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Spin-wave approaches are explored for the spin-1 Heisenberg antiferromagnet with uniaxial single-ion
anisotropy in a field. In the spin-flop region a standard 1 /S expansion with canted quantization axes gives good
results for small anisotropies or near the saturated ferromagnetic boundary. It is shown analytically that the
formulation respects the Goldstone theorem through second order in 1 /S. For the square lattice case, we find
that in the quantum paramagnetic phase a two-boson formulation gives good results at large anisotropies. Near
the boundary of the quantum paramagnetic phase, neither approach gives good results and a more generalized
approach is needed.
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I. INTRODUCTION

Following the claimed discovery of a remarkable “super-
solid” behavior in solid 4He,1 a search has been proposed for
analogous behavior in spin systems.2–4 In fact using a
Matsubara-Matsuda transformation,5 one can transform di-
rectly from the relevant bosonic model to a lattice spin
model. The spin-1 /2 models are unrealistic, however, be-
cause they require the uniaxial exchange anisotropy to be too
large.3,6 Attention has therefore turned to spin-1 models and,
in particular, the spin-1 Heisenberg antiferromagnet with
uniaxial anisotropy in a magnetic field.

A number of magnetic materials have already been dis-
covered which belong in this class. They include weakly
coupled systems of linear chains such as CsNiCl3,7 with
weak axial anisotropy, and more complex materials such as
NENP �Ni�C2H8N2�2HO2�ClO4�� �Ref. 8� and NENC
�Ni�C2H8N2�2Ni�CN4�� �Ref. 9� with planar anisotropy. Re-
cently Zvyagin et al.10,11 have explored the excitation spec-
trum of DTN �NiCl2-4SC�NH2�2�, another chain system with
easy-plane anisotropy. None of these compounds appears to
have the right parameters to give a supersolid phase how-
ever.

The Hamiltonian of the model is

H = J�
�i,j�

�Si
xSj

x + Si
ySj

y + �Si
zSj

z� + �
i

�D�Si
z�2 − ShzSi

z� ,

�1�

where �i , j� denotes nearest-neighbor pairs of sites, D is the
single-ion anisotropy term, and � determines the uniaxial
exchange anisotropy while hz is the external magnetic field,
rescaled by a factor S equal to the magnitude of the spin at
each site. We shall set J=1 throughout this paper, unless it
appears explicitly in the formulas.

The spin-1 version of the model has been discussed in a
number of theoretical papers. Sengupta and Batista discussed
the square lattice case3 and the cubic lattice4 using the
stochastic series-expansion Monte Carlo method.12

Holtschneider and co-workers13–15 considered the classical
model on a square lattice, using Monte Carlo techniques
while Peters et al.16 treated the linear-chain model using

density-matrix renormalization-group methods. These au-
thors found that a supersolid or “biconical” phase should
exist over a range of magnetic fields for D�0 and ��1.
The model also exhibits other interesting phenomena such as
magnetization plateaus3,15,16 and a multicritical point.15,16

Roscilde and Haas17 used quantum Monte Carlo simulations
to study the model.

Our aim here is to investigate spin-wave approaches to
the problem. Spin-wave approaches to the simple Heisenberg
antiferromagnet �D=0,�=1� in a field have been exten-
sively discussed.18–23 The zero-field case �hz=0,�=1� has
been treated by Papanicolaou and Spathis24,25 and Oitmaa
and Hamer,26 who also carried out series-expansion studies
of the model on a square lattice. Other numerical studies of
the uniform case �D=0� include finite-cell calculations by
Yang and Mütter,27 a high-order perturbation series calcula-
tion by Zheng Weihong et al.,28 a coupled-cluster calculation
by Wong et al.,29 and exact diagonalization finite lattice cal-
culations for the square lattice by Lin and Emery.30 A
Schwinger boson mean-field calculation for the zero-field
case �hz=0� at large positive D has been carried out by Wang
and Wang.31

In this preliminary investigation we treat the general case
for arbitrary D and hz but maintain �=1, i.e., no exchange
anisotropy. This restriction rules out the most interesting
physical phenomena, unfortunately, such as a supersolid
phase and multicritical points but still allows for some very
interesting phase transitions. The restriction could be lifted
quite easily but exploration of the supersolid region would
require more elaborate and involved calculations.

The expected phase diagram for this case, derived from
spin-wave and other theoretical approaches, is shown in
Fig. 1 for the case of the square lattice. At large negative D
and hz=0, the model is in a standard antiferromagnetic �AF�
Néel phase, with the spins aligned in the z direction
�Sz= �1 on alternating sites�. At large positive D and hz=0,
there is a “quantum paramagnetic” �QPM� phase with Sz=0
at every site, so that all linear order parameters �S�� vanish
and only a quadratic order parameter such as Qz= � 2

3 − �Si
z�2�

is nonzero. When hz is very large, the system enters a satu-
rated ferromagnetic �FM� phase, with all spins aligned in the
z direction �Si

z=+1�.
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Finally, in between these three regions is a fourth phase,
the spin-flop �SF� phase with ferromagnetic order in the z
direction Mz �provided hz�0� and antiferromagnetic order in
the xy plane �MS

x �0, say�, which spontaneously breaks the
planar U�1� symmetry of the model. The Goldstone theorem
then requires that the system should exhibit a gapless Gold-
stone mode in this region. One of the issues to be explored in
this paper is whether a spin-wave treatment conforms with
the Goldstone theorem. The transitions between the AF
phase and FM or SF phase are expected to be first order
while the transition between the QPM and SF phases, and the
SF and FM phases, are expected to be second order.

The layout of the paper is as follows. In Sec. II, we shall
present a spin-wave treatment of the SF phase and show that
the Goldstone theorem is obeyed through second order in a
1 /S expansion. In Sec. III we shall discuss a spin-wave treat-
ment of the QPM phase and in Sec. IV the AF phase is
treated very briefly. Finally, in Sec. V our conclusions are
summarized.

II. SPIN-FLOP PHASE AT NONZERO hz

In the SF phase according to classical theory, the spins
will be ordered in a canted fashion as shown in Fig. 1, with
ferromagnetic order in the z direction and antiferromagnetic
order in the xy plane. We assume a bipartite lattice, and
choose quantization axes on the two sublattices A and B as
shown in Fig. 2, assuming that at zeroth order the spins are
in the xz plane, at a canting angle � to the x axis. With
respect to the new quantization axes �z� ,x��, the Hamiltonian
now takes the form

H = J�
�i,j�

�Si
ySj

y − �Si
xSj

x + Si
zSj

z�cos 2� + �i�Si
zSj

x − Si
xSj

z�sin 2��

+ D�
i
��Si

z�2sin2 � + �Si
x�2cos2 � +

�i

2
�Si

zSi
x

+ Si
xSi

z�sin 2�	 − Shz�
i

�Si
z sin � + �iSi

x cos �� , �2�

where

�i = 
+ 1, i � B

− 1, i � A .
� �3�

First, we follow the standard spin-wave procedure and intro-
duce boson creation and annihilation operators ai

† and ai by
means of a standard Holstein-Primakoff transformation32 so
that at each site i we replace

Si
z = S − ai

†ai,

Si
+ = �2S1 −

ai
†ai

4S
�ai + ¯ ,

Si
− = �2Sai

†1 −
ai

†ai

4S
� + ¯ , �4�

keeping only the leading terms in a 1 /S expansion. Through
second order in S, this results in a bosonic Hamiltonian,
given in Appendix A by Eq. �A1�.

Next, we perform a Fourier transformation

ak =� 1

N
�
m

eik·Rmam, �5�

leading to the momentum space version of Hamiltonian �A1�
given in Appendix A by Eq. �A2�.

Finally, we aim to diagonalize the Hamiltonian through
quadratic terms by means of a Bogoliubov transformation

ak = uk�k + vk�−k
† , �6�

where uk=cosh �k, vk=sinh �k, and �k=�−k.
Terms in the Hamiltonian must now be normal ordered

with respect to the ��k� vacuum using Wick’s Theorem,
which requires some algebra. It is then convenient to express
the results first in terms of combinations of the old operators
ak

† and ak,

H = NE0 + �NC:aQ + aQ
† :+ �

k
�Ak:ak

†ak:+
Bk

2
:ak

†a−k
†

+ aka−k:	 +
1

�N
�

1,2,3
	1+2−3−QD�1��:a1

†a2
†a3 + a3

†a2a1:�

+
1

�N
�

1,2,3
	1−2−3−QD�2��:a1

†a2a3 + a3
†a2

†a1:�
3

+ quartic terms, �7�

FIG. 1. Phase diagram for the square lattice, derived using spin-
wave and series expansions.
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FIG. 2. The quantization axes for two sublattices A and B, as-
suming that at zeroth order the spins are in the xz plane, at a canting
angle � to the x axis.
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where the colons indicate normal ordered products with re-
spect to the new ��k� vacuum and Q is the Néel momentum
��� ,�� for the square lattice�. The coefficient functions ap-
pearing here are listed in Appendix A.

The linear term in �:aQ+aQ
† :� indicates an instability, so

we must require that this term vanish, C=0, which implies
either cos �=0, i.e., �=� /2, corresponding to complete fer-
romagnetic order in the z direction; or else,

sin � =
hz

2
�1 −

�2T1 + T2�
4S

	��zJ + D�−
�2T1 + T2��5D + zJ�

4S

−
D

2S
+

zJ�− T1 + T3 + T4�
S

	−1

, �8�

where the quantities Ti, i= �1, . . . ,4� are contraction sums
defined in Appendix A which arise from quantum fluctua-
tions.

This condition determines the canting angle �. At leading
order in 1 /S, it simply gives the classical result. At next
order, quantum corrections due to T1, T2, T3, and T4 come in.

To diagonalize the quadratic terms using the Bogoliubov
transformation �6� we require

tanh 2�k =
2ukvk

uk
2 + vk

2 = −
Bk

Ak
�9�

and the contraction terms can now be expressed in terms of
the functions Ak and Bk �defined in Appendix A� as

T1 =
1

2N
�
k
Ak

�k
− 1� ,

T2 =
− 1

2N
�
k

Bk

�k
,

T3 =
1

2N
�
k

Ak
k

�k
,

T4 =
− 1

2N
�
k

Bk
k

�k
, �10�

where

�k = �Ak
2 − Bk

2 . �11�

The Hamiltonian now takes the final form

H = NE0 + �
k

�k�k
†�k +� S

2N
�
1–3

	1+2+3−Q��1
†�2

†�3
†

+ H.c.��1��1,2,3� +� S

2N
�
1–3

	1+2−3−Q��1
†�2

†�3

+ H.c.��2��1,2,3� + quartic terms, �12�

where E0 is given by Eq. �A3� and the symmetrized forms of
the three-particle vertex functions are

�1��1,2,3� =
1

12
�hz cos � − �5D + zJ�sin 2���u1u2v3

+ u1v2v3 + v1u2u3 + v1v2u3 + u1v2u3 + v1u2v3�

+
zJ

6
sin 2��
3�u3 + v3��u1v2 + v1u2�

+ 
1�u1 + v1��u2v3 + v2u3� + 
2�u2 + v2��u1v3

+ v1u3�� , �13�

�2��1,2,3� =
1

4
�hz cos � − �5D + zJ�sin 2���u1u2u3 + �u1v2

+ v1u2��u3 + v3� + v1v2v3� +
zJ

2
sin 2��
3�u3

+ v3��u1v2 + v1u2� + 
1�u1 + v1��u2u3 + v2v3�

+ 
2�u2 + v2��u1u3 + v1v3�� . �14�

The three-particle interaction terms have been discussed by
Osano et al.18 and Zhitomirsky and Chernyshev.22 They im-
ply that at strong magnetic fields hz the one magnon state
becomes unstable to spontaneous two-magnon decay.

A. Order parameters

The ferromagnetic order in the �original� z direction is
given by

Mz =
1

N��
i

Si
z�

0

=
1

N
�

i

��Si
z sin � + �iSi

x cos ���0 �15�

in terms of the new axes of Fig. 2. Through second order in
1 /S, this reduces to

Mz =
1

N
�

i

��S − ai
†ai�sin ��0=�S − T1�sin � . �16�

Similarly, the staggered magnetization in the x direction is
given by

MS
x =

1

N
�

i

��iSi
x�0=

1

N
�

i

��S − ai
†ai�cos ��0=�S − T1�cos � .

�17�

B. One-particle excitation spectrum and Goldstone
theorem

At leading order in the 1 /S expansion,

Ak = S�zJ�cos 2� + 
k sin2 �� + D�1 − 3 sin2 �� + hz sin �� ,

�18�

Bk = S�D − zJ
k�cos2 � , �19�

Using Eq. �8� Ak can be rewritten at leading order,

Ak = SzJ�1 + 
k� + S�D − zJ
k�cos2 � . �20�

Hence it is easily seen that as k→Q and 
k→−1, then
Ak−Bk→0 and �k→0 so that the Goldstone theorem is
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satisfied, and the one-particle excitation energy vanishes at
the Néel momentum Q, corresponding to spontaneous break-
down of the original U�1� symmetry.

Does the same result hold at higher orders in the 1 /S
expansion? The U�1� symmetry of the original Hamiltonian
is hidden in the spin-wave version �Eq. �7�� but nevertheless,
if the theorem is respected at leading order in the 1 /S expan-
sion, one would expect it also to be respected at higher or-
ders. Zhitomirski and Nikuni20 showed numerical evidence
that it was respected at second order for the case D=0. Here
we show analytically that the theorem holds to second order
in the general case. Since the proof is rather long, we rel-
egate it to Appendix B.

C. Singular behavior near hz,cC

It was shown by Zhitomirsky and Nikuni20 that at D=0
the contraction sum T1, and hence the magnetization, dis-
plays a logarithmic singularity as hz→hz,cC, the phase
boundary with the FM phase. Similarly in the general case, if
we calculate T1 in leading order, then near the phase bound-
ary we find

T1 �
�zJ + D�p

�zJ
ln� �2zJ

4�zJ + D�p	, p → 0, �21�

where p= �hz,cC−hz� /hz,cC.

D. Numerical results

We have computed values for the physical parameters as
function of D and hz to first and second orders in a 1 /S
expansion, setting S=1 and z=4 as appropriate for the square
lattice. First we consider the case D=0, considered previ-
ously by Zhitomirsky and Nikuni20,21 for the case S=1 /2.
Figure 3�a� shows the canting angle � as a function of hz
while Fig. 3�b� gives the ferromagnetic component of the
magnetization Mz and Fig. 3�c� the staggered component Ms

x.
Finally, Fig. 3�d� shows the transverse susceptibility

�T =
�Ms

x

�hz
. �22�

It can be seen that there is very little difference between the
first- and second-order results in this case, indicating that the
spin-wave results are quite accurate for D=0. As a calibra-
tion point, the spin-wave estimate for Ms

x at D=0 and hz=0
is 0.8034, to be compared with estimates 0.8039�4� from
high-order perturbation series28 and 0.767�4� from a finite-
lattice calculation.30 There is also little sign in the magneti-
zation Mz of the logarithmic singularity implied by Eq. �21�;
it is more obvious for the case S=1 /2.20 We find that Mz

increases monotonically to its saturation value at hz,cC. The
staggered magnetization Ms

x, by contrast, first increases
slightly as the quantum fluctuations decrease and then drops
away to zero at hz,cC. This behavior was previously noticed
by Zhitomirsky and Nikuni for the case S=1 /2.20

Figure 4 gives some similar results at a finite value of the
axial anisotropy D=1. Figure 4�a� shows the canting angle �,
and Figs. 4�b� and 4�c� the magnetizations Mz and Ms

x, as
functions of hz. The open squares in Figs. 4�b� and 4�c� are

series estimates at small hz, which agree well with the spin-
wave results. This time, a substantial difference can be seen
between first- and second-order results, illustrating the need
to go to second order. Otherwise, the qualitative behavior is
similar to that at D=0.

(b)(a)

(c) (d)

FIG. 3. Spin-wave calculations for the square lattice of �a� cant-
ing angle �; �b� magnetization Mz; �c� staggered magnetization MS

x;
and �d� transverse �staggered� susceptibility �t in the SF phase as
functions of hz, for the case D=0. Open circles: first-order results
and filled circles: second-order results.

(b)(a)

(c)

FIG. 4. Spin-wave calculations for the square lattice of �a� cant-
ing angle �; �b� magnetization Mz; and �c� staggered magnetization
Ms

x as functions of hz, for the case D=1. Conventions as in Fig. 3.
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Figure 5�a� shows the single-particle dispersion relation at
D=0 and hz=1 and Fig. 5�b� the relation at D=0 and hz=8.
It can be seen that at finite hz a finite-energy gap opens up
at k=0 and becomes larger with hz. The gap at Q= �� ,��
remains zero at all hz, however, in accordance with the
Goldstone theorem. �Note that the point graphed nearest to
�� ,�� is at a slightly lower momentum. The first-order result
explicitly vanishes at �� ,��; the second-order calcula-
tions become singular in that neighborhood, as shown in
Appendix B, so the calculated number is a little high�.

Figure 6 shows the spin-wave velocity c as a function of
hz at D=0. It can be seen that the spin-wave velocity �the
slope of the dispersion relation at k=Q� goes to zero as
hz→hz,cC, and correspondingly the dispersion relation be-
comes quadratic in that neighborhood, as seen in Fig. 5�b�.

If we assume that the hydrodynamic relation33 holds

�Tc2

�S
= 1, �23�

then the spin stiffness �S will vanish along with the spin-
wave velocity c as hz→hz,cC. This argument has recently
been verified by Chernyshev and Zhitomirsky23 for the case
S=1 /2 and D=0.

Finally, Fig. 7 shows the staggered magnetization Ms
x as a

function of D for zero magnetizatic field hz, together with
earlier series expansion estimates from Oitmaa and Hamer.26

It can be seen that the series and spin-wave estimates agree
quite well at small D but the spin-wave results fail to repro-
duce the plunge in the magnetization toward the critical point
at D�5.6 marking the transition to the QPM phase.

III. QUANTUM PARAMAGNETIC PHASE

Here we adopt a formalism specific to S=1. As D→�,
the ground state is �0�= ��Si

z=0, all i��, so we take this as
our vacuum state. We then introduce bosonic creation and
annihilation operators bi,�

† and bi,�, at each site i �for states
Sz= �1, respectively�, obeying bi,��0�=0. The correspond-
ing Holstein-Primakoff transformation is

Si
z = ni,+ − ni,−,

Si
+ = �2�bi,+

† Pi + Pibi,−� ,

Si
− = �2�bi,−

† Pi + Pibi,+� , �24�

where ni,�=bi,�
† bi,� and Pi=�1−ni,+−ni,−. This transforma-

tion satisfies the correct spin algebra in the physical subspace
and forbids transitions from inside to outside it. Expanding

(b)(a)

FIG. 5. Spin-wave dispersion relations for the
square lattice at �a� D=0 and hz=1; and
�b� D=0 and hz=8. Conventions as for
Fig. 3.

FIG. 6. Spin-wave velocity c for the square lattice as a function
of hz at D=0. First-order spin-wave results only.

FIG. 7. Staggered magnetization MS
x for the square lattice in the

SF phase as a function of D at hz=0. Points with error bars are
series estimates �Ref. 26� and filled circles are spin-wave results.
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the square root to first order in ni,++ni,−, we find

H = D�
i

�ni,+ + ni,−� − hz�
i

�ni,+ − ni,−� + J�
�i,j�

�ni,+ − ni,−�

��nj,+ − nj,−� + ��bi,+
† + bi,−��bj,+

† + bj,−� + H.c.�

−
1

2 �
�=�

��bi,�
† �ni,+ + ni,−� + �ni,+ + ni,−�bi,−��

��bj,−�
† + bj,�� + H.c.�� , �25�

where we have “linearized” �Si
z�2=ni,+ni,−, as appropriate to

the physical subspace.
Next, use Fourier transformation

bk,� =� 1

N
�

n

eik·Rnbn,� �26�

to obtain

H = �
k
� �

�=�

�D + zJ − �hz�bk,�
† bk,� + zJ
k�bk,+

† b−k,−
†

+ H.c.�	 +
zJ

4N
�

1,2,3,4
�	1+2−3−4� �

�=�

b1,�
† b2,�

† b3,�b4,��2
2−4

− 
4 − 
1 − 
3 − 
2� − 2b1,+
† b2,−

† b3,+b4,−

��
2−4 + 
1−3 + 
4 + 
1 + 
3 + 
2�	 − 	1+2+3−4

� ��b1,+
† b2,+

† b3,−
† b4,+ + H.c.��2
3 + 
2 + 
1�

+ �b1,+
† b2,−

† b3,−
† b4,− + H.c.��2
1 + 
2 + 
3���

+ �six-body terms� . �27�

Then perform a Bogoliubov transformation

�k,� = ukbk,� + vkb−k,�
† �28�

to obtain

H = NE0 + �
k

��k,+
† �k,+ + �k,−

† �k,−���uk
2 + vk

2�Ak + 2ukvkBk�

− �
k

��k,+
† �−k,−

† + �k,+�−k,−���uk
2 + vk

2�Bk + 2ukvkAk�

+ hz�
k

��k,−
† �k,− − �k,+

† �k,+� , �29�

where

E0 = 2�DT1 + zJ�T3 − T4�� + zJ�T3
2 − T4

2 + 2�T4 − T3��3T1

− T2�� , �30�

Ak = D + zJ�
k + 3�T4 − T3� + 
k�T3 + T2 − 3T1�� , �31�

Bk = − zJ�
k − T4 − T3 − 
k�T4 + T2 + 3T1�� �32�

�using a notation conforming with the previous section� and
the contraction sums T1 , . . . ,T4 are defined in Eq. �A9�.

To diagonalize the quadratic terms in H, we require

tan 2�k =
2ukvk

uk
2 + vk

2 = −
Bk

Ak
, �33�

whence through second-order terms

H = NE0 + �
k

��k��k,+
† �k,+ + �k,−

† �k,−�

+ hz��k,−
† �k,− − �k,+

† �k,+�� , �34�

where

�k,� = �Ak
2 − Bk

2 � hz �35�

and the contraction sums T1 , . . . ,T4 are once again given by
Eq. �10�.

Note that hz plays a trivial role in this phase, producing a
simple Zeeman energy shift proportional to Si

z. The single-
particle excitation energy �k at hz=0 is gapped, with the
minimum gap occurring at k=Q and 
k=−1. At leading
order, we find �Q=�D2−2zJD. At finite hz the one-particle
excitation energy with Sz=+1 is

�Q
+1 = �Q − hz. �36�

This vanishes at

hz,cD = �Q = �D�D − 2zJ� , �37�

marking the boundary of the QPM phase. Note that the en-
ergies of all other excited states with positive total Sz vanish
at the same point, indicating that the transition is second
order. Note also that the ground state still has Sz=0 at all hz
values until the transition point hz,cD is reached. At hz=0, the
critical point lies at D=2zJ, in leading order. At second or-
der, a numerical calculation is required to calculate �k.

A. Order parameters

The linear order parameters �Si
��0 are all zero in this

“paramagnetic” phase.
A convenient second-order parameter is

Qz =
2

3
− ��Si

z�2�=
2

3
−

1

N
�

i

�ni,+ + ni,−�=21

3
− T1� .

�38�

B. Numerical results

We have calculated physical quantities as functions of D
for zero magnetic field hz, both for the first-order theory, and
the self-consistent second-order theory, for the square lattice.
Figure 8 shows the ground-state energy per site as a function
of D. It can be seen that the spin-wave results are accurate
enough at large D but deviate from the series estimates at
smaller D, indicating the need for higher-order corrections.

Figure 9 shows the energy gap at Q= �� ,�� as a function
of D, along with perturbation series results from Oitmaa and
Hamer.26 It can be seen that the second-order spin-wave es-
timates agree well with the series estimates at large D, but
run too high at smaller D, while the first-order results are too
low, as compared with the estimate Dc�5.47 of Wang and
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Wang,31 or the series estimates which indicate Dc�5.6, con-
sistent with the Monte Carlo result Dc=5.65�2� obtained by
Roscilde and Haas.17

Figure 10 shows the quadratic order parameter QZ as a
function of D. Neither spin-wave nor series estimates show
any clear sign of the QPM phase boundary here. As usual,
the order parameter would be expected to dive sharply very
near the boundary.

IV. NÉEL PHASE

A spin-wave theory for this phase in the case hz=0 was
briefly considered by Oitmaa and Hamer,26 and the effect of
the magnetic field hz is again rather trivial in this case. We
shall use their formulation here. The initial Hamiltonian H,
Eq. �1�, is expressed in terms of boson operators ai and bj on
sublattices A and B via a Dyson-Maleev transformation,

A:�Si
z =S − ai

†ai,

Si
+ =�2S�1 − ai

†ai/2S�ai,

Si
− =�2Sai

†,
� �39�

B:�Sj
z =bj

†bj − S ,

Sj
+ =�2Sbj

†�1 − bj
†bj/2S� ,

Sj
− =�2Sbj ,

� �40�

followed by a Fourier transformation

ai =� 2

N
�
k

e−ik·Riak, bj =� 2

N
�
k

e−ik·Rjbk, �41�

giving

H = −
1

2
NS2�zJ − 2D� + zJS�

k
�ak

†bk
† + akbk�
k

+ �S�zJ − 2D� + D��
k

�ak
†ak + bk

†bk�

−
zJ

N
�

1,2,3,4
	1−2−3+4�2
3−4a1

†a2b3
†b4 + 
4a1

†a2a3a4

+ 
1a1
†b2

†b3
†b4� +

2D

N
�

1,2,3,4
	1+2−3−4�a1

†a2
†a3a4 + b1

†b2
†b3b4�

− hz�
k

�ak
†ak − bk

†bk� , �42�

where for the square lattice


k =
1

z
�
nn

eik·� =
1

2
�cos kx + cos ky� . �43�

To diagonalize the quadratic part of the Hamiltonian, we use
a standard Bogoliubov transformation

FIG. 8. Ground-state energy per site for the square lattice in the
QPM phase as a function of D at hz=0. Points with error bars are
series estimates �Ref. 26�; short-dashed line: first-order spin-wave;
and long-dashed line: second-order spin-wave results.

FIG. 9. Energy gap for the square lattice in the QPM phase as a
function of D at hz=0. Conventions as in Fig. 8.

FIG. 10. Quadratic order parameter Qz for the square lattice in
the QPM phase as a function of D. Conventions as in Fig. 8.
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ak = ukAk − vkBk
† ,

bk = − vkAk
† + ukBk �44�

with uk=cosh �k and vk=sinh �k.
This gives, after some algebra,

H = NE0 + �
k

��k
AAk

†Ak + �k
BBk

†Bk� + �
k

Vk�Ak
†Bk

† + AkBk�

+ quartic terms, �45�

where

E0 = − S2 zJ

2
− D� + S�zJ − D�T1 − zJST4 −

zJ

2
�T1 − T4�2

+ 2DT1
2, �46�

�k
A,B = �zJ�S − T1 + T4� − D�S − 4T1��cosh 2�k − zJ�S − T1

+ T4�
k sinh 2�k � hz, �47�

Vk = zJ�S − T1 + T4�
k cosh 2�k − �zJ�S − T1 + T4�

− D�S − 4T1��sinh 2�k. �48�

Diagonalization requires

tanh 2�k =
Q
k

P
, �49�

where

P = zJ�S − T1 + T4� − D�S − 4T1� ,

Q = zJ�S − T1 + T4�
k. �50�

Then

H = NE0 + �
k

��k
AAk

†Ak + �k
BBk

†Bk� �51�

with �k
A,B=�k�hz,

�k = �P2 − �Q
k�2. �52�

A. Phase boundaries

At leading order, we have that the ground-state energy in
the Néel phase is

E0
Neel = −

1

2
S2�zJ − 2D� �53�

while in the FM phase,

E0
FM =

1

2
S2�zJ + 2D − hz� . �54�

These coincide at

hz,cA = zJ , �55�

which marks the first-order transition between the two
phases at this order. At second order, the Néel results are

modified and the transition point must be determined nu-
merically. The results are shown in the phase diagram in
Fig. 1 for the square lattice case, where it can be seen that the
FM boundary lies slightly above the first-order estimate
hz,cA=4J.

The minimum-energy gap at k=0 is

�k
+ = S��D2 − 2zJD� �56�

in leading order. This vanishes at hz=�D2−2zJD, which
would mark the limit of the Néel phase at small D, except
that the spin-flop ground-state energy falls below that of the
Néel energy before that indicating a first-order transition. A
numerical calculation of the boundary line hz,cB between the
Néel and spin-flop phases is also shown in Fig. 1.

B. Order parameters

The staggered magnetization in the z direction

Mi
z =

1

N��
i�A

Si
z − �

j�B

Sj
z�

0

=S −
1

N
�
k

�ak
†ak + bk

†bk�0

=S − T1 �57�

up to second order in 1 /S. This remains independent of hz up
to the transition point.

V. SUMMARY AND CONCLUSIONS

We have explored some spin-wave approaches to the
spin-1 model given in Eq. �1�, using a different approach in
each phase. In the Néel antiferromagnetic phase we use a
standard Dyson-Maleev approach and the effect of the mag-
netic field is almost trivial, so we need not consider this
phase further.

In the spin-flop phase we have used a Holstein-Primakoff
transformation and a standard 1 /S expansion approach,
choosing our quantization axes in canted directions on the
two sublattices as shown in Fig. 2, to match the expected
classical configuration. We have shown analytically that the
Goldstone theorem is respected in this formulation through
second order in 1 /S, provided each quantity is strictly ex-
panded in powers of 1 /S. The expansion converges well, and
is accurate, for small D. It will also be accurate �at second
order� near the ferromagnetic boundary Hz,cC, where the
quantum fluctuations die away.

The results are not accurate, however, at large D near the
QPM phase boundary. This is not surprising, perhaps, since
the QPM phase does not exist in the classical �large S� limit.
Inclusion of higher order terms might help to fix the prob-
lem, but they will be hard to calculate in a consistent fashion,
so that we conclude that in this region the 1 /S expansion is
not very useful.

In the quantum paramagnetic phase we have used a dif-
ferent approach, where the vacuum state is taken as that with
Sz=0 at every site and a pair of Holstein-Primakoff boson
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fields are introduced to describe the excitations to Sz= �1
states. This approach gives good results at large positive D,
but is again inaccurate at smaller D, near the QPM phase
boundary.

It has been suggested34 that these problems might be over-
come in a “generalized” spin-wave approach in which a uni-
tary transformation between the three S=1 basis states is
made to establish an optimal vacuum state before the trans-
formation to boson fields is performed. The Schwinger boson
mean-field approach of Wang and Wang31 is an approach of
this sort and certainly it gives much better results in the
region of the phase boundary.

The calculations in this paper have been carried out for
the special case of uniform exchange, �=1. This restriction
could easily be lifted but to explore the possibility of biconi-
cal or supersolid phases using the 1 /S expansion would re-
quire some rather complicated and delicate calculations.
Again, a generalized spin-wave approach might be more use-

ful. As a final technical note, we have chosen to use the
Holstein-Primakoff formalism in this paper to maintain an
explicitly Hermitian Hamiltonian but a Dyson-Maleev trans-
formation might give simpler results and less singular behav-
ior, as is often the case.
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APPENDIX A

The bosonic equivalent of Hamiltonian �2� is

H = N�S2D sin2 � −
zJ

2
cos 2� − hz sin ��	 +

SD

2
cos2 � + �

i

�i�ai + ai
†��S

2

S��zJ + D�sin 2� − hz cos �� −

D

2
sin 2��

+ �
i

aiai
†
S�zJ cos 2� + hz sin � + D�− 2 + 3 cos2 ��� +

D

2
�2 − 3 cos2 ��� + �

i

�ai
2 + ai

†2��4S − 1�
D

8
cos2 � − �

�i,j�
�aiaj

+ ai
†aj

†�SJ cos2 � + �
�i,j�

�aiaj
† + ai

†aj�SJ sin2 � + �
i

�i�ai
†2ai + ai

†ai
2��S

2
�hz

4
cos � −

1

4
�5D + zJ�sin 2�	 − �

i

�ai
†3ai

+ ai
†ai

3�
D

4
cos2 � + �

�i,j�
�i�ai

†ai�aj + aj
†��2J�S

2
sin 2� − �

i

ai
†2ai

2D

2
�3 cos2 � − 2� − �

i

�ai
†aiaj

†aj�J cos 2� + �
�i,j�

�ai
†ai

2aj

+ ai
†ai

†2aj + aj
†ai

†2ai + aj
†ai

2ai�
J

4
cos2 � − �

�i,j�
�ai

†2aiaj + ai
†aj

†aj
2 + aj

†ai
†ai

2 + aj
†2aiai�

J

4
sin2 � + terms of O�S−1/2� . �A1�

Next, we perform a Fourier transformation �5�, to obtain a momentum space version of the Hamiltonian

H = N�S2D sin2 � −
zJ

2
cos 2� − hz sin ��	 +

SD

2
cos2 � +�NS

2
�aQ + aQ

† �
S��zJ + D�sin 2� − hz cos �� −
D

2
sin 2��

+ �
k

ak
†ak
S�zJ cos 2� + hz sin � + D�− 2 + 3 cos2 ��� +

D

2
�2 − 3 cos2 ��� + �

k
�aka−k + ak

†a−k
† ���4S − 1�

D

8
cos2 �

−
zJ

2
S
k cos2 �	 + �

k

�ak
†ak�SzJ
k sin2 � +

1
�N

�
1,2,3

�a1
†a2

†a3 + a3
†a2a1�	1+2−3−Q�S

2
�hz

4
cos � −

1

4
�5D + zJ�sin 2�	

+
1

�N
�

1,2,3
�a1

†a2a3 + H.c.�zJ
3	1−2−3−Q�S

2
sin 2� −

1

N
�
1–4

a1
†a2

†a3a4
2−4	1+2−3−4
zJ

2
cos 2�

−
1

N
�

1,2,3,4
a1

†a2
†a3a4	1+2−3−4

D

2
�3 cos2 � − 2� −

1

N
�
1–4

�a1
†a2

†a3
†a4 + H.c.�	1+2+3−4

D

4
cos2 � +

1

N
�
1–4

�a1
†a2a3a4

+ H.c.�
4	1−2−3−4
zJ

4
cos2 � −

1

N
�
1–4

�a1
†a2a3a4 + H.c.�
4	1+2−3−4

zJ

4
sin2 � + terms of O�S−1/2� , �A2�

where z is the coordination number of the bipartite lattice, Q= �� ,�� is the Néel momentum, and 
k is the structure factor

k= 1

z �	eik·� �for the square lattice 
k= �cos kx+cos ky� /2�.
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After the Bogoliubov transformation �6�, the coefficient functions in Eq. �7� are

E0 = S2D sin2 � −
zJ

2
cos 2� − hz sin �� + S
D

2
cos2 � + T1�zJ cos 2� + hz sin � + D�− 2 + 3 cos2 ��� + T2D cos2 �

− T4zJ cos2 � + T3zJ sin2 �� + T1D1 −
3

2
cos2 �� − T2

D

4
cos2 � + �T2

2 + 2T1
2�D1 −

3

2
cos2 �� −

3

2
T1T2D cos2 � − �T4

2 + T1
2

+ T3
2�

zJ

2
cos 2� + �2T1T4 + T2T3�

zJ

2
cos2 � − �T2T4 + 2T1T3�

zJ

2
sin2 � , �A3�

C =�S

2

S��zJ + D�sin 2� − hz cos �� −

D

2
sin 2�� + �T2 + 2T1��hz

4
cos � −

1

4
�5D + zJ�sin 2�	 + �− T1 + T3 + T4�zJ sin 2� ,

�A4�

Ak = S��zJ cos 2� + hz sin � + D�− 2 + 3 cos2 ��� + zJ
k sin2 �� +
D

2
�2 − 3 cos2 �� + 2T1D�2 − 3 cos2 �� −

3

2
T2D cos2 �

− �T1 + T3
k�zJ cos 2� + �2T4 + T2
k�
zJ

2
cos2 � − �T3 + T1
k�zJ sin 2� , �A5�

Bk = �4S − 1�
D

4
cos2 � − 
kSzJ cos2 � + T2D�2 − 3 cos2 �� −

3

2
T1D cos2 � − T4
kzJ cos 2� + �T3 + 2T1
k�

zJ

2
cos2 �

− �T4 + T2
k�
zJ

2
sin2 � , �A6�

D�1� =�S

2
�hz

4
cos � −

1

4
�5D + zJ�sin 2�	 , �A7�

D�2� = zJ�S

2
sin 2� . �A8�

Here T1, T2, T3, and T4 are contraction sums arising from the
normal ordering process,

T1 =
1

N
�
k

vk
2 ,

T2 =
1

N
�
k

ukvk,

T3 =
1

N
�
k

vk
2
k,

T4 =
1

N
�
k

ukvk
k, �A9�

and give corrections to the classical results due to quantum
fluctuations.

APPENDIX B

Verification of Goldstone theorem

First, use Eq. �8� to eliminate the magnetic field hz in
favor of the angle �, being careful to expand strictly to next-
to-leading order in 1 /S,

hz = 2 sin ��zJ + D��1 −
D

S
sin ��1 + 4T1 + 2T2�

+
2zJ

S
sin ��T3 + T4 − T1�	 . �B1�

Then at 
k→−1 we find

Ak = �S�zJ + D� −
D

2
	cos2 � − T1�2D + zJ�cos2 �

+ T2� cos2 �

2
�D − zJ� − 2D	 + T3zJ cos2 �

+ T4zJ�2 − cos2 ���Ak
0 + 	Ak, �B2�

where Ak
0 is the O�S� term, and 	Ak the term of O�1�, and

similarly
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Bk = �S�zJ + D� −
D

4
	cos2 � − T13

2
D + zJ�cos2 �

+ T2�D�2 − 3 cos2 �� +
zJ

2
sin2 �	 + T3

zJ

2
cos2 �

+ T4zJ1 −
5

2
sin2 ��

�Bk
0 + 	Bk. �B3�

Then to O�1�

�k = �k
0 + 	�k, �B4�

where �k
0 =��Ak

0�2− �Bk
0�2 and

	�k =
1

2�k
0 �Ak

0	Ak − Bk
0	Bk� ,

=
S�zJ + D�

2�k
0 
D cos2 �−

1

4
−

T1

2
+

7

2
T2� − 4DT2

+ zJ cos2 �T3

2
−

7

2
T4� + zJ−

T2

2
+

7

2
T4�� . �B5�

If we express T1 , . . . ,T4 as integrals as in Eq. �10�, then this
expression reduces to

	�k =
S2�zJ + D�

2�k
0N

cos2 � sin2 2��
q

�D − zJ
q�2

�q
0 . �B6�

Now since �k
0 →0 as k→Q the term 	�k actually diverges

like �k−Q�−1 in this limit. But there are further contributions
to the single-particle energy at this order, coming from the
perturbation diagrams, Figs. 11�a� and 11�b�. Their contribu-
tions are given by

��k
�a� =

S

N
�
q
� ��2��q,k3,k��2

�k
0 − �q

0 − �k3

0 �
k3=k−q+Q

, �B7�

��k
�b� = − 9

S

N
�
q
� ��1��q,k,k3��2

�k
0 + �q

0 + �k3

0 �
k3=−k−q+Q

, �B8�

where �1� and �2� are given by Eqs. �13� and �14�, respec-
tively. Now these terms also diverge as k→Q, because in
that limit uk�−vk��k−Q�−1. Explicit calculation shows
that through terms O�1� in an expansion of powers of
�k��= �k−Q�,

��k
�a� + ��k

�b� = −
S2�zJ + D�

2�k
0N

cos2 � sin2 2� � �
q

�D − zJ
q�2

�q
0 ,

�B9�

exactly canceling the term 	�k of Eq. �B6�. Hence the total
excitation energy

�k = �k + ��k
�a� + ��k

�b� �B10�

vanishes as k→Q, to this order is 1 /S, in accordance with
the Goldstone theorem.
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