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We study a nanomagnet that exhibits spin tunneling and is free to rotate about its anisotropy axis. Hamil-
tonian of a rotated two-state spin system is derived and exact low-energy eigenstates of the nanomagnet that
are superpositions of spin and rotational states are obtained. We show that parameter �=2��S�2 / �I�� deter-
mines the ground state of the magnet. Here �S is the spin, I is the moment of inertia, and � is the tunnel
splitting. The ground-state magnetic moment is zero at ���c= �1−1 / �2S�2�−1 and nonzero at ���c. At �
→� the spin of the nanomagnet localizes in one of the directions along the anisotropy axis.
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I. INTRODUCTION

This paper deals with quantum spin states of a nanomag-
net that is free to rotate. Free magnetic clusters in beams
have been studied in the past.1–6 They exhibit a number of
interesting phenomena some of which have been attributed
to the interaction between spin and mechanical degrees of
freedom. Same is true for nanomagnets confined within solid
nanocavities.7 General analytical solution for the rotational
quantum levels of a rigid body does not exist.8 Spin degree
of freedom further complicates the problem. However, as we
shall demonstrate below, the exact eigenstates and exact en-
ergy levels can be obtained analytically for a nanomagnet
that, due to a large magnetic anisotropy, can be described as
a two-state spin system and is free to rotate about its aniso-
tropy axis.

Very small magnets exhibit quantum tunneling between
spin-up and spin-down magnetic states.9 The prospect of
using them as qubits10 has inspired recent experiments
with molecular nanomagnets deposited on surfaces11–14 and
with single magnetic molecules bridged between metallic
electrodes.15–19 At first glance, partial or total decoupling of a
nanomagnet from the environment appears desirable to
achieve low decoherence. It was noticed,20,21 however, that
such a decoupling may prohibit spin tunneling altogether due
to conservation of the total angular momentum, J=S+L,
with S being the total spin of the nanomagnet and L being its
orbital angular momentum. The latter is due to both electrons
and nuclei. In our treatment it is associated with the me-
chanical rotation of the nanomagnet. This situation can be
relevant to all experiments with nanomagnets in which they
maintain some degree of freedom with respect to rotations.

In this paper we demonstrate that the ground state of a
nanomagnet that is free to rotate depends crucially on the
parameter �=2��S�2 / �I��. Here �S is the spin, I is the mo-
ment of inertia, and � is the tunnel splitting arising from
quantum tunneling between spin-up and spin-down states.
Qualitatively, this can be understood from the following ar-
gument. � /2 is the energy gain due to quantum delocaliza-
tion in the spin space. However, to conserve the total angular
momentum J in a free nanomagnet, spin transitions between
spin-up and spin-down states must be accompanied by rota-
tions, with a rotational energy of order ��S�2 / I. If � is large,

rotations that are needed to conserve J require more energy
than the energy gained due to spin tunneling. In other words,
if the nanomagnet is very light, it cannot absorb the change
in the angular momentum. In this case the spin cannot tunnel
and localizes in one of the up/down states.

Note that rotational states of molecules have been studied
from the inception of quantum mechanics22,23 until present
days.24 These studies either require computation of spin-orbit
constants or they choose a symmetry-based Hamiltonian
with phenomenological constants that are later determined
from experiment. The approach developed in this paper dif-
fers from the conventional physics of molecules in that we
consider tunneling of a large spin and we treat nanomagnet
as a mechanically rigid two-state spin system. Under this
assumption the low-energy rotational spectra of the nano-
magnet are expressed entirely in terms of the parameters S,
�, and I. In that low-energy limit all unknown constants of
spin-orbit interactions are absorbed into the tunnel splitting
�. The latter, as well as S and I, can be independently mea-
sured, thus, providing a perfect playground for comparison
between theory and experiment.

The structure of the paper is as follows. The origin of
tunnel splitting for a large spin is reviewed in Sec. II. Spin-
rotation coupling for a two-state spin system is introduced in
Sec. III. The effect of the magnetic field is studied in Sec. IV.
Section V contains conclusions and suggestions for experi-
ment.

II. TUNNELING OF A LARGE SPIN

We begin with a nanomagnet of a fixed-length spin S,
rigidly embedded in a solid. The general form of the spin
Hamiltonian that corresponds to strong easy-axis magnetic
anisotropy is

ĤS = Ĥ� + Ĥ�, �1�

where Ĥ� commutes with Sz and Ĥ� is a perturbation that
does not commute with Sz. Presence of the magnetic aniso-
tropy axis means that the ��S� eigenstates of Sz are degen-

erate ground states of Ĥ�. Operator Ĥ� slightly perturbs the
��S� states, adding to them small contributions of other �mS�
states. We shall call these degenerate normalized perturbed
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states �	�S�. Physically they describe the magnetic moment
of the nanomagnet looking in one of the two directions along
the anisotropy axis. Full perturbation theory with account of

the degeneracy of ĤS provides quantum tunneling between
the �	�S� states. The ground state and the first excited state
are even and odd combinations of �	�S�, respectively,


− =
1
�2

��	S� + �	−S�� ,


+ =
1
�2

��	S� − �	−S�� . �2�

They satisfy

ĤS
� = E�
� �3�

with

E+ − E− 	 � �4�

being the tunnel splitting. The latter is typically many orders
of magnitude smaller than the distance to other spin energy
levels, making the two-state approximation very accurate at
low energies. For example,

ĤS = − DSz
2 + dSy

2 �5�

with d�D, which is the case of Fe8 molecular nanomagnet,
one obtains25 in the limit of large S

� =
8S3/2

�1/2 
 d

4D
�S

D . �6�

The distance to the next excited spin energy level is
�2S−1�D, which is very large compared to �.

Since the low-energy spin states of the nanomagnet are
superpositions of �	�S�, it is convenient to describe such a
two-state system by a pseudospin 1/2. Components of the
corresponding Pauli operator � are

x = �	−S��	S� + �	S��	−S� ,

y = i�	−S��	S� − i�	S��	−S� ,

z = �	S��	S� − �	−S��	−S� . �7�

The projection of ĤS onto �	�S� states is

Ĥ = 
m,n=	�S

�m�ĤS�n��m��n� . �8�

Expressing �	�S� via 
� according to Eq. �2�, it is easy to
see from Eq. �3� that

�	�S�ĤS�	�S� = 0, �	−S�ĤS�	S� = − �/2. �9�

With the help of these relations one obtains from Eq. �8�

Ĥ = − ��/2�x. �10�

To conclude this section, we notice that our spin Hamiltonian

ĤS does not possess the full invariance with respect to rota-

tions. Consequently, 
� should not be the eigenstates of J. A
closed system consisting of a spin embedded in a solid and
the solid itself does possess the full rotational invariance.
Through conservation of the total angular momentum �spin
+crystal� the spin states become entangled with elastic
twists.26,27 The spin ground state, however, remains un-
changed as long as the nanomagnet is rigidly coupled with
the solid. This situation is going to change as we turn to a
nanomagnet that is free to rotate.

III. SPIN-ROTATION COUPLING

So far we have not considered mechanical rotations of the
nanomagnet. Rotation by angle � about the anisotropy axis Z
transforms the spin Hamiltonian into27

ĤS� = e−iSz�ĤSeiSz�. �11�

Noticing that

Sz�	�S� � Sz��S� � � S�	�S� , �12�

it is easy to project Hamiltonian �11� onto 	�S. Simple cal-
culation yields the following generalization of Eq. �10�:

Ĥ� = 
m,n=	�S

�m�ĤS��n��m��n�

=−
�

2
�e−2iS�+ + e2iS�−�

=−
�

2
�cos�2S��x + sin�2S��y� , �13�

where �= 1
2 �x� iy�. The argument 2S� in the above ex-

pressions is nontrivial. It does not correspond to a simple
rotation in a spin space but is related to the tunneling of a
spin in which Sz changes by 2S.

The full Hamiltonian of a nanomagnet rotating about its
anisotropy axis is

Ĥ =
��Lz�2

2I
−

�

2
�x cos�2S�� + y sin�2S��� �14�

with Lz=−i�d /d��. Notice that for a freely rotating nano-
magnet one can no longer separate the spin Hamiltonian
from mechanical rotation, making the problem nonperturba-
tive. We are now in a position to find the eigenstates of the
rotating magnet. It is easy to check that Hamiltonian �14�
commutes with Jz=Lz+Sz and that their common eigenstates
are

�
J� =
1
�2

�CS�	S� � �J − S�l + C−S�	−S� � �J + S�l� .

�15�

Here J	mJ while index l denotes states in the mechanical
space, with

�m�l 	 �mL� = exp�imL�� . �16�

Solution of Ĥ�
J�=EJ�
J� gives the following expression
for the energy levels:
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EJ� =
�

2
�
1 +

J2

S2��

2
��1 +

J2

S2�2� , �17�

where

� 	 2��S�2/�I�� . �18�

For J�0 each state is degenerate with respect to the sign of
J. For J=0,1 ,2 , . . . coefficients C� are given by

CS = �1 + �J/�S2 + ��J�2,

C−S = � �1 − �J/�S2 + ��J�2, �19�

where � correlates with � in Eq. �17�.
At J�mL�S, Eq. �17� gives the energy of the mechanical

rotation, ��mL�2 / �2I�. At small � the ground state and the
first excited state correspond to J=0,

E0� =
�2S2

2I
�

�

2
. �20�

Here the first term is the energy of the rotation with mL
= �S. For a nanomagnet rigidly coupled to an infinite mass
one has I→� and the energy of the rotation goes to zero. In
this case one recovers from Eq. �20� the energies, �� /2, of
the tunnel-split spin states in a macroscopic crystal. As �
increases, the ground state switches to higher J. The value of
� at which the ground state changes from EJ−1 to EJ satisfies

EJ−1,−��J� = EJ,−��J� . �21�

Solution of this equation for J=1,2 , . . . ,S gives

�J = �1 −
1

�2S�2�−1/2�1 −
�2J − 1�2

�2S�2 �−1/2

. �22�

For

� � �1 = �1 − 1/�2S�2�−1, �23�

the ground state corresponds to J=0 and C�S=1. This is a
critical value of � that separates zero and nonzero spin states
of the nanomagnet. At �=�1 the transition to the J=1
ground state takes place. At �=�2 the ground state changes
from J=1 to J=2 and so on. For any ���S, with �S defined
as �J of Eq. �22� at J=S, the ground state always corre-
sponds to J=S. For example, S=10 one obtains �1=1.0025
and �10=3.2066. In the limit of S→� one has �J→1 for J
�S, and the crossover between zero and nonzero spin can be
interpreted as a quantum phase transition. In this limit �
→0 �see Eq. �6�� so that the condition �=�1 can be main-
tained only if I→�. For � given by Eq. �6� the crossover
value of the moment of inertia grows exponentially with S,

Ic =
�1/2��2S�2 − 1�

16S3/2 
4D

d
�S�2

D
. �24�

Our theory, however, is restricted to a monodomain mechani-
cally rigid magnet and, therefore, it applies only to small
sizes.

The dependence of the ground-state energy on � for S
=10 is shown in Fig. 1. While this dependence is smooth, the

derivative of the ground-state energy on � shows steps at the
critical values of � given by Eq. �22�. In the limit of �→0
the ground-state energy is −� /2. This is the gain in energy
due to spin tunneling between �	�S� states in an infinitely
heavy particle. In the limit of ��1 �light particle� J=S and
according to Eq. �17� the ground-state energy approaches
zero as −� / �4��. This corresponds to the gradual localiza-
tion of the spin in one of the �	�S� states.

To compute the magnetic moment we notice that Lz in our
formalism describes the mechanical rotation of the nanomag-
net as a whole, not the orbital states of the electrons. Conse-
quently, the magnetic moment of a free magnet should be
entirely due to its spin,

� = − g�B�
J�Sz�
J� = − g�BS
�J

�S2 + ��J�2
. �25�

Here g is the spin gyromagnetic factor. The minus sign re-
flects negative gyromagnetic ratio, �=−g�B /�, for the elec-
tron spin. If the ground state corresponds to J=0, spin-up
and spin-down states contribute equally to the wave function
and the magnetic moment is zero. When J in the ground state
is nonzero, spin-up and spin-down states contribute with dif-
ferent weights and the nanomagnet has a nonzero magnetic
moment. Which J corresponds to the ground state depends
on the parameter �. The dependence of the ground-state
magnetic moment on � is shown in Fig. 2.

IV. EFFECT OF THE MAGNETIC FIELD

The above results can be easily generalized to take into
account the effect of the external magnetic field B applied
along the Z axis. Such a field adds a Zeeman term, g�BSzB,
to Hamiltonian �1�. This term is invariant with respect to the
rotation by the angle �. Its projection onto 	�S simply adds
g�BSBz to Eq. �14�. The full projected Hamiltonian be-
comes

0 2 3 4 5
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J > 0J = 0

S = 10

E/∆

α
1 2 3 4 5
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0.2

0.3

0.4

0.5
(dE/dα)/∆

α

FIG. 1. Zero-field ground-state energy as a function of �. Inset
shows the derivative of the ground-state energy on �.

ROTATIONAL STATES OF A NANOMAGNET PHYSICAL REVIEW B 81, 214423 �2010�

214423-3



Ĥ = −
�2

2I

d2

d�2 −
�

2
�x cos�2S�� + y sin�2S��� −

W

2
z,

�26�

where

W 	 − 2g�BSB . �27�

Since this Hamiltonian is invariant with respect to rotations,
its eigenfunctions are still given by Eq. �15� with the coeffi-

cients C�S now depending on B. Solving Ĥ�
J�=EJ�
J� one
obtains

EJ� =
�

2
�
1 +

J2

S2��

2
��1 + 
W

�
+

J

S
��2� �28�

for the energy levels. Here W can be positive or negative
depending on the orientation of the field. Positive W corre-
sponds to the magnetic field in the direction of the magnetic
moment, which provides the lower energy. At B�0 coeffi-
cients C�S can be presented in the form

CS =�1 +
W̄

��2 + W̄2
, C−S = ��1 −

W̄

��2 + W̄2

�29�

with

W̄ 	 W + �J�/S . �30�

Notice that Eq. �29� coincides with the form of C�S for a

motionless nanomagnet in the magnetic field B̄=B
−�J / ��I�. The magnetic moment of the magnet that is free to
rotate is given by

� = − g�BSW̄/��2 + W̄2. �31�

In the absence of the magnetic field, quantum number J cor-
responding to the ground state is determined by �. For ex-
ample, magnetic molecules this parameter is fixed. On the

contrary, in the presence of the field, J can be manipulated by
changing B. Solving Eq. �21� with EJ� of Eq. �28�, one ob-
tains the following expression for W=WJ at which the
ground state switches from J−1 to J:

WJ

�
=

2J − 1

2S
���1 − 
2J − 1

2S
�2�−1

+ 
 �

2S
�2

− �� .

�32�

Here J=1,2 , . . . ,S. The dependence of the ground-state
magnetic moment on W is shown in Fig. 3. The jumps at
critical values of the field must show as sharp maxima in the
differential susceptibility.

V. CONCLUSIONS

We have obtained exact low-energy quantum states of a
nanomagnet that exhibits spin tunneling and is free to rotate
about its anisotropy axis. The ground state depends on the
parameter �=2��S�2 / �I��. At �� �1−1 / �2S�2�−1 the spin
tunneling produces superposition of spin-up and spin-down
states, resulting in a zero magnetic moment. At �� �1
−1 / �2S�2�−1 the nanomagnet develops a finite magnetic mo-
ment. The spin localizes in one of the two directions along
the magnetic anisotropy axis in the limit of �→�.

Various limits discussed above are physically accessible
in magnetic molecules and atomic clusters. A high-spin mol-
ecule usually consists of hundreds of atoms, making its me-
chanical properties similar to the mechanical properties of a
tiny solid body. Molecule of a nanometer size has the mo-
ment of inertia in the ballpark of 10−35 g cm2. The energy of
the rotation induced by a spin transition may be comparable
to � but it is small compared to the energy of the excited

states with �mS��S. For Mn12 and Fe8 with Ĥ� �−DSz
2 these

excited states are separated from the ground state by �2S
−1�D, which is 13 K and 5 K for the above molecules,
respectively. In the low-energy limit, the only relevant spin
transitions coupled to rotations are tunneling transitions be-
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J = 10
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α
FIG. 2. Dependence of the ground-state magnetic moment on

parameter �.
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FIG. 3. Field dependence of the magnetic moment. Note the

jumps at W=WJ.
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tween �S� and �−S� in which the spin angular momentum
changes by 2S.

Our theory can apply to small clusters of ferromagnetic
materials. In this case the parameter � can be controlled by
the magnetic anisotropy and the size of the cluster. For Mn12
and Fe8 molecules ��1. Thus, when free to rotate, the spin
tunneling in these molecules must be strongly suppressed.
Such a behavior would be very different from their behavior
in a crystal. This effect may be important in designing qubits

based on magnetic molecules. It can be studied experimen-
tally same way as it has been done for beams of atomic
clusters.

ACKNOWLEDGMENTS

The authors thank Joseph Birman for useful communica-
tion. This work has been supported by the National Science
Foundation through Grant No. DMR-0703639.

1 D. M. Cox, D. J. Trevor, R. L. Whetten, E. A. Rohlfing, and A.
Kaldor, Phys. Rev. B 32, 7290 �1985�.

2 W. A. de Heer, P. Milani, and A. Chatelain, Phys. Rev. Lett. 65,
488 �1990�.

3 J. P. Bucher, D. C. Douglass, and L. A. Bloomfield, Phys. Rev.
Lett. 66, 3052 �1991�.

4 D. C. Douglass, A. J. Cox, J. P. Bucher, and L. A. Bloomfield,
Phys. Rev. B 47, 12874 �1993�.

5 I. M. L. Billas, J. A. Becker, A. Chatelain, and W. A. de Heer,
Phys. Rev. Lett. 71, 4067 �1993�.

6 X. Xu, S. Yin, R. Moro, and W. A. de Heer, Phys. Rev. Lett. 95,
237209 �2005�.

7 J. Tejada, R. D. Zysler, E. Molins, and E. M. Chudnovsky, Phys.
Rev. Lett. 104, 027202 �2010�.

8 A. R. Edmonds, Angular Momentum in Quantum Mechanics
�Princeton University Press, Princeton, New Jersey, 1957�.

9 E. M. Chudnovsky and J. Tejada, Macroscopic Quantum Tunnel-
ing of the Magnetic Moment �Cambridge University Press, Cam-
bridge, UK, 1998�.

10 W. Wernsdorfer, Nature Mater. 6, 174 �2007�.
11 L. Zobbi, M. Mannini, M. Pacchioni, G. Chastanet, D. Bonacchi,

C. Zanardi, R. Biagi, U. del Pennino, D. Gatteschi, A. Cornia,
and R. Sessoli, Chem. Commun. �Cambridge� 2005, 1640.

12 R. V. Martínez, F. García, R. García, E. Coronado, A. Forment-
Aliaga, F. M. Romero, and S. Tatay, Adv. Mater. 19, 291
�2007�.

13 S. Barraza-Lopez, M. C. Avery, and K. Park, Phys. Rev. B 76,
224413 �2007�.

14 U. del Pennino, V. Corradini, R. Biagi, V. De Renzi, F. Moro, D.
W. Boukhvalov, G. Panaccione, M. Hochstrasser, C. Carbone,
C. J. Milios, and E. K. Brechin, Phys. Rev. B 77, 085419
�2008�.

15 H. B. Heersche, Z. de Groot, J. A. Folk, H. S. J. van der Zant, C.
Romeike, M. R. Wegewijs, L. Zobbi, D. Barreca, E. Tondello,
and A. Cornia, Phys. Rev. Lett. 96, 206801 �2006�.

16 M.-H. Jo, J. E. Grose, K. Baheti, M. M. Deshmukh, J. J. Sokol,
E. M. Rumberger, D. N. Hendrickson, J. R. Long, H. Park, and
D. C. Ralph, Nano Lett. 6, 2014 �2006�.

17 J. J. Henderson, C. M. Ramsey, E. del Barco, A. Mishra, and G.
Christou, J. Appl. Phys. 101, 09E102 �2007�.

18 S. Voss, O. Zander, M. Fonin, U. Rudiger, M. Burgert, and U.
Groth, Phys. Rev. B 78, 155403 �2008�.

19 S. Barraza-Lopez, K. Park, V. García-Suárez, and J. Ferrer, Phys.
Rev. Lett. 102, 246801 �2009�.

20 E. M. Chudnovsky, Phys. Rev. Lett. 72, 3433 �1994�.
21 E. M. Chudnovsky and X. Martinez-Hidalgo, Phys. Rev. B 66,

054412 �2002�.
22 E. Hill and J. H. Van Vleck, Phys. Rev. 32, 250 �1928�.
23 H. A. Kramers, Z. Phys. 53, 422 �1929�.
24 M. R. Mueller, Fundamentals of Quantum Chemistry: Molecular

Spectroscopy and Modern Electronic Structure Computations
�Kluwer, New York, 2001�.

25 D. A. Garanin, J. Phys. A 24, L61 �1991�.
26 E. M. Chudnovsky, Phys. Rev. Lett. 92, 120405 �2004�.
27 E. M. Chudnovsky, D. A. Garanin, and R. Schilling, Phys. Rev.

B 72, 094426 �2005�.

ROTATIONAL STATES OF A NANOMAGNET PHYSICAL REVIEW B 81, 214423 �2010�

214423-5

http://dx.doi.org/10.1103/PhysRevB.32.7290
http://dx.doi.org/10.1103/PhysRevLett.65.488
http://dx.doi.org/10.1103/PhysRevLett.65.488
http://dx.doi.org/10.1103/PhysRevLett.66.3052
http://dx.doi.org/10.1103/PhysRevLett.66.3052
http://dx.doi.org/10.1103/PhysRevB.47.12874
http://dx.doi.org/10.1103/PhysRevLett.71.4067
http://dx.doi.org/10.1103/PhysRevLett.95.237209
http://dx.doi.org/10.1103/PhysRevLett.95.237209
http://dx.doi.org/10.1103/PhysRevLett.104.027202
http://dx.doi.org/10.1103/PhysRevLett.104.027202
http://dx.doi.org/10.1038/nmat1852
http://dx.doi.org/10.1002/adma.200601999
http://dx.doi.org/10.1002/adma.200601999
http://dx.doi.org/10.1103/PhysRevB.76.224413
http://dx.doi.org/10.1103/PhysRevB.76.224413
http://dx.doi.org/10.1103/PhysRevB.77.085419
http://dx.doi.org/10.1103/PhysRevB.77.085419
http://dx.doi.org/10.1103/PhysRevLett.96.206801
http://dx.doi.org/10.1021/nl061212i
http://dx.doi.org/10.1063/1.2671613
http://dx.doi.org/10.1103/PhysRevB.78.155403
http://dx.doi.org/10.1103/PhysRevLett.102.246801
http://dx.doi.org/10.1103/PhysRevLett.102.246801
http://dx.doi.org/10.1103/PhysRevLett.72.3433
http://dx.doi.org/10.1103/PhysRevB.66.054412
http://dx.doi.org/10.1103/PhysRevB.66.054412
http://dx.doi.org/10.1103/PhysRev.32.250
http://dx.doi.org/10.1007/BF01347762
http://dx.doi.org/10.1088/0305-4470/24/2/002
http://dx.doi.org/10.1103/PhysRevLett.92.120405
http://dx.doi.org/10.1103/PhysRevB.72.094426
http://dx.doi.org/10.1103/PhysRevB.72.094426

