zero of energy has been chosen as the diagonal element
of the �2, �1� functions for convenience �see next section�.
It should be noted that these operators have been derived for
the description of the crystal field around single magnetic
centers. In the context of polynuclear systems, their rel-
evance is not guaranteed and the physical content of the as-
sociated interactions Bk

m is not straightforward.

IV. RESULTS AND DISCUSSION

A. Determination of the proper magnetic axes frame

The proper magnetic axes frame is usually determined by
diagonalizing the second-order ZFS tensor. This procedure
implies that the GSH involving only the second-order tensor

S ·D� ·S �i.e., only the B2
0 and B2

2 interactions� is appropriate
for this purpose. Since higher-order terms are assumed to
arise from spin mixing between the different spin states of
the MSH, we have artificially removed the couplings be-

tween the singlet and quintet Ms components to extract the D�

tensor and consequently to determine the proper magnetic
axes frame. This switching off of the spin mixing will also
help to obtain deeper insight in the origin of the higher-order
terms in the GSH.

In the first place, the effective matrix of the MSH has
been calculated. Then, the off-diagonal elements that couple
Ms components of different spin states have been set to zero,
and finally, the GSH effective matrix has been extracted from
the spin-mixing free MSH effective matrix. The ZFS tensor
has been determined from the resulting GSH effective matrix
and diagonalized to obtain the proper magnetic axes frame.
The numerical matrix of the GSH extracted from ab initio
calculations performed in the so-obtained axes frame �see
Fig. 2� is reported in Table II while the analytical matrix of
the S ·D� ·S Hamiltonian in the proper magnetic axes frame
can be obtained by keeping only the B2

0 and B2
2 interactions in

the matrix of the GSH given in Table I, or by keeping only
the diagonal components Dii of the D� tensor in Appendix B.

From the comparison of the numerical and analytical ma-
trices, we conclude that most of the fourth-order interactions
in the GSH are zero �or smaller than the numerical precision�
when the spin mixing is eliminated. The origin of these terms
when nonzero in a full treatment should therefore be essen-
tially attributed to spin mixing. Furthermore, the matrix ele-

ment �2,−2�Ĥspin-mixing free
GSH �2,2� is nonzero and can only be

caused by the fourth-order interaction B4
4. Therefore, this

fourth-order interaction has a different origin than the spin
mixing between the singlet and the quintet. As shown in the
Appendix A, this interaction is not included in the usual

MSH, actually it comes from the fourth-order tensor D�� aabb of
the recently proposed MSH. Finally, the so-determined axes
frame leads to a numerical Hamiltonian matrix in which all

the off-diagonal elements of the D� tensor vanish. The proce-
dure therefore provides a rational way to extract the proper
magnetic axes frames of polynuclear anisotropic molecules.

The main contribution to the anisotropy of a polynuclear
complex is usually attributed to the local anisotropy of the

metal ions for systems with S�1 /2, i.e., to the D� a and D� b
tensors of the MSH. For noninteracting sites or for an isotro-
pic interaction of the anisotropic centers, the anisotropy of
the resulting Hamiltonian would be provided by the sum of

the local Sa ·D� a ·Sa terms. Related to this, it is interesting to

note that there is a strict proportionality between the D� tensor

of the GSH and the D� a tensors of the local centers,

D� =
1

6
D� a �9�

as can be seen by comparing the analytical matrices of the

S ·D� ·S and Sa ·D� a ·Sa+Sb ·D� b ·Sb Hamiltonians expressed in

FIG. 2. �Color online� Ball and stick representation of
�Ni2�en�4Cl2�2+. Hydrogen atoms are omitted for clarity. The proper
magnetic axes are shown. The angle between the magnetic Z axis
and the normal of the Ni-�Cl2�-Ni plane is 12°.

TABLE II. Giant-spin effective Hamiltonian matrix �in cm−1� without spin-mixing effects in the �S ,MS�
space extracted for the �Ni2�en�4Cl2�2+ complex computed in the proper magnetic axes frame.

�Hef f� �2,−2� �2,−1� �2,0� �2,1� �2,2�

�2,−2� −9.13 0.00 1.63 0.00 −0.06

�2,−1� 0.00 0 0.00 1.99 0.00

�2,0� 1.63 0.00 3.05 0.00 1.63

�2,1� 0.00 1.99 0.00 0 0.00

�2,2� −0.06 0.00 1.63 0.00 −9.13
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an arbitrary frame �see Appendices B and C�. As a conse-
quence, the proper magnetic axes frame of a centrosymmet-
ric polynuclear complex is also a proper magnetic axes frame
for the independent magnetic centers. One should also note
that, as shown in Ref. 10, the symmetric anisotropic tensor

D� ab of the multispin Hamiltonian is also diagonal in the same
axes frame.

B. Rigorous extraction of the effective matrix of the GSH

The effective matrix of the GSH has also been extracted
including the spin mixing. It is reported in Table III. The
optimization of the orbitals for the singlet, triplet, and quintet
states leads to slightly different expressions of the spatial
part of the wave function for these states. Consequently, the
three states do not interact in the same way with the excited
states and the magnetic axes frame does not strictly coincide
for the three states. Hence, the introduction of spin mixing

causes small contributions to off-diagonal elements of the D�

tensor. Since these terms never exceeds 0.05 cm−1, they
have not been considered in the following extractions.

The magnitude of all the GSH interactions was deter-
mined from the set of independent linear equations obtained
by imposing the equality of the analytical and numerical ma-
trices. The values are reported in Table IV and show non-
negligible fourth-order interactions apparently accounting for
the spin mixing and significantly different values for the sec-
ond order interactions. While such an extraction leads at first
sight to the conclusion that the GSH is appropriate, a deeper

analysis of the effective matrices extracted with and without
spin mixing reveals some inconsistencies. In the present
case, a consistent extraction should give identical values of
the second-order interactions B2

0 and B2
2 with and without

spin mixing while a quite large discrepancy is observed.
However, the numerical values derived from the two extrac-
tions are rather different. If we look in some more detail, it

can be observed that the �2, �1�ĤGSH�2, �1� matrix element
has the same value �1.99 cm−1� in both numerical matrices

while the �2, �2�ĤGSH�2,0� element is substantially different
�1.63 versus 2.49 cm−1�. The fourth-order interaction B4

2,
which contributes to both elements, cannot reproduce by it-
self these incompatible changes in the matrix elements, and
hence, the B2

2 interaction is artificially enhanced to keep con-

stant the �2, �1�ĤGSH�2, �1� matrix element. Renormaliza-
tions of second-order interactions are only possible when
higher-order terms affect the same matrix elements as the
second-order ones. Since this is not the case in the present
study, spin mixing cannot renormalize the second-order in-
teractions and introduces distinct physics.

From this analysis, one may conclude that the operators
usually introduced in the GSH in order to describe deviations

to the S ·D� ·S Hamiltonian are not physically based for the
studied complex. The assumption of spherical Stevens opera-
tors, which were proposed to reproduce these deviations in
mononuclear species, is not valid for polynuclear complexes.

C. Proposal of a consistent GSH Hamiltonian

In order to propose a consistent Hamiltonian accurately
accounting for spin mixing, the GSH has been derived ana-
lytically at the second order of perturbation from the MSH
including the fourth-order tensor proposed in Ref. 10. One
should note that since the energies of the �2,0� and �2, �2�
are different, the use of the exact denominators would lead to
a non-Hermitian matrix that could only be compared to the
Bloch effective Hamiltonian matrix �i.e., not to the des
Cloizeaux one�. Since our purpose is to use the perturbation
theory as a guideline to determine adequate fourth-order op-
erators, the denominators have been chosen to be the analyti-
cal spin-orbit free energies and this leads to the Hermitian
matrix reported in Appendix D.

The perturbative terms involve the anisotropic biquadratic
operators of the multispin Hamiltonian and are functions of
the anisotropic parameters �Da, Dab, Ea, and Eab�. In order to
specify the nature of the additional operators that will be

TABLE III. Giant-spin effective Hamiltonian matrix �in cm−1� including spin-mixing effects in the �S ,MS�
space extracted for the �Ni2�en�4Cl2�2+ complex computed in the proper magnetic axes frame.

�Hef f� �2,−2� �2,−1� �2,0� �2,1� �2,2�

�2,−2� −9.19 0.00+0.01i 2.49+0.01i 0.00+0.01i −0.12

�2,−1� 0.00−0.01i 0 −0.01+0.05i 1.99 0.00−0.01i

�2,0� 2.49−0.01i −0.01−0.05i −2.09 0.01−0.05i 2.49+0.01i

�2,1� 0.00−0.01i 1.99 0.01+0.05i 0 0.00−0.01i

�2,2� −0.12 0.00+0.01i 2.49−0.01i 0.00+0.01i −9.19

TABLE IV. Magnetic anisotropy parameters �in cm−1� extracted
for the GSH of Eq. �7� with and without spin-mixing effects and for
the GSH of Eq. �13�. Values have two significant figures, close to 5
third ones are given in parenthesis.

ĤGSH
1 spin-mixing free ĤGSH

1 ĤGSH
2

B2
0 −1.01�4� −0.77�6� −1.01�4�

B2
2 0.66�5� 0.86�6� 0.66�5�

60B4
0 �10−3 −2.22 �10−3

3�6B4
2 �10−3 0.37�5� �10−3

12B4
4 −0.06 −0.12 −0.06

B4
ax −5.14

B4
rh −0.06

B4
ax,rh 0.86
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defined hereafter, their associated interactions will be called
according to the nature �axial, rhombic or mixed� of the in-
teractions appearing in the perturbation. Three different
terms are obtained: �1� the spin-mixing term that affects the

�2,−2�ĤGSH�2,−2�, �2,2�ĤGSH�2,2� and �2,−2�ĤGSH�2,2� by
the same quantity. This perturbative term involves the Ea and
Eab rhombic anisotropic parameters of the multispin Hamil-
tonian, it is noted Brh and its expression is

B4
rh =

�2Ea − Eab + 2�2� − �3��2

9J
. �10�

�2� The matrix elements �2,0�ĤGSH�2,0� are affected by
the spin mixing through an interaction that involves the Da
and Dab axial anisotropic parameters, B4

ax is defined by

B4
ax =

2�2Da − Dab + �1� − �6� + �8� − �9��2

27J
. �11�

�3� The matrix elements �2, �2�ĤGSH�2,0� are affected by
an interaction involving both axial and rhombic parameters,
B4

ax,rh is

B4
ax,rh =

�6�2�2� − �3� + 2Ea − Eab���1� + 2Da − Dab − �6� + �8� − �9��
27J

, �12�

where terms �1�, �2�,…, �9� are interactions of the fourth-
order tensor given in Appendix A. In these expressions the
physical content of the interactions is given at the second
order of perturbation. It is worth noting that the effective
Hamiltonian theory provides interactions extracted at an in-
ifinite order of perturbation. Following this derivation a con-
sistent GSH Hamiltonian can be defined. Its expression is

ĤGSH
2 = B2

0Ô2
0 + B2

2Ô2
2 + B4

4Ô4
4 + B4

axÔ4
ax + B4

ax,rhÔ4
ax,rh + B4

rhÔ4
rh,

�13�

where

Ô4
ax =

1

96
�MS + 2��MS + 1��MS − 1��MS − 2��Ŝ+

2Ŝ−
2 + Ŝ−

2Ŝ+
2� ,

Ô4
ax,rh =

1

4�6
�Ŝ−Ŝz

2Ŝ− + Ŝ+Ŝz
2Ŝ+� ,

Ô4
rh =

1

24
�Ŝ+

4 + Ŝ−
4 + �MS − 1��MS + 1��ŜzŜ+ŜzŜ− + ŜzŜ−ŜzŜ+�� .

�14�

The analytical matrix of this Hamiltonian is given in Table V
and is perfectly consistent with the numerical matrix of the
effective GSH. Numerical values of the interactions of this
new Hamiltonian are reported in Table IV. The second-order
interactions are equal to those obtained in the spin-mixing
free GSH, as required. The dominant fourth-order interaction

is B4
ax, reflecting the strong stabilization of the �2,0� function

through the spin-mixing effects, next comes the B4
ax,rh inter-

action which couples the �2,0� and the �2, �2� functions and
finally the B4

rh interaction is the smallest one. The B4
rh inter-

action has almost the same value as B4
4, and hence, a consis-

tent model should include both for cases where the interac-
tion becomes important. These two interactions contribute
less than 5% to the energy difference between the �2,−2�
+ �2,2� and �2,−2�− �2,2� functions at the bottom of the
spectrum �see Fig. 1�. The energy difference is dominated by
the B4

ax,rh interaction. The numerical contribution of the spin
mixing to the energy difference is 1.08 cm−1. Since this dif-
ference is proportional to the tunnel splitting, it governs the
relaxation of the magnetization and plays therefore an impor-
tant role in the anisotropic properties as already mentioned in
other works.18,19

The spectra extracted using different approximations are
reported in Fig. 1. The important effect of the spin mixing
appears clearly when comparing the spectra obtained with
and without spin mixing. The interactions with the singlet
state strongly stabilizes the �2,0� function which is lower in
energy that the �2,1�− �2,−1� one and dominates the energy
difference between the �2,2�+ �2,−2� and �2,2�− �2,−2�
functions. Furthermore, the spectrum of the quintet compo-
nents obtained in absence of spin mixing resembles the spec-
trum obtained in the strong exchange approximation as ex-
pected.

Finally, we mention that some of the second-order GSH
interactions contain fourth-order MSH interactions. For ex-

ample, the �2,−2�ĤGSH�2,−2� matrix element is equal to

TABLE V. Matrix elements of the proposed giant-spin Hamiltonian in the proper magnetic axes frame.

�S ,MS� �2,−2� �2,−1� �2,0� �2,1� �2,2�

�2,−2� 9B2
0+B4

rh 0 �6B2
2+B4

ax,rh 0 12B4
4+B4

rh

�2,−1� 0 0 0 3B2
2 0

�2,0� �6B2
2+B4

ax,rh 0 −3B2
0+B4

ax 0 �6B2
2+B4

ax,rh

�2,1� 0 3B2
2 0 0 0

�2,2� 12B4
4+B4

rh 0 �6B2
2 0 9B2

0+B4
rh
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9B2
0+B4

rh. Comparing this with the expression of the matrix
element in Appendix D and the expression of B4

rh in Eq. �10�,
it is obvious that B2

0 contains fourth-order interactions of the
MSH Hamiltonian, namely term �1� of Appendix A.

V. SUMMARY AND PERSPECTIVES

The main objectives of this work were to study the effect
of the spin mixing in the weak-exchange limit and to evalu-
ate the validity of the giant-spin Hamiltonian. We found that
when the effective giant-spin Hamiltonian matrix is extracted
from a multispin Hamiltonian matrix in which the spin mix-
ing has been removed, the system can reasonably be repro-

duced using the second-order D� ZFS tensor and perfect
agreement is achieved when introducing the fourth-order in-
teraction B4

4. One may therefore conclude that even if the
main contribution to fourth-order interactions is due to spin
mixing, some of the fourth-order interactions also account
for effects that have a different origin than the spin mixing.
Furthermore, the second-order interactions of the GSH con-
tain part of the fourth-order interaction of the MSH including
an anisotropic biquadratic exchange operator, Appendix C.

The proper magnetic axes frame has been extracted from

the D� tensor determined in absence of spin mixing. In cen-

trosymmetric complexes, the local D� i tensor, the symmetric

anisotropic D� ij tensor of the interaction between the mag-

netic centers, and the global D� tensor are diagonal in this
proper magnetic axes frame. Since this procedure works well
in the weak-exchange limit �worst case scenario�, it can
safely be used to theoretically determine the proper magnetic
axes frame of other polynuclear complexes.

The use of the effective Hamiltonian theory made pos-
sible to switch on and off the spin mixing and therefore to
separate spin-mixing effects from other anisotropic effects.
The procedure of extraction also leads to numerical estimates
of both. It appears that the spin-mixing effects can be of
the same order of magnitude as the direct anisotropic in-
teractions and accurate models should imperatively ac-
count for both. Indeed, as illustrated by the spectra obtained
using different approximations, the relative energies are
strongly affected by the spin mixing which may induce
a different energetic order of the states. As already dis-
cussed in Refs. 18 and 19, the spin mixing also affects
the energy difference between the lowest-energy functions
�Msmax

�Msmin
� of the giant spin, which is proportional to the

tunnel splitting and therefore also governs the relaxation of
the magnetization.

This on and off switching of the spin mixing also shows
that the usual giant-spin Hamiltonian involving standard
equivalent Stevens operators is not physically based for
polynuclear systems as soon as this spin mixing is non-
negligible. A different giant-spin Hamiltonian has been de-
rived from the multispin Hamiltonian. The origin of its con-
stitutive interactions has been characterized according to the
axial, rhombic, or mixed nature of the interactions of the
multispin Hamiltonian from which they have beenextracted.
This new giant-spin Hamiltonian perfectly reproduces the
spectrum of the giant-spin components including both spin-

mixing effects and effects of the fourth-order D�� aabb tensor.
It should also be mentioned that the low-energy spectrum

of weak-exchange limit complexes may exhibit states of dif-
ferent spin multiplicity intercalated in between the Ms com-
ponents of the giant-spin ground state. In such cases, the use
of the giant-spin Hamiltonian may be questionable since the
low-temperature properties of the compounds would also de-
pend on these intercalated states that do not form part of the
GSH model space. The use of a multispin Hamiltonian which
reproduces all the states generated by the interaction between
the local spin moments is recommended for these cases.

This work shows the limits of the use of the usual GSH.
The proposed Hamiltonian is however not a universal Hamil-
tonian for the treatment of polynuclear complexes. A more
detailed analysis is still necessary to define a complete set of
operators that accounts for spin mixing in polynuclear com-
plexes having any symmetry point group and is valid for all
metal dn configurations, and of course for an arbitrary num-
ber of magnetic centers.
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APPENDIX A: ANALYTICAL MATRIX ELEMENTS OF
THE MULTISPIN HAMILTONIAN EXPRESSED IN

THE �S ,Ms‹ BASIS OF THE QUINTET AND SINGLET
COMPONENTS, IN THE PROPER MAGNETIC

AXES FRAME

�2,−2�Ĥ�2,−2�= �1�+ 2
3 �Da+Dab�+J

�2,−2�Ĥ�2,−1�= 0

�2,−2�Ĥ�2,0�= �2
3 ��2�+ �3�+Ea+Eab�

�2,−2�Ĥ�2,1�= 0

�2,−2�Ĥ�2,2�= �4�

�2,−2�Ĥ�0,0�= 1
�3

�2�2�− �3�+2Ea−Eab�

�2,−1�Ĥ�2,−1�= −
Da

3 −
Dab

3 + �5�+ �6�+J

�2,−1�Ĥ�2,0�= 0

�2,−1�Ĥ�2,1�= −�3�+Ea+Eab+ �7�

�2,−1�Ĥ�2,2�= 0

�2,−1�Ĥ�0,0�= 0

�2,0�Ĥ�2,0�= 1
3 ��1�−2Da−2Dab−4�6�+ �8�+2�9��

+J
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�2,0�Ĥ�2,1�= 0

�2,0�Ĥ�2,2�= �2
3 ��2�+ �3�+Ea+Eab�

�2,0�Ĥ�0,0�=
�2
3 ��1�+2Da−Dab− �6�+ �8�− �9��

�2,1�Ĥ�2,1�= −
Da

3 −
Dab

3 + �5�+ �6�+J

�2,1�Ĥ�2,2�= 0

�2,1�Ĥ�0,0�= 0

�2,2�Ĥ�2,2�= �1�+ 2
3 �Da+Dab�+J

�2,2�Ĥ�0,0�= 1
�3

�2�2�− �3�+2Ea−Eab�

�0,0�Ĥ�0,0�= 1
3 �2�1�+4�6�+2�8�+ �9��−2J

�1�= 1
4 �Dxxxx+Dyyyy�+ 1

2Dxxyy +Dxxzz+Dyyzz

+Dzzzz

�2�= 1
4 �Dxxxx−Dyyyy�+ 1

2 �Dxxzz−Dyyzz�
�3�= 1

2 �Dxzxz−Dyzyz�
�4�= 1

4 �Dxxxx+Dyyyy�− 1
2Dxxyy −Dxyxy

�5�= 1
2 �Dxxxx+Dyyyy�+Dxxyy +Dxxzz+Dyyzz

�6�= 1
2 �Dxzxz+Dyzyz�

�7�= 1
2 �Dxxxx−Dyyyy�

�8�= 1
4 �Dxxxx+Dyyyy�+Dxyxy − 1

2Dxxyy

�9�=Dxxxx+Dyyyy +2Dxxyy

APPENDIX B: ANALYTICAL MATRIX OF THE S ·D� ·S HAMILTONIAN, EXPRESSED IN AN ARBITRARY AXES FRAME

�S ,MS� �2,−2� �2,−1� �2,0�
�2,−2� D11+D22+4D33 −3D13−3iD23

�6
2 �D11−D22+2iD12�

�2,−1� −3D13+3iD23
5
2 �D11+D22�+D33 −

�6
2 �D13+ iD23�

�2,0�
�6
2 �D11−D22−2iD12� −

�6
2 �D13− iD23� 3�D11+D22�

�2,1� 0 3
2 �D11−D22−2iD12�

�6
2 �D13− iD23�

�2,2� 0 0
�6
2 �D11−D22−2iD12�

�S ,MS� �2,1� �2,2�
�2,−2� 0 0

�2,−1� 3
2 �D11−D22+2iD12� 0

�2,0�
�6
2 �D13+ iD23�

�6
2 �D11−D22+2iD12�

�2,1� 5
2 �D11+D22�+D33 3D13+3iD23

�2,2� 3D13−3iD23 D11+D22+4D33

APPENDIX C: ANALYTICAL MATRIX OF THE Sa ·D� a ·Sa+Sb ·D� b ·Sb HAMILTONIAN EXPRESSED IN AN ARBITRARY

AXES FRAME; D� a=D� b ARE THE LOCAL ZFS TENSORS OF THE MULTISPIN HAMILTONIAN

�S ,MS� �2,−2� �2,−1� �2,0�
�2,−2� Da11+Da22+2Da33 −Da13− iDa23

1
�6

�Da11−Da22+2iD12�
�2,−1� −Da13+ iDa23

1
2 �3Da11+3Da22+2Da33� − 1

�6
�Da13+ iDa23�

�2,0� 1
�6

�Da11−Da22−2iDa12� − 1
�6

�Da13− iDa23�
1
3 �5Da11+5Da22+2Da33�

�2,1� 0 1
2 �Da11−Da22−2iDa12�

1
�6

�Da13− iDa23�
�2,2� 0 0 1

�6
�Da11−Da22−2iDa12�

�S ,MS� �2,1� �2,2�
�2,−2� 0 0

�2,−1� 1
2 �Da11−Da22+2iDa12� 0

�2,0� 1
�6

�Da13+ iDa23�
1
�6

�Da11−Da22+2iDa12�
�2,1� 1

2 �3Da11+3Da22+2Da33� Da13+ iDa23

�2,2� Da13− iDa23 Da11+Da22+2Da33
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APPENDIX D: ANALYTICAL MATRIX ELEMENTS OF
THE GIANT-SPIN HAMILTONIAN DERIVED

FROM THE MULTISPIN HAMILTONIAN AT THE SECOND
ORDER OF PERTURBATION

�2,−2�Ĥ�2,−2�= �1�+ 2
3 �Da+Dab�+J+ �2�2�−�3�+2Ea−Eab�2

9J

�2,−2�Ĥ�2,−1�= 0

�2,−2�Ĥ�2,0�=

�2
3 ��2�+ �3�+Ea+Eab�

+
�6�2�2�−�3�+2Ea−Eab���1�+2Da−Dab−�6�+�8�−�9��

27J

�2,−2�Ĥ�2,1�= 0

�2,−2�Ĥ�2,2�= �4�+ �2�2�−�3�+2Ea−Eab�2

9J

�2,−1�Ĥ�2,−2�= 0

�2,−1�Ĥ�2,−1�= −
Da

3 −
Dab

3 + �5�+ �6�+J

�2,−1�Ĥ�2,0�= 0

�2,−1�Ĥ�2,1�= −�3�+Ea+Eab+ �7�

�2,−1�Ĥ�2,2�= 0

�2,0�Ĥ�2,−2�=

�2
3 ��2�+ �3�+Ea+Eab�

+
�6�2�2�−�3�+2Ea−Eab���1�+2Da−Dab−�6�+�8�−�9��

27J

�2,0�Ĥ�2,1�= 0

�2,0�Ĥ�2,0�=

1
3 ��1�−2Da−2Dab−4�6�+ �8�+2�9��+J

+
2��1�+2Da−Dab−�6�+�8�−�9��2

27J

�2,0�Ĥ�2,1�= 0

�2,0�Ĥ�2,2�=

�2
3 ��2�+ �3�+Ea+Eab�

+
�6�2�2�−�3�+2Ea−Eab���1�+2Da−Dab−�6�+�8�−�9��

27J

�2,1�Ĥ�2,−2�= 0

�2,1�Ĥ�2,−1�= −�3�+Ea+Eab+ �7�

�2,1�Ĥ�2,0�= 0

�2,1�Ĥ�2,1�= −
Da

3 −
Dab

3 + �5�+ �6�+J

�2,1�Ĥ�2,2�= 0

�2,2�Ĥ�2,−2�= �4�+ �2�2�−�3�+2Ea−Eab�2

9J

�2,2�Ĥ�2,−1�= 0

�2,2�Ĥ�2,0�=

�2
3 ��2�+ �3�+Ea+Eab�

+
�6�2�2�−�3�+2Ea−Eab���1�+2Da−Dab−�6�+�8�−�9��

27J

�2,2�Ĥ�2,1�= 0

�2,2�Ĥ�2,2�= �1�+ 2
3 �Da+Dab�+J+ �2�2�−�3�+2Ea−Eab�2

9J
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