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The phenomenological equations of motion for the relaxation of ordered phases of magnetized and polarized
crystal phases can be developed in close analogy with one another. For the case of magnetized systems, the
driving magnetic field intensity toward relaxation was developed by Gilbert. For the case of polarized systems,
the driving electric field intensity toward relaxation was developed by Khalatnikov. The transport times for
relaxation into thermal equilibrium can be attributed to viscous sound wave damping via magnetostriction for
the magnetic case and electrostriction for the polarization case.
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I. INTRODUCTION

It has long been of interest to understand the close analo-
gies between ordered electric polarized systems, e.g., ferro-
electricity, and ordered magnetic systems, e.g., ferromag-
netism. At the microscopic level, the source of such ordering
must depend on the nature of the electronic energy spectra.
The relaxation mechanism into thermal equilibrium state
must be described by local electric field fluctuations for the
electric polarization case and by magnetic intensity fluctua-
tions for the magnetization case; Specifically, the field fluc-
tuations for each case
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determine the relaxation time tensor for both cases via the
fluctuation-dissipation formula1–4
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We have unified the theories of relaxation in ordered polar-
ized systems and ordered magnetized systems via the Kubo
transport time tensor in Eqs. �1� and �2�.

The transport describing the relaxation of ordered magne-
tization is the Landau-Lifshitz-Gilbert equation.5–7 This
equation has been of considerable recent interest8–10 in de-
scribing ordered magnetic resonance phenomena.11–14 The
equation describing the electric relaxation of an ordered po-

larization is the Landau-Khalatinikov-Tani equation.15–17

This equation can be simply modeled18–21 with effective
electrical circuits.22–25 Information memory applications26–29

of such polarized system are of considerable recent
interest.30–32

The unification of the magnetic Gilbert-Landau-Lifshitz
equations and the electric Landau-Khalatnikov-Tani equa-
tions via the relaxation time tensor depends on the notion of
a nonequilibrium driving field. For the magnetic case, the
driving magnetic intensity Hd determines the relaxation of
the magnetization via the torque equation

Ṁ = �M 	 Hd, �3�

wherein � is the gyromagnetic ratio. For the electric case, the
driving electric field Ed determines the relaxation of the po-
larization via the equation of motion for an ion of charge ze

mr̈ = zeEd. �4�

The unification of both forms of relaxation lies in the close
analogy between the magnetic driving intensity Hd and the
electric driving field Ed.

In Sec. II the thermodynamics of ordered magnetized and
polarized systems is reviewed. The notions of magnetostric-
tion and electrostriction are given a precise thermodynamic
definition. In Sec. III, the phenomenology of the relaxation
equations is presented. The magnetic driving intensity Hd
and the electric driving field Ed are defined in terms of the
relaxation time tensor Eq. �2�. In Sec. IV, we introduce the
crystal viscosity tensor. From a Kubo formula viewpoint, the
stress fluctuation correlation
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determines the crystal viscosity
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For models of magnetic relaxation, acoustic heating can
dominate the relaxation time tensor via magnetostriction.33 A
central new result of the work which follows concerns mod-
els of electric relaxation wherein acoustic heating dominates,
via electrostriction, the relaxation time tensor in Eq. �2�. The
derivation employs the viscosity tensor in Eq. �6�. For com-
pleteness of presentation an independent and novel micro-
scopic derivation of viscosity—electrostriction or
magnetostriction—induced relaxation is given in Appendix.
It is presumed that the transport processes are quasistation-
ary. In the concluding Sec. V, the sound wave absorption
physics of the viscous damping mechanism will be noted.

II. THERMODYNAMICS

Our purpose is to review the thermodynamic properties of
both magnetically ordered crystals and polarization-ordered
crystals. The former is characterized by a remnant magneti-
zation M for vanishing applied magnetic intensity H→0
while the latter is characterized by a remnant polarization P
for vanishing applied electric field E→0.

A. Magnetically ordered crystals

Let w be the enthalpy per unit volume. The fundamental
thermodynamic law determining the equations of state for
magnetically ordered crystals is given by

dw = Tds + H · dM − e:d� , �7�

wherein s is the entropy per unit volume, T is the tempera-
ture, e is the crystal strain and � is the crystal stress. The
magnetic adiabatic susceptibility is defined by

� = � �M

�H
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If

N =
M

M
⇒ N · N = 1 �9�

denotes a unit vector in the direction of the magnetization
then the tensor �ijkl describing adiabatic magnetostriction
coefficients may be defined as34

2�ijklNl = M� �eij
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When the system is out of thermal equilibrium, the driving
magnetic intensity is

Hd = H − � �w

�M
	

s,�
− � · � �M

�t
	 , �11�

wherein � are the relaxation time tensor transport coefficients
which determine the relaxation of the ordered magnetic sys-
tem into a state of thermal equilibrium.

B. Ordered polarized crystals

The fundamental thermodynamic law determining the
equations of state for ordered polarized crystals is given by

dw = Tds + E · dP − e:d� , �12�

wherein w is the enthalpy per unit volume, s is the entropy
per unit volume, T is the temperature, e is the crystal strain,
and � is the crystal stress. The electric adiabatic susceptibil-
ity is defined by
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�E
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. �13�

The tensor �ijk describing adiabatic electrostriction coeffi-
cients may be defined as34
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The piezoelectric tensor is closely related to the electrostric-
tion tensor via
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When the system is out of thermal equilibrium, the driving
electric field is

Ed = E − � �w

�P
	

s,�
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�t
	 , �16�

wherein � is the relaxation time tensor transport coefficients
which determine the relaxation of the ordered polarized sys-
tem into a state of thermal equilibrium.

III. RESONANCE DYNAMICS

Here we shall show how the magnetic intensity Hd drives
the magnetic resonance equations of motion in magnetically
ordered systems. Similarly, we shall show how the electric
field Ed drives the polarization resonance equations of mo-
tion for polarized ordered systems.

A. Gilbert-Landau-Lifshitz equations

The driving magnetic intensity determines the torque on
the magnetic moments according to

�M

�t
= �M 	 Hd. �17�

Employing Eqs. �11� and �17�, one finds the equations for
magnetic resonance in the Gilbert form

�M
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�t
� , �18�

wherein the Gilbert dimensionless damping tensor � is de-
fined as

� = ��M�� . �19�

One may directly solve the Gilbert equations for the driving
magnetic intensity according to
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Equations �17� and �20� express the magnetic resonance mo-
tion in the Landau-Lifshitz form.

B. Landau-Khalatnikov-Tani equations

The driving electric field gives rise to a polarization re-
sponse according to

�2P

�t2 = � �p
2

4�
	Ed, �21�

wherein �p is the plasma frequency. A simple derivation of
Eq. �21� may be formulated as follows. In a large volume V,
the polarization due to charges 
zje� is given by

P = ��
j

zjer j

V
	 . �22�

If the driving electric field accelerates the charges according
to

mjr̈ j = zjeEd �23�

then Eq. �21� holds true with the plasma frequency
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wherein na is the density of charged particles of type a.
The polarization resonance equation of motion follows

from Eqs. �16� and �21� as17

�4�
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The electric field E induces the polarization P at resonant
frequencies which are eigenvalues of the tensor � for which

�2 =
�p

2�−1

4�
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2�� − 1�−1. �26�

The decay rates for the polarization oscillations are eigenval-
ues of the tensor � for which

� =
�p

2�

4�
. �27�

If the decay rates are large on the scale of the resonant fre-
quencies, then the equation of motion is over damped so that

min
j

� j � max
i

�i

implies
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�t
+

�w�P,s,��
�P

= E . �28�

Equation �28� represents the Landau-Khalatnikov equation
for polarized systems.

IV. HEATING RATE PER UNIT VOLUME

Let us here consider the heating rate implicit in relaxation
processes. Independently of the details of the microscopic
mechanism for generating such heat, the rates of energy dis-
sipation are entirely determined by �. Explicitly, the heating
rates per unit volume for magnetization and polarization are
given, respectively, by

q̇M =
�M

�t
· � ·

�M

�t
�29�

and

q̇P =
�P

�t
· � ·

�P

�t
. �30�

Finally, the notion of crystal viscosity �ijkl is introduced into
elasticity theory35 via the heating rate per unit volume from
rates of change in the strain �e /�t; it is

q̇e =
�eij

�t
�ijkl

�ekl

�t
. �31�

Crystal viscosity is employed to describe, among other
things, sound wave attenuation. Our purpose is to describe
how heating rates in Eqs. �29� and �30� can be related to the
heating rate in Eq. �31�. This allows us to express the trans-
port coefficients � in terms of the crystal viscosity.

A. Relaxation via magnetostriction

From the magnetostriction Eq. �10�, it follows that mag-
netic relaxation gives rise to a strain

�eij

�t
=

2

M
�ijklNk

�Ml

�t
�32�

and thereby to the heating rate

q̇ =
4

M2

�Mi

�t
��mnqiNq��mnrs��rskjNk�

�Mj

�t
�33�

in virtue of Eq. �31�. Employing Eqs. �29� and �33�, we find
that the magnetic relaxation transport coefficient in the mag-
netostriction model

�ij =
4

M2 ��mnqiNq��mnrs��rskjNk� . �34�

The Gilbert damping tensor follows from Eqs. �19� and �34�
as

�ij =
4�

M
��mnqiNq��mnrs��rskjNk� . �35�

The central relaxation tensor Eq. �35� describes the magnetic
relaxation in terms of the magnetostriction coefficients and
the crystal viscosity.

B. Relaxation via electrostriction

From the electrostriction Eq. �14�, it follows that a time-
varying polarization gives rise to a time varying strain
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and thereby to the heating rate

q̇ =
�Pi

�t
�kli�klmn�mnj

�Pj

�t
�37�

in virtue of Eq. �31�. Employing Eqs. �30� and �37�, we find
that the electric relaxation transport coefficient in the elec-
trostriction model

�ij = �kli�klmn�mnj . �38�

The central relaxation tensor Eq. �38� describes the polariza-
tion relaxation time tensor coefficients in terms of the elec-
trostriction coefficients and the crystal viscosity. The impli-
cations of the electrostriction model for the Landau-
Khalatnikov equation is to the authors’ knowledge a new
result.

V. CONCLUSIONS

For ordered polarized and magnetized systems, we have
developed phenomenological equations of motion in close
analogy with one another. For the magnetized case, the re-
laxation is driven by the magnetic intensity Hd yielding the
Gilbert equation of motion.7 For the polarized case, the re-
laxation is driven by the electric field Ed yielding the Tani
equation of motion.17 In both cases, the relaxation time ten-
sor � is determined by the crystal viscosity as derived in the
Appendix; i.e., in Eqs. �A3� and �A6�. The viscosity can be

measured independently from the magnetic or electrical re-
laxation by employing sound absorption techniques.36

APPENDIX: KUBO FORMULAS

From the thermodynamic Eq. �10�, the fluctuations in the
magnetic intensity are given by magnetostriction, i.e.,

�Hk�r,t� = − �2�ijklNl

M
	�
ij�r,t� . �A1�

Equations �A1�, �1�, and �5� imply

Gij
mag�r,r�,t� =

4

M2 ��mnqiNq�Fmnrs�r,r�,t���rskjNk� .

�A2�

Employing Eqs. �A2�, �2�, and �6�, one finds the central re-
sult for the magnetic relaxation time tensor; It is

�ij
mag =

4

M2 ��mnqiNq��mnrs��rskjNk� =
�ij

�M
. �A3�

From the thermodynamic Eq. �14�, the fluctuations in the
electric intensity are given by electrostriction, i.e.,

�Ek�r,t� = − �ijk�
ij�r,t� . �A4�

Equations �A4�, �1�, and �5� imply

Gij
pol�r,r�,t� = �kliFklmn�r,r�,t��mnj . �A5�

Employing Eqs. �A5�, �2�, and �6�, one finds the central re-
sult for the electric relaxation time tensor; It is

�ij
pol = �kli�klmn�mnj . �A6�
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