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The accuracy of the fundamental properties of the energy landscape of silicon systems obtained from density
functional theory with various exchange-correlation functionals, a tight binding scheme, and force fields is
studied. Depending on the application, quantum Monte Carlo or density functional theory results serve as
quasiexact reference values. In addition to the well-known accuracy of density functional methods for geo-
metric ground states and metastable configurations we find that density functional methods give a similar
accuracy for transition states and thus a good overall description of the energy landscape of the silicon systems.
On the other hand, force fields give a very poor description of the landscape that are in most cases too rough
and contain many spurious local minima and saddle points or ones that have the wrong height.
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I. INTRODUCTION

In spite of the great progress in density functional theory
(DFT) for treating large systems, it is at present not possible
to treat systems with more than about 1000 atoms in com-
plex simulations where forces and energies have to be evalu-
ated many times. This is, for instance, necessary in molecular
dynamics simulations where one has to follow the evolution
of the system over long time intervals or in global optimiza-
tion methods for finding the ground-state geometry. In these
kinds of situations faster and more approximate methods
such as force fields or tight binding (TB) schemes are widely
used. Because of its technological importance several widely
used force fields exist for silicon and large scale simulations,
which are not feasible with density functional methods, are
frequently performed using these more approximate meth-
ods.

These force fields are typically fitted to a data set of
ground-state structures, usually containing crystalline struc-
tures and sometimes also nonperiodic structures. An accurate
description of some ground-state geometries is, however, not
sufficient to ensure accurate dynamical simulations. Dynami-
cal properties such as diffusion coefficients are related to
other fundamental properties of the energy landscape such as
barrier heights. The distribution of barrier heights and other
fundamental properties of the silicon potential-energy sur-
face (PES) have been studied using forcefields.! In a great
number of publications, the accuracy of DFT calculations for
structure predictions (i.e., minima on PES) for different sys-
tems as well as for silicon, has been studied and compared
with both high-level quantum-mechanical approaches®>* and
experimental data.>® In this paper we study overall funda-
mental properties of the energy landscape which are relevant
in many different contexts. We look, in particular, at the ac-
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curacy of the barrier heights in the various schemes used for
large scale simulations of silicon systems. Since it is known
that the barrier heights relevant to chemical reactions are not
very well described with standard density functionals such as
local-density approximation (LDA) (Ref. 7) or Perdew-
Burke-Ernzerhof (PBE),® we benchmark some of the energy
barriers using accurate quantum Monte Carlo (QMC) meth-
ods. There are two forms of QMC methods that are used for
electronic-structure calculations, the simpler variational MC
(Ref. 9) (VMC) and the more sophisticated diffusion MC
(Refs. 10 and 11) (DMC). In VMC, quantum-mechanical ex-
pectation values are calculated using Monte Carlo techniques
to evaluate the many-dimensional integrals. The accuracy of
the results depends crucially on the quality of the trial wave
function. The DMC removes most of the error in the trial
wave function. DMC is a stochastic projector method that
projects out the ground state from the trial wave function
using an integral form of the imaginary-time Schrodinger
equation. For fermionic systems, the antisymmetry constraint
leads to the fermion-sign problem that is cured by fixing the
nodes of the projected state to be those of an approximate
trial wave function. The resulting fixed-node error is the
main uncontrolled error in DMC. Currently, a systematic im-
provement of the wave function by optimization of an in-
creasing number of variational parameters is the most prac-
tical approach for reducing the fixed-node error.'>"'* A good
description of quantum Monte Carlo methods used in phys-
ics and chemistry can be found in Refs. 15-17.

Force fields and other approximate methods are some-
times applied to systems that are very different from the
systems that were in the fitting database. The question is
therefore how reliable are force-field-based structure predic-
tions of complex structures such as defects, interfaces, or
clusters. In most studies of such systems only one force field
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was used but in some exceptionally careful studies, such as
in the study of dislocation kinks in silicon'® and a compara-
tive study of silicon empirical interatomic potentials,'® the
results of several force fields were compared and significant
discrepancies in the results obtained from different force
fields were indeed found.

Balamane et al.'® performed an extensive study on com-
parison of different silicon force fields for clusters, surfaces,
and crystalline structures. They found that the employed
force fields are sufficiently accurate only for diamond struc-
ture and its intrinsic defects and among surfaces only for
Si(001). In addition they found that all force fields were un-
able to predict the equilibrium structures of small Si clusters.
Samela et al.’® compared three common silicon force fields
for molecular-dynamics simulations of cluster bombardment
of silicon structures. They concluded that while the force
fields give almost similar overall description of collision cas-
cades at different energies, measurable quantities like sput-
tering yields and crater sizes vary considerably between the
force fields. Erkoc and Takahashi?' compared 15 different
empirical force fields for silicon microclusters and obtained
the same results as Balamane but with a greater number of
trial potentials and fewer small test clusters. A comparative
study of empirical potentials of silicon with emphasis on
finite-temperature simulations of the Si(001) surface was
presented by Nurminen et al.?? Their results showed the in-
adequacy of the force fields for surfaces similar to what
Balamane ef al. found. In addition, simulations at finite tem-
peratures can be problematic even if the potential gives good
results for zero-temperature calculations. Hensel et al.?? per-
formed a comparative study between classical and tight bind-
ing molecular dynamics for silicon growth of a reconstructed
(100)-silicon crystal. They argued that accurate methods
such as tight binding are needed for applications other than
the crystalline diamond structure.

Since we have a variety of objectives for our paper, we
summarize them as follows. Activation energies associated
with transition states play an essential role in determination
of the rate of thermally activated processes. Since currently
DFT calculations are the most commonly used approach to
predict these barrier heights, we assess the performance of
various DFT exchange-correlation (XC) functionals using
DMC to calculate reference values. Futhermore, we consider
the energy and geometry of the low-lying configurations
which are local minima of the potential energy. The analysis
given addresses clusters and bulk silicon systems, general
enough to suggest that the approach and conclusions may be
relevant to other silicon systems. Finally, to shed light on the
accuracy of force fields we examine the configurational den-
sity of states obtained by various approximate schemes for
silicon. If the configurational density of states was to be in-
dependent of the method used to generate them this would be
consistent with accurate local minima in the PES. Conse-
quently we examine the differences between such quantities
for a range of force fields. Consequently the density of con-
figurations per energy interval would be identical for ap-
proximate and accurate methods.

The structure of our paper is as follows. In Sec. II, we
briefly discuss the methods and computational details of our
calculations. Then, in Sec. III, different DFT XC functionals
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and tight binding are compared with DMC for a set of tran-
sition states and their associated minima. For all other sec-
tions of the paper, DFT (with LDA XC functional) is used to
generate reference values. In Secs. IV and V, various classi-
cal potentials and tight binding are compared with each
other, and whenever possible, with DFT. In Sec. IV, the to-
pography of the PES as well as stable and metastable struc-
tures of small silicon clusters are studied. Furthermore, an
unusual flatness of the DFT energy landscape in some re-
gions is investigated in detail. Finally, in Sec. V, point de-
fects and configurational density of states of bulk silicon are
considered. Section VI presents discussions about the results
and the conclusions are summarized in Sec. VII.

II. METHODS

In our study we have included the most common force
fields for silicon, namely, the Tersoff force field,** the
Stillinger-Weber (SW) force field,” the environmental-
dependent interaction potential (EDIP) force field?® and the
Lenosky modified embedded-atom method (MEAM)
potential.”’?® We also present some limited results on a re-
fitted version of the Lenosky force field, labeled as reparam-
etrized Lenosky force field, which has the same functional
form and radial cutoffs but different spline parameters.?’
This model was specifically optimized to accurately model
multiple-interstitial defect structures in silicon and was ap-
plied successfully in another paper.’* The Tersoff force field
was smoothly extrapolated to zero by a third-order polyno-
mial using cut-off radii that are large enough to ensure a
smooth behavior of the potential. The cut-off values were 2.7
and 3.3 A, where the smaller value denotes the radius where
the polynomial takes over and the larger value the radius
where the polynomial interaction drops to zero.

The Lenosky TB (Ref. 31) (LTB) scheme was chosen to
provide a scheme considered to be intermediate in computa-
tional cost and accuracy between ab initio approaches and
force fields. We employed Kohn-Sham DFT using three cat-
egories of exchange-correlation functionals, i.e., local-
density approximation, generalized gradient approximation,
and hybrid functionals. Apart from the preparation of
trial wave function for QMC calculations and DFT barrier
heights within B3LYPS 2 all other DFT calculations are
performed with the BigDFT (Ref. 33) package, a
pseudopotential-based®*3 DFT code with a wavelet basis
set. Wavelets are a systematically extendable basis set and
the basis size was chosen sufficiently large that energies were
converged to better than to 0.01 eV. In all geometry optimi-
zations [for both cases saddle points (SPs) and minima] the
force-maximum component on the atoms was brought down
to less than 0.02 eV/A. All DFT calculations were per-
formed at I'-point. Grid spacing of 0.21 A is used in all
BigDFT calculations. The number of grid points determines
the number of basis functions used in the calculation.

The QMC calculations are performed using the CHAMP
code developed by Umrigar, Filippi, and Toulouse. The s,
2s, and 2p electrons of Si are eliminated using a Hartree-
Fock pseudopotential.’® The trial wave function consists of a
sum of Slater determinants of single-particle orbitals multi-
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plied by a Jastrow factor. The orbitals of the Slater determi-
nant are taken from a DFT calculation using GAMESS (Refs.
37 and 38) with the B3LYP (Ref. 32) exchange-correlation
functional. The excitations included in the sum of Slater de-
terminants are those with the largest weights in a configura-
tion interaction with single and double excitation (CISD) cal-
culations. Configuration state functions (CSFs), i.e., linear
combinations of determinants that have the correct spatial
and spin symmetries, are used to reduce the number of varia-
tional parameters. The Jastrow correlation function describes
electron-electron, electron-nuclear, and electron-electron
nuclear correlations. The Jastrow parameters and the CSF
coefficients are optimized in VMC using a recently devel-
oped energy minimization method.'>"'* Finally, DMC calcu-
lations using the optimized trial wave function and a time
step of 3.7X 107* eV~! determine the energies of the struc-
tures. Most of the calculations employed a single determi-
nant, but to estimate the size of the fixed-node error we per-
formed, for some structures, VMC and DMC calculations
with trial wave functions containing an increasing number of
Slater determinants up to 150.

III. TRANSITION STATES OF Sig

According to transition-state theory, the height and the
shape of saddle points and their associated minima deter-
mine, in an approximate manner, the dynamical behavior of a
system.>* Some efforts have been made by prior authors to
assess the effect of approximate-energy landscapes on the
dynamics of silicon systems, however, the overall picture
remains unclear.**-%? In order to investigate the quality of the
silicon potential-energy landscape within various schemes
we performed simulations to find saddle points of small Sig
clusters using DFT within the local-density approximation.
We then compared the barrier heights for these LDA configu-
rations with the heights obtained from other XC functionals,
namely, with a generalized gradient approximation func-
tional (PBE), a hybrid functional (B3LYP), and accurate
QMC methods. The eight-atom silicon cluster was chosen
because for this size, QMC is computationally not too expen-
sive. In agreement with previous work* we found that the
saddle-point geometries are nearly identical within different
XC functionals. The maximum displacement of an atom of a
PBE saddle-point geometry is only 0.02 A from the LDA
one. This justifies the use of LDA geometries in all energy
calculations. We also compared DFT saddle-point results
with the Lenosky tight binding method. Previous authors
have found that quantum Monte Carlo has demonstrated its
ability to provide accurate reaction barrier heights. Calcu-
lated values agreed with the experimental values to within
the statistical error bar of 0.07 eV* for some organic mol-
ecules and to within 0.005 eV (see Refs. 45 and 46) for the
well-known exchange reaction H+H,— H,+H. We will
therefore consider in the following our QMC results as ac-
curate reference values.

To generate our saddle-point configurations, we started
with the putative global minimum of the Sig cluster*’ and
using the improved dimer method*® we found six saddle
points (SP1-SP6) which connect the putative global mini-
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mum state to other ones or to itself—the latter corresponds to
the exchange of two silicon atoms (SP1 and SP4). Further-
more, two more saddle points (SP7 and SP8) were obtained
starting from the first low-lying isomer. One of them (SP7)
corresponds to the exchange of two atoms. Finding the
saddle points and the adjacent minima was done within LDA
using the BIGDFT (Ref. 33) package.

There are numerous publications (for a survey see Ref.
49) in which it is shown that DFT with conventional XC
functionals gives poor transition-state barrier heights for
chemical reactions.*3? Within LDA and GGA’s the results
are most unsatisfactory for hydrogen-transfer reactions
where covalent hydrogen bonds are broken and formed. The
most simple and prominent example is the exchange reaction
H+H,— H,+H where the conventional XC functionals do
not predict a barrier at all. The poor performance seems to be
due to poor cancellation of the electrostatic self-interaction
errors in the conventional XC functionals.>® In the literature
this problem is known as “self-interaction error” which is
related to the delocalization error.* Hybrid functionals,
which give a better error cancellation, give an improved bar-
rier height in this case.*” Nevertheless researchers usually
resort to wave-function methods if highly accurate barrier
heights are needed for chemical reactions.

Table I shows that in our case the situation is entirely
different. Figure 1 illustrates the correlations LDA, PBE, and
B3LYP barrier heights with respect to DMC results. As al-
ready noted above, DMC calculations provide our standard
of accuracy. The root-mean-square (rms) errors for LDA,
PBE, and B3LYP are 0.062 eV, 0.074 eV, and 0.159 eV,
respectively. While LDA is generally regarded as a less ac-
curate functional than PBE or B3LYP, we actually found the
surprising result that it worked better than both PBE and
B3LYP. How can this surprising accuracy be explained? In
contrast to chemical reactions our clusters are never torn
apart into fragments when they move along the minimum-
energy pathway from one local minimum over a saddle point
into another local minimum. Even at the transition state (see
Figs. 2 and 3) the silicon atoms are all in an environment that
is similar to the environment at a local minimum and one
cannot distinguish a saddle-point configuration from a local
minimum-energy configuration by inspection. DFT self-
interaction errors>* are therefore expected to cancel to a large
degree. For similar reasons, highly inhomogeneous environ-
ments with large density gradients, which can be better
treated with gradient corrected and generalized gradient
functionals, are situations not relevant for our calculation.
We believe these two arguments explain the unusually good
performance of LDA in our barrier calculations.

B3LYP,*? being a hybrid functional, is a linear combina-
tion of local and gradient corrected exchange and correlation
functionals with three adjustable parameters that were fitted
to a database of cohesive energies of small molecules. Mo-
tivated by the idea of empirically fitting of an XC functional,
we write

E,eq=a; X Erpa+ay X Epgg + a3 X Egspyp- (1)

Instead of empirically fitting a functional, we took a
weighted sum of the total energies from several methods,
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TABLE 1. Comparison of the barrier height (BH) energies of eight saddle-point (SP) configurations relative to the two neighboring
minima calculated with various XC functionals and QMC. The saddle point and minima configurations are from LDA. The abbreviation for
the various XC functionals are defined in the text. VMC and DMC stand for variational and diffusion QMC, MD-VMC and MD-DMC for
multideterminant VMC and DMC. The HOMO-LUMO gaps for the minima (HLGM) and for the saddle points (HLGS) are calculated within

LDA using the BigDFT code. The statistical errors are given in parentheses. All energies are in electron volts.

System HLGM HLGS LDA PBE B3LYP VMC DMC MD-VMC MD-DMC TB

SP1-BH1/2 1.45 0.55 0.359 0.367 0.405 0.434(23) 0.406(13) 0.329(9) 0.338(8) —-0.046
SP2-BH1 1.45 0.41 0.735 0.729 0.770 0.809(20) 0.804(18) —-0.286
SP2-BH2 0.22 0.077 0.094 0.058 0.103(22) 0.069(18) 0.166
SP3-BH1 0.96 0.64 0.043 0.050 0.056 0.046(18) 0.028(15) 0.042(9) 0.028(8) 0.201
SP3-BH2 1.45 2.900 2.689 2.328 2.927(17) 2.845(15) 2.969(8) 2.826(8) 1.934
SP4-BH1/2 1.45 0.13 1.065 1.053 1.075 1.233(18) 1.181(15) 1.131(10) 1.134(7) 0.496
SP5-BH1 1.21 0.42 0.338 0.346 0.324 0.410(18) 0.378(14) 0.398
SP5-BH2 1.45 0.766 0.761 0.800 0.883(17) 0.862(16) 0.019
SP6-BH1 1.49 0.69 0.581 0.573 0.514 0.503(18) 0.536(16) —-0.082
SP6-BH2 1.45 1.198 1.158 1.015 1.283(18) 1.194(16) 0.921
SP7-BH1/2 1.12 0.58 0.289 0.272 0.192 0.228(18) 0.224(16) 0.157
SP8-BH1 0.22 0.82 0.212 0.198 0.041 0.143(17) 0.120(16) 0.144
SP8-BH2 1.12 0.445 0.420 0.406 0.491(18) 0.445(16) —0.264

which perhaps gives similar results. The parameters
(a;,ay,a3)=(0.95,-0.59,0.72) were determined by a least-
squares fit of the data in Table I. The rms error obtained by
this predictive equation is 0.021 eV, about 1/3 of that the
LDA results. The rms error is actually similar in magnitude
to the DMC error bars, and it appears likely that the fitted
expression would have predictive power in other cases since
the three parameters were fitted to 13 data points, a signifi-
cantly greater quantity of data than the number of the fitting
parameters.

Since DFT is essentially a one-determinant method one
would expect that DFT results are particularly poor when
transition states have multideterminant character. This is fre-
quently the case in chemical reactions and under such cir-
cumstances multireference wave-function methods have to
be employed if accurate barrier heights are needed. Small
highest occupied molecular orbital (HOMO)-lowest unoccu-
pied molecular orbital (LUMO) gaps are an indication of the
importance of multireference configurations. The HOMO-
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FIG. 1. (Color online) The correlation of barrier heights from
DFT calculations with various XC functionals and the DMC barrier
heights.

LUMO gaps of all saddle points and the adjacent minima are
presented in Table I. The average HOMO-LUMO gap of
saddle points is less than that of the minima by =0.65 eV.
As usual the LDA and the GGA gaps are much smaller than
the B3LYP gaps which are certainly more accurate. For the
configurations with small HOMO-LUMO gaps we also did
multideterminant QMC calculations with as many as 150
determinants. The DMC energies went down by no more
than 0.05 eV. The results show that the influence of a mul-
tideterminant wave function on the barrier height is very
small, in fact, introducing multideterminant wave function
into QMC makes a difference of the same size as the error
bars. Another indication that the multideterminant character
of the saddle-point configurations can be neglected is the fact
that natural occupation numbers drop rapidly from one to
zero. The occupation numbers, obtained from CISD calcula-
tions using GAMESS with about 70 determinants, fall from
1.97 down to 0.04 at the HOMO-LUMO gap.

Table I also shows that the tight binding barrier heights
are not reliable. Since the results are even worse for the force
fields, we have not attempted to give error bars. An addi-

FIG. 2. (Color online) The saddle point SP2 (b) and the two
neighboring minima (a), (c). It is obvious that the silicon atoms in
the saddle point and the minima configurations are all in a similar
environment, in particular, the saddle point is very similar to the
structure (c).
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() (h)

FIG. 3. (Color online) The eight Sig saddle points obtained by
LDA calculations.

tional complication, which will be discussed in next section,
is that the potential-energy surfaces of force fields contain
many spurious minima and consequently also many spurious
saddle points connecting the spurious minima.

IV. LOW-ENERGY CONFIGURATIONS OF SILICON
CLUSTERS

A. Funnel-like structure of the PES of Si;¢

The potential-energy surface of the Siq cluster was ex-
plored systematically with all of the aforementioned classical
many-body potentials and the tight binding scheme using the
minima hopping method®>> (MHM). The MHM consists of a
sequence of consecutive short molecular-dynamics runs and
geometry relaxations. The MHM is a global optimization
method which can efficiently explore the low-lying part of
the energy landscape aiming at the global minimum.>®

The speed with which a system finds its ground state is
evidently a physical property of the system and should carry
over to most computational geometry-optimization algo-
rithms. The efficiency also depends on the form of the cor-
responding potential. Systems described by potentials with
staircaselike forms are possible to be relaxed efficiently to a
global minimum. Hence, such systems with easily accessible
ground states with well-defined structures are called structure
seekers. On the other hand, potentials with a sawtooth topog-
raphy lead to amorphous, glassy structures and are therefore
referred to as glass formers. It is a challenging task to per-
form global optimization on such systems.>’

We have found considerable differences in the speed of
finding the putative ground-state configuration with the
MHM when using the various potentials to describe the Sijq
cluster. Table II gives the average number nyyy of minima
visited before finding the putative global minimum. The dif-
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TABLE II. Average values in 100 MHM runs. nyyy is the num-
ber of minima visited before finding the putative ground-state
configuration.

Method nMIN
EDIP 85
Lenosky 10
Reparametrized Lenosky 8
Tersoff 116
Stillinger-Weber 31
Lenosky tight binding 42
DFT 32

ferences in nyyy can be ascribed to the configurational den-
sity of states (C-DOS) of the local minima for the particular
potentials, discussed in Sec. V B. A large nyy indicates a
high C-DOS in the low-energy region and vice versa. The
Siy¢ cluster, for instance, looks more like a structure seeker
with the Lenosky force field and more like a glass former
with the Tersoff force field.

B. Putative ground-state and low-energy configurations
of Si;¢ isomers

A database of stable configurations was generated by vis-
iting 1000 different local minima with the MHM in each
potential. To verify the accuracy of the potentials the ten
energetically lowest structures were relaxed to the nearest
local DFT minimum. The relaxations were performed by a
simple steepest descend method with a small stepsize in the
downhill direction. To increase the convergence rate a con-
jugate gradient method was used at the end of the relaxation.
Detailed results of the investigation including geometrical
properties will be discussed separately for each potential
later in this section. The geometrical features to characterize
surface properties of Si;q isomers are described in Fig. 4. In
this paper the expression “excited configuration” is used for
the lowest energy structures which are higher than the global
minimum.

A statistical analysis was performed on the data set and
the results are presented in Fig. 5 to give a quantitative in-

FIG. 4. (Color online) (a) A surface atom forms a sharp corner if
it defines an acute-angled tetrahedral (green) or pyramidal (red)
structure together with its three or four nearest neighbors, respec-
tively. (b) Two neighboring surface atoms form a sharp edge if they
make an acute-angled tetrahedral structure with the two common
nearest neighbors (blue). Four neighboring surface atoms are part of
a facet if they form a plane (orange).
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FIG. 5. (Color online) The box plots are based on ten low-lying structures of Si;. The boxes contain the values ranging from the lower
to the upper quartiles and the median is represented with horizontal lines. The maximum and the minimum as well as the mean values are
plotted separately with crosses and squares, respectively. The absolute energy value found after relaxation in DFT are represented in (a) with
arbitrary origin. Plot (b) shows the difference in DFT energy before and after relaxation. Plot (c) shows the average displacements per atom
before and after relaxation. Unitary transformations of the initial and the final structures were performed to diagonalize the moment of inertia
tensor with respect to each atom. The transformations which resulted in the lowest displacement were chosen. In plots (b) and (c) small

values indicate better agreement of the potential with DFT results.

sight to the different characteristics of each potential. Figure
5(a) shows the energies of the low-lying configurations after
relaxation in DFT. The lowest energy as well as the lowest
mean energy were achieved by the LTB scheme. The small
gap between the quartiles indicates a low amount of scatter.
The second lowest energy was predicted by the Tersoff po-
tential, but the scatter is considerably larger. The two other
figures show how close the predicted configurations are to
the nearest local DFT minimum, both energetically [Fig.
5(b)] and geometrically [Fig. 5(c)]. The SW and Tersoff
force fields behave similarly. Although the median values in
the relaxed energies in Fig. 5(a) are very low, the other two
figures indicate a high change in energy and a moderate
change in geometry during relaxation. The EDIP and Le-
nosky potentials perform rather moderately both in predict-
ing energies and geometries. Only the tight binding scheme
provides an overall excellent predictions of the low-lying
configurations.

EDIP. The putative ground-state configuration is a hollow
oblate spheroid consisting of four parallel planes. Each plane
contains four atoms forming a square which are rotated by
45° with respect to the neighboring planes. The top and the
bottom squares have an edge length 2.49 A and the interme-
diate planes 4.27 A. In this configuration all atoms are five-
fold coordinated with an average bond length of 2.50 A. The

first nine excited configurations have the same general fea-
tures as the putative ground state and only differ by forming
or breaking of up to three bonds. They cover an energy range
of 0.5 eV. When relaxed in DFT most of the structures are
heavily deformed. In general the void regions within the
structure collapse and the shape has a tendency to get elon-
gated. Seven structures show sharp corners and edges and
two structures exhibit extended facets. Only one minimum
was found to be stable in DFT.

Lenosky. The third and the fourth lowest energy configu-
rations are oblate spheroid and are the same as the second
lowest and the putative global minimum configuration, re-
spectively, of the EDIP potential. However, the putative
ground-state configuration with the Lenosky potential is
highly spherical consisting of four hexagonal curved panels
with sixfold coordinated center atoms. Although maintaining
the general form, the relaxation in DFT reveals that three of
the four panels are transformed into planes. Remarkably, an
excited configuration was found to relax in DFT to the above
mentioned ground-state configuration (energy difference in
DFT 0.7 V). Furthermore, there are four spherical and two
elongated hollow structures, only one of which is stable with
DFT. All other excited states are deformed heavily and the
majority show both sharp corners and edges, covering an
energy range of 0.4 eV.
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FIG. 6. (Color online) Ordering of the local minima energies in
Lenosky tight binding and DFT.

Stillinger-Weber. In contrast to the previous two poten-
tials, most configurations are highly elongated and often con-
tain pentagonal elements. There are only three exceptions
including the putative ground-state configuration which has a
hollow elliptical shape formed by two square and eight pen-
tagonal planes. Furthermore, none of the geometries contains
overcoordinated atoms. The structures of all minima found
with the Stillinger-Weber potential have a strong tendency to
contain a large number of sharp corners and only few facets
when relaxed in DFT. Although none of the structures are
stable in DFT the general elongated form is often conserved
and leads to low DFT energies, thus indicating an accurate
description of the low-energy regions on the PES. The con-
figurational energies are scattered over a range of 0.80 eV.

Tersoff. The putative ground-state geometry of the Tersoff
potential is identical to the one found with the Stillinger-
Weber potential. Only one of the nine lowest energy configu-
rations other than the putative ground state is elongated, the
other eight are very similar to the putative ground state with
hollow spherical shapes. The ninth-excited state is 1.4 eV
above the putative ground state. Similar to the Stillinger-
Weber potential the structures do not include overcoordi-
nated atoms. All structures are deformed after geometry op-
timizations with DFT and have a large number of sharp
corners.

Lenosky tight binding. The Lenosky tight binding scheme
predicts a putative global minimum configuration which is a
slightly distorted Stillinger-Weber and Tersoff putative
ground-state geometry. In contrast to the classical potentials
both hollow elliptical and elongated structures without void
regions are predicted in equal amounts. The energy of the
ninth-excited state lies only 0.15 eV above the putative
ground-state geometry, indicating an overall shallow PES.
Although some bond lengths are overestimated, all structures
with only one exception were found to be stable in DFT
calculations. However, three configurations with similar ge-
ometries converged to the same minimum structure. The or-
dering of the minima with respect to the energies within the
tight binding scheme and the DFT calculations is in fairly
good agreement with the ideal correlation (see Fig. 6). While
all four classical potentials fail to predict stable low-lying

PHYSICAL REVIEW B 81, 214107 (2010)

FIG. 7. (Color online) Illustration of geometry changes in a DFT
relaxation of the force-field minima. (a) and (d) show the initial and
the final configurations, respectively. (b) and (c) represent two snap-
shots of the intermediate configurations on the relaxation pathway.

Sije isomers the Lenosky tight binding scheme succeeds in
most cases.

In order to illustrate characteristic changes in geometries
during a DFT relaxation of a force-field minimum, the initial,
two intermediate, and final configurations during the relax-
ation of the third lowest minimum of the EDIP force field are
shown in Fig. 7. This particular configuration was chosen
since it has a moderate value for the average displacement
per atom among all configurations relaxed in DFT, namely,
~0.8 A. In Fig. 7, the formation of sharp corners can be
observed while approaching the DFT minimum, a typical
behavior for low-lying configurations of Sij.

C. Flat regions of the PES of Si;4 and Si3,

During DFT geometry relaxations of the Si;4 one can en-
counter cases where the cluster is distorted considerably even
though the energy decreases only slightly. Within these flat
regions the norm of the force is small but may increase
slightly while the monotonous downhill progress in energy is
preserved. Many steps are necessary in the steepest descent
DFT geometry relaxation to overcome these flat plateau re-
gions. This behavior is discussed in the following for the
DFT relaxation of the sixth lowest configuration found with
the Lenosky potential. Figure 8 explicitly shows the variation
in the energy with changes in geometry during the relaxation

8 T ; | | :
7k DFT |
Lenosky Tight-Binding -------
6 Bazant -------- 4
< Lenosky -
?:’/ > r Lenosky.reparametrized """" . T
> 4+ Stillinger Weber N
g Tersoff - ==
g 3
2
1
(e
0 0.05 0.1 0.15 0.2 0.25

Displacement per atom (A)

FIG. 8. (Color online) Energies of all potentials along a relax-
ation path in a DFT calculation plotted against the integrated atomic
displacement per atom. The starting configuration is a Lenosky
force field local minimum. The energies are shifted such that the
minimum values are set to 0. For this calculation a tight tolerance,
0.002 eV/A, for the maximum force component on atoms was nec-
essary. LenoskY,.pqramerrizea 1 an unpublished reparametrized Le-
nosky MEAM in which a single FFCD is stable (Ref. 29).
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TABLE III. Statistical data related to the Hessian matrix around local minima of up to 120 random
configurations of a Si; cluster. The corresponding average of largest and smallest eigenvalues of the Hessian
matrices are listed (in eV/A?). The range of the largest eigenvalues are listed in the second line. The last line
contains the average condition number « of the corresponding Hessian matrices.

EDIP Lenosky SW Tersoff LTB DFT
(Elarge) 61.0 43.0 38.0 58.0 23.0 27.0
Ef ~Efn, 83.0 65.0 12.0 106.0 7.0 8.0
(Egman) 0.23 0.44 0.31 0.72 0.18 0.2
(x) 476.0 132.0 175.0 93.0 239.0 197.0

in the various potentials. Only the Lenosky tight binding
scheme provides an accurate energy trend when following
the DFT relaxation pathway. All classical potentials fail to
even describe the monotonical lowering of the configura-
tional energy along the pathway. With the exception of the
Lenosky and the reparametrized Lenosky force fields they
give an oscillating energy surface instead of a flat one. This
is a first indication that the classical potentials give a too
rough PES. Although the SW potential is smoother than
EDIP and Tersoff it has a very large unphysical excursion in
energy at both end points which is not the case for any of the
other potentials studied. Similar performance of the various
force fields was observed by Lenosky et al. (see Fig. 6 of
Ref. 27). The MEAM ansatz of the Lenosky force field
seems to give smoother potential-energy surface than the
other classical potentials. Furthermore, the average number
of interacting atoms were calculated for each potential along
the relaxation path, but none of the potentials show a signifi-
cant fluctuation from the average values. As expected, the
number of interacting atoms is largest for the Lenosky tight
binding, followed by both Lenosky and reparametrized Le-
nosky potentials. EDIP, SW, and Tersoff show a similarly
low number of interacting neighbors.

The eigenvalues of the Hessian matrix were used as an-
other quantity to describe the differences of the PES among
the potentials. Since the smooth topography of the DFT
Born-Oppenheimer surface should be a property fairly inde-
pendent of the cluster size similar results as above can also
be expected for Siz, isomers. Therefore 120 random Si3, con-
figurations were relaxed using the different potentials and
largest and smallest eigenvalues of the Hessian matrix were
calculated when the closest local minimum was reached. The
results are listed in Table III. Two observations indicate that
the smoothness of the DFT energy landscape is not repro-
duced by force fields. First, the classical potentials tend to
overestimate the average of the largest eigenvalues (first row
in Table IIT) compared to DFT, indicating a rougher PES
with high-frequency eigenmodes. The EDIP potential, for ex-
ample, has a two times higher average of the largest eigen-
value compared to DFT. Second, the eigenvalues of the clas-
sical potentials show a higher scatter (second row in Table
IID), leading to eigenvalues much larger than the average.
This is another indication for a rough PES. The Tersoff po-
tential, for example, overestimates the range of the largest
eigenvalues by a factor of 13 compared to DFT. The SW
potential provides the most accurate results among the force
fields with respect to DFT. This is in agreement with its

accurate overall description of low-lying structures. The Le-
nosky tight binding scheme gives very accurate values for
the second derivative of the energy landscape, almost iden-
tical to DFT results.

V. CRYSTALLINE DEFECTS AND AMORPHOUS STATES
IN BULK SILICON

A. Defects in crystalline silicon

The MHM was used to explore the low-energy region on
the PES of bulk silicon. Starting with crystalline cubic dia-
mond structure consisting of 216 Si atoms, 200 000 local
minima were found successively for each classical potential
during the simulation. For the Lenosky tight binding scheme
only 25 000 structures could be found due to limited com-
puter time. Periodic boundary conditions with respect to the
ground-state geometry were used to provide the appropriate
bulk conditions. The ten energetically lowest configurations
of each potential were used as input configurations for ge-
ometry relaxations in DFT. Table IV summarizes results for
the DFT-relaxed geometries.

The correct ground-state geometry, the well-known dia-
mond structure, is predicted with all the potentials. However,
the structures of the first excited state of different force fields
do not coincide. For all potentials except the Lenosky force
field it is a single fourfold coordinate defect®® (FFCD). The
Lenosky potential on the other hand predicts a pair of two
fourfold coordinated defects® in different regions of the cell
as the lowest energy defect structure. The double FFCD is
3.99 eV higher in energy compared to the diamond structure.

The majority of the eight other low-energy geometries in
the EDIP potential are structures containing single displaced

TABLE IV. The results of ten configurations of each potential
relaxed with DFT. The second column shows the number of stable
structures. The following columns show the number of structures
which relax to the bulk crystal, to a single FFCD or two FFCDs
which are either neighboring (n-FFCD) or distant (d-FFCD).

Method Stable Bulk FFCD n-FFCD d-FFCD
EDIP 2 6 4 0 0
Lenosky 10 1 0 2 7
SW 7 1 4 5 0
Tersoff 2 4 6 0 0
LTB 10 1 1 4 4
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atoms which are either fourfold or fivefold coordinated.
Similar structures can be found with the Tersoff potential. All
of these excited configurations are unstable in DFT calcula-
tions. The Tersoff potential additionally has minima at a va-
riety of slightly distorted FFCDs which are unstable in DFT.

In contrast to the other three force fields, the Lenosky
force field always predicts pairs of FFCDs as low-lying en-
ergy configurations. They are either neighboring and share a
common atom or are distant, i.e., located in different regions
of the cell. Even though the single FFCD, which must be the
first excited state, is not predicted by the Lenosky force field
(the reparametrized Lenosky MEAM does stabilize the
single FFCD), all other low-lying energy configurations from
the second to ninth excited states are stable in DFT geometry
optimization. Nonetheless, the sequence with respect to the
energy does not coincide with the sequence in DFT energies.
The Stillinger-Weber force field behaves very similarly. Only
three structures were found to be unstable, the other five
excited states all contain two interacting FFCDs.

The best accuracy can be found with the Lenosky tight
binding scheme. All structures exist on the DFT Born-
Oppenheimer surface and the energy sequence is correctly
described with the exception of the ninth and tenth excited
states. They are exchanged in sequence and show an energy
difference of 0.02 eV with the Lenosky tight binding scheme
and 0.04 eV when calculated with DFT.

B. Configurational density of states of local minima

To describe the overall characteristics of the potential-
energy surface we chose the C-DOS which gives the number
of configurations per energy interval. The inherent structure
approach®-2 shows that the C-DOS influences the free en-
ergy and hence all thermodynamic quantities. The C-DOS,
together with other quantities, was recently used to quantify
energy landscapes of solids by Oganov and Valle.®* The cor-
rect C-DOS is reproduced by a force field if the energetic
ordering is quantitatively correct and if there is a one-to-one
mapping between the local minima of the approximate and
exact energy landscape. If either condition is not satisfied it
is very unlikely that the C-DOS is correctly reproduced.

30 40 50

Energy (eV)

We approximate this C-DOS by the minima hopping DOS
(MH-DOS) which is obtained simply by sampling the low-
energy region with the MHM and counting the number of
distinct minima found in an energy interval. It has to be
stressed that, in the plots we present in this paper, a more or
less complete sampling of all minima can only be achieved
in a very small interval around the putative global minimum.
Only in this small interval of several electron volt we ob-
serve in the MH-DOS the expected exponential growth of
the number of local minima with respect to the energy of the
C-DOS. In our plots we show, however, a much larger en-
ergy interval where the number of states is the true number
of states multiplied by the probability that a configuration in
this energy range will be visited. Since this probability de-
creases with increasing energy the MH-DOS tends to zero
for large energies in all our plots whereas the C-DOS would
be orders of magnitude larger. Since the minima hopping
method maps out higher energy configurations when the
minima hopping run is allowed to continue longer, we cannot
only expect a better mapping of the low-energy region but
also an extended mapping of higher energies with increasing
duration of the simulation. The MH-DOS and C-DOS agree
only within the first few bins of the exponential growth re-
gion. The lowest energy minima correspond to point defects.
The onset of the exponential growth region is due do a grow-
ing number of defects (mainly of the FFCD type) which lead
continuously to amorphous structures. Some of the potentials
also show a second peak at higher energies. This peak is due
to amorphous configurations which are related to a sheared
crystalline structure. Since we do not relax the simulation
cell sheared structures cannot relax.

The reason why we show the MH-DOS over an energy
interval which is much larger than the interval within which
we can obtain a reliable C-DOS is the following. If there
were good agreement between the C-DOS obtained from dif-
ferent force fields the MH-DOS would also agree. As seen
from Fig. 9 the MH-DOS obtained from different force fields
are drastically different and one can therefore conclude that
the C-DOS is also drastically different. The Stillinger-Weber
and the Lenosky tight binding show similar features in the
low-energy region, e.g., the energy gap between the single
FFCD and higher excited states and the spike between 7 and
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8 eV. While the EDIP and the Tersoff potentials show only a
single major peak around 10 eV, both Lenosky and
Stillinger-Weber have a second peak located at about 35 eV
which corresponds, as discussed above, to sheared structures.
This is due to the fact that for these two potentials the
C-DOS of unsheared amorphous structures is much lower
than for the other potentials and the MHM starts therefore
sampling higher energy regions corresponding to sheared
structures. The differences in the C-DOS are responsible for
the different speeds with which the putative global minimum
is found (see Table II).

VI. DISCUSSION

From our DFT barrier height results it would be tempting
to conclude that we have a good overall description of the
energy landscape with LDA, PBE, and B3LYP. However, it
is known that for interstitial defects in silicon, these methods
make approx. 1 eV error in the formation energies.®* This
error is not entirely systematic—it is a distortion of the
potential-energy surface rather than a pure rescaling, but
there are systematic trends because DFT is an ab initio
method and hence based on physical principles. Furthermore
many defects have electronic eigenstates within the band
gap, which is badly underestimated by LDA and PBE. The
occupancy of electronic eigenstates, and hence the total en-
ergy, is likely to be mispredicted as they approach the
conduction-band edge or tail. These issues and others have
been reviewed by Dedk et al.®

Our belief, based on our results, however, is that the
exchange-correlation functionals we tried will work rather
well for predicting barrier heights in solid-state pure silicon
systems in practice. On the other hand, it appears that the
distortion of the potential-energy surface, together with oc-
cupancy of incorrect electronic eigenstates®® must cause
DFT to predict the wrong local minima and the wrong order-
ing of local minima in at least some cases. For example, any
defect which is surrounded by extremely low barriers might
be stable in DFT but unstable in reality or vice versa.

The comparison of Sig transition states predicted by DFT
and QMC together with the previous studies on stable geom-
etries of semiconductor materials by others justify the use of
DFT as a reference method for the larger Si systems consid-
ered in the rest of this paper. In case of clusters, all of the
force fields failed to predict low-energy structures stable in
DFT, while in case of defected diamond structures the Le-
nosky and SW potentials outperformed the EDIP and the
Tersoff, giving very few unphysical local minima, while
EDIP and Tersoff mostly had many unphysical minima. This
is in agreement with the C-DOS calculations, see Fig. 9,
where abundancy of minima with energies lower than
~7.0 eV confirms the existence of many spurious local
minima. More precisely, there are two energy gaps in DFT
calculations, one between bulk and single FFCD of 2.34 eV,
the other between single FFCD and two or more FFCDs of
2.64 eV. These energy gaps are well described by SW and
Lenosky tight binding, whereas in EDIP and Tersoff the sec-
ond gap is occupied by spurious low-energy minima. Al-
though the single FFCD is not stable in the Lenosky poten-
tial, it has only a few spurious minima.

PHYSICAL REVIEW B 81, 214107 (2010)

A fascinating feature of the silicon energy landscape is the
existence of extremely flat regions that can only be assessed
by performing very high accuracy calculations. In Fig. 8 we
report DFT calculations of a relaxation pathway converged
so that maximum force components are less than
0.002 eV/A against which other methods are then com-
pared. This calculation again shows that SW and the Le-
nosky force fields are smoother than EDIP and Tersoff with
the Lenosky tight binding giving results most similar to DFT.
The SW model, additionally, covers too large of an energy
range which may be related to its too-stiff phonon energies.?’

Even though our results indicate that force fields are prob-
lematic for finding local minima reliably, there has been in-
teresting work in this area. The most complex body of work
involving finding local minima for silicon systems with a
force field is that of Ciobanu and Predescu® and those of
Chuang et al.%”%® They used the original Lenosky force field
with global optimization algorithms to find reconstructions
for various surfaces such as Si(105), Si(114), and Si(337)
that support complex surface reconstructions. In many cases
the local minima of the force field were incorrectly ordered
but many were stable in DFT, and putative ground-state
structures were identified and compared to experiments. Us-
ing the reparametrized Lenosky MEAM, local minima were
identified for multiple-interstitial clusters.?’

VII. CONCLUSIONS

QMC calculations for small clusters have shown that DFT
and, in particular, LDA barrier heights are rather accurate for
rearrangement processes occurring in silicon systems. This
justifies the use of DFT for the estimation of diffusion coef-
ficients and other dynamical properties. Furthermore highly
accurate DFT results for structural properties, i.e., local
minima of the potential-energy surface, have been reported
in numerous publications for different materials as well as
for silicon. Therefore, DFT calculations are able to provide
very reliable potential-energy surfaces for silicon systems.
On the other hand force fields, which are widely used for
dynamical simulations in large silicon systems, not always
accurately describe the potential-energy surface. In addition,
they nearly fail in all cases to describe the energy landscape
of silicon clusters. With the exception of the MEAM-based
Lenosky force field, all force fields give rise to potential-
energy surfaces that are too rough. In an extended crystalline
environment most force fields greatly overestimate the con-
figurational density of states because they give rise to many
spurious defect structures which do not exist in more accu-
rate schemes. Nonperiodic systems such as clusters present
particular problems for classical models, due to the miscoor-
dinated atoms. This is also true at surfaces and grain bound-
aries. Simulations based on the use of a single force field
should therefore be viewed with caution and should be veri-
fied by density functional calculations whenever this is fea-
sible. Lenosky tight binding was satisfactory in all of our
tests except for the barrier heights. This is presumably valid
for other well-developed tight binding schemes as well. We
conclude that tight binding is well suited for applications
related to geometrical properties of silicon systems, when-
ever a very high accuracy is not required.
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