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Modifications to the quasiparticle self-consistent GW �QSGW� method needed to correctly describe metal/
vacuum interfaces and other systems having extended regions with small electron density are identified and
implemented. The method’s accuracy is investigated by calculating work functions for the Al�111�, Al�100�,
and Al�110� surfaces. We find that the results for work function do not depend on the density functional theory
functional employed to calculate the starting Hamiltonian and that QSGW yield results in quantitative agree-
ment with data from ultrahigh vacuum experiments.
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I. INTRODUCTION

The work function is not only a most important quantity
characterizing the surface of a metal, it also directly affect
surface phenomena such as growth rate, the form of crystal-
lites, sintering, catalytic behavior, adsorption, chemical reac-
tions, surface segregation, and formation of grain bound-
aries. In addition, the work function largely determines rates
of electron surface emission and is therefore of applied in-
terest for optimizing thermionic emitters,1 where a low work
function is sought, and pulsed-power components, e.g., in
transmission lines, where a high work function is required.
An ability to make accurate theoretical calculations of work
functions is therefore of great interest and importance for the
development of new high-performing materials.

Presently, most calculations of work functions are made
within density functional theory �DFT� �Refs. 2 and 3� using
either the local density approximation �LDA� or the general-
ized gradient approximation �GGA�. Unfortunately, the accu-
racy of the DFT-based methods in calculation of the work
function is not always satisfactory and results depend on the
DFT functional used �see, e.g., recent review of available
theoretical and experimental values of work function for a
number of metals in Ref. 4�. For instance, the work functions
of Al surfaces calculated by using the GGA with Perdew-
Burke-Ernzerhof �GGA/PBE� functional5 are approximately
0.2 eV lower then corresponding LDA values calculated with
Ceperley-Alder �LDA/CA� functional6 and approximately
0.3 eV lower then corresponding LDA values calculated with
Barth-Hedin �LDA/BH� functional7 �see Table I�. This ex-
ample highlights the need for methods capable of reaching
0.1 eV �or better� accuracy for theoretical prediction of the
work function of metals.

The GW approximation of Hedin8 is a well-established
method which yields highly accurate quasiparticle �QP� en-
ergies for bulk materials.9,10 GW calculations are usually per-
formed in a nonself-consistent manner by using the LDA
Green’s function, G, and screened Coulomb interaction, W
�so-called G0W0 method�. The results obtained by the G0W0
method depend on the quality of underlying DFT wave func-
tions and eigenvalues, and the agreement with experimental
data worsen if the DFT description is not sufficiently accu-

rate. For example, G0W0 based on LDA of GGA fails to
describe the band gaps of NiO or MnO �Ref. 11� while these
materials are much better described12 by G0W0 based on non-
local HSE03 functional that features screened-exchange con-
tribution and can, therefore, be regarded as a step toward
self-consistency. Recently, Faleev, van Schilfaarde, and
Kotani10,11 developed the so-called quasiparticle self-
consistent GW �QSGW� method which is independent of
DFT and demonstrated that results for QP energy levels of
bulk materials obtained by the QSGW are in better agree-
ment with experiment then results obtained by the standard
G0W0 methods. In contrast to the G0W0 methods based on
local or semilocal functionals, QSGW also correctly de-
scribes strongly correlated materials such as NiO or MnO.11

Although calculations of surface QP energies were per-
formed already more then two decades ago,13 GW calcula-
tions for surfaces and other nonbulk systems remains rare
due to the demanding computational requirements. Most
commonly, the GW method has been applied to study an
image potential and corresponding image states of
insulating14 and metallic15–17 surfaces and clusters.18 Re-
cently, the GW method was used to investigate the image
potential-induced renormalization of the molecular electronic
levels for molecules adsorbed on metal surfaces19,20 and thin
insulator films.21 Note that the image potential cannot be
obtained by the LDA or GGA approaches since they do not
include nonlocal polarization effects that are present in GW
theory through the W operator. Another application of the
GW method to nonbulk materials that is becoming an active
area of research is QP calculations of transport properties of
nanoscale systems.22–24

To the best of our knowledge, two GW studies of the
work functions of metals have been published to date. Morris
et al.25 calculated the work functions for Al�111�, Al�100�,
and Al�110� surfaces using the G0W0 method and making a
jellium approximation. They also included vertex corrections
to the self-energy and W �evaluated on a homogeneous elec-
tron gas level� that resulted in a significant, over 1 eV, un-
derestimation of calculated work functions, attributed to in-
herent self-interaction error. Heinrichsmeier et al.26 proposed
a new nonlocal parametrization of the exchange-correlation
functional derived from the G0W0 calculations for jellium
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surfaces �the Vxc�GW� method�, and applied the method to
real �111� and �100� surfaces of Al and Pt. A conclusion of
both studies was that the values of the Al�111� and Al�100�
work functions obtained by the G0W0 method are signifi-
cantly worse then corresponding LDA values as compared to
the experimental data �see Table I�. Since both these GW
calculations involve the jellium approximation, the question
remains how well the fully atomistic GW method could de-
scribe the work functions of metals as compared to the DFT
results and experiment.

In this paper, we present results of work-function calcula-
tions for the Al�111�, Al�100�, and Al�110� surfaces evalu-
ated within fully atomistic G0W0 and QSGW approaches. As
we show below, the values of the work function obtained by
these two methods only insignificantly deviate from each
other �within 0.02 eV�, do not depend on the initial DFT
functional, and are in excellent agreement with experimental
data. On the other hand, the DFT approaches predict differ-
ent results for the work function depending on the functional
used. The paper is organized into two main sections describ-
ing the methods and the results followed by a concise sum-
mary.

II. METHOD AND COMPUTATIONAL DETAILS

Let us first briefly describe the computational approach.
QSGW is a method to determine nonlocal �but static and
Hermitian� optimum one-particle Hamiltonian H0 in a self-
consistent way.10,11,27 First, starting with a trial Hamiltonian
H0 �usually, the LDA Hamiltonian is used as the first itera-
tion H0� the self-energy ���� is calculated in the GW ap-
proximation. The static self-energy is defined in the basis of
the eigenfunctions �kn�r� of the Hamiltonian H0 as
follows:10,11,27

�nn�
k = Re��kn�����kn� + ���kn���/2��kn�� , �1�

where k is the wave vector, n is the band index, �kn denote
eigenvalues of H0, and Re means to take the Hermitian part.
Next, the Hamiltonian H0 is updated for each iteration using
�nn�

k instead of the usual LDA exchange-correlation potential

H0 = −
�2

2m
+ Vext + VH + �

knn�

��kn��nn�
k ��kn�� , �2�

where Vext is the external �nuclei� potential and VH is the
Hartree potential. This procedure is iterated until self-
consistency is reached. Here, self-consistency is defined as
when �nn�

k generated by H0 is identical �within a small tol-
erance� to the �nn�

k that enters into H0. It has been shown10

that this procedure in an approximate way minimizes the
difference between the full nonlocal, nonstatic, and non-
Hermitian GW Hamiltonian H���=− �2

2m +Vext+VH+����
and Hamiltonian H0 �that is why it is called “optimum”�.
Note that H��� is a functional of H0 because both VH and
���� calculated in the GW approximation depend on eigen-
functions generated by H0. Hence, the iteration procedure
described above self-consistently determines both H��� and
the corresponding optimum H0. The G0W0 method is simply
the first iteration of described above cycle, self-energy is
obtained from Eq. �1� using LDA wave function and ener-
gies, and first-iteration G0W0 Hamiltonian is constructed by
Eq. �2�.

In the present work, we used the experimental lattice con-
stant of Al at zero temperature, 4.025 Å.28 The Al�111�,
Al�100�, and Al�110� surfaces were modeled by a �1�1�
surface unit cell in xy directions and a periodic combination

TABLE I. A comparison of experimental values of Al work functions �given in eV� for �111�, �100�, and
�110� surfaces with corresponding values calculated by different methods: QSGW, G0W0, and G0W0 with Al
described by jellium �G0W0�jel��, Vxc�GW�, LDA/BH, LDA/CA, LDA with Wigner interpolation formula
�Ref. 36�, and GGA/PBE.

Al�111� Al�100� Al�110�

QSGW 4.17a 4.36a 4.19a

G0W0 4.18a 4.38a 4.20a

G0W0�jel� 4.60 �Ref. 25� 4.69 �Ref. 25� 4.30 �Ref. 25�
Vxc�GW� 4.82 �Ref. 26� 4.59 �Ref. 26�
LDA/BH 4.32a 4.56a 4.36a

LDA/CA 4.22a 4.46a 4.26a

LDA/CA 4.25 �Ref. 37� 4.38 �Ref. 37� 4.30 �Ref. 37�
LDA/CA 4.19 �Ref. 38� 4.41 �Ref. 38�
LDA/CA 4.21 �Ref. 39�
LDA/Wigner 4.31 �Ref. 40� 4.51 �Ref. 40� 4.32 �Ref. 40�
GGA/PBE 4.06 �Ref. 33� 4.24 �Ref. 33� 4.07 �Ref. 33�
GGA/PBE 4.06 �Ref. 41� 4.25 �Ref. 41�
GGA/PBE 4.09 �Ref. 42� 4.27 �Ref. 43�
Experiment 4.24�0.02 �Ref. 44� 4.41�0.03 �Ref. 44� 4.28�0.02 �Ref. 44�
Experiment 4.26�0.03 �Ref. 45� 4.20�0.03 �Ref. 45� 4.06�0.03 �Ref. 45�
aPresent work.
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of NA Al layers and NV vacuum layers in z direction. The
vacuum layer was of the same width as the Al layer and
contains so-called floating basis orbitals29 placed instead of
the atomic muffin-tin orbitals. NA ranged from 4 to 12 and
NV ranged from 6 to 10 were used to analyze the conver-
gence of the results with respect to these parameters. The
work function, �, is defined as the difference between the
electrostatic potential at a point far from the surface and the
Fermi energy; �=Ves�	�−�F. In our calculations Ves�	� was
estimated as electrostatic potential in the middle of the
vacuum slab.

It is known that GW calculations of band gaps in semi-
conductor thin films30,31 and molecular chains32 performed in
repeated-cell geometries converge slowly with vacuum
thickness due to the long-range nature of the nonlocal
screened Coulomb interaction. Rozzi et al.32 investigated this
problem and developed a Coulomb cut-off scheme to elimi-
nate the long-ranged slab-slab interaction. They found that
the introduced Coulomb cut-off parameter mostly affects de-
localized unoccupied states. On the other hand, both quanti-
ties that enter the expression for the work function: the Fermi
energy and electrostatic potential are affected only by occu-
pied states that are localized inside the metal slab and there-
fore only weekly depend on the thickness of the vacuum
slab. Consequently, the work function converges quickly
with the number of vacuum layers: we found that NV=6 is
sufficient to determine the work function to 0.005 eV accu-
racy.

Both relaxed and unrelaxed internal atomic coordinates
were utilized to model the Al surfaces. The relaxed position
of Al layers with NA
10 were taken from GGA calculations
of Da Silva.33 In particular, for Al�111� surface the values of
interlayer expansion/contraction were +1.15%, −0.05%,
+0.46%, +0.21%, and −0.05% �first number is for the sur-
face layer, last number for fifth layer�, for Al�100� surface
+1.59%, +0.44%, −0.02%, −0.68%, and −0.56%, and for
Al�110� surface −7.18%, +3.87%, −2.12%, +2.04%, and
+0.82%.33

The QSGW method is implemented as an extension of the
all-electron full-potential linear muffin-tin orbital �LMTO�
program suite. The diagram of the self-energy and density/
potential self-consistency cycles that includes the LMTO and
GW parts of the code are shown on the Fig. 2 of Ref. 27. The
description of the basis sets and other details of the LMTO

and QSGW implementations can be found in Refs. 27 and
29.

The surface Brillouin-zone �BZ� integration in the LMTO

part of the code were performed with �22�22� and �24
�24� Monkhorst-Pack meshes34 �kLMTO mesh�. The GW
self-energy was calculated with �6�6�, �8�8�, and �10
�10� meshes in the surface BZ �kGW mesh�. The modified
offset-� method designed to treat anisotropic systems was
employed to perform k integration of surface BZ in the GW
part of the code �the method is described in Ref. 27, follow-
ing Eq. �53��. The GW part of the code, where the self-
energy is calculated given the eigenfunctions and eigenval-
ues of the H0 generated by the LMTO part, is significantly
more computationally demanding than the LMTO calculation.
In practice, it is computationally prohibitive to calculate the
self-energy on the same fine kLMTO mesh required for the

LMTO part. Thus, a rather sophisticated procedure that in-
cludes several transformations of the self-energy �nn�

k be-
tween different basis sets has been developed to interpolate
the self-energy calculated by the GW part of the program on
a coarse kGW mesh to finer kLMTO mesh used by the LMTO

part of the program.27

However, matrix elements of the self-energy in Eq. �1�
between states with high energy �
2 Ry� often cannot be
interpolated with sufficient accuracy from the kGW mesh to
the kLMTO mesh.27 �Note that a fine kLMTO mesh is required
when describing metals.� The latter is in part due to the long
range of the LMTO basis set �e.g., the smallest eigenvalue of
the overlap matrix can be on the order of 10−10�. In order to
overcome this k-interpolation problem, the high-energy part
��kñ

LDA,�km̃
LDA�Exccut� of the difference between the self-

energy and LDA exchange-correlation potential

Vñm̃
xc = �ñm̃ − Vñm̃

xc,LDA �3�

was substituted with a diagonal matrix with the diagonal
elements given by linear function of the LDA energy, Vññ

xc

=a+b��kñ
LDA. Here “	“ over the subscript denotes that the

function is represented in the basis of eigenfunctions �kñ
LDA of

the LDA Hamiltonian �the LDA basis� with eigenvalues
�kñ

LDA. The energy cut-off parameter Exccut is typically of the
order of 2–3 Ry. The constants a and b are fitted from cal-
culated Vññ

xc at lower energies. The results for the calculated
QP energies usually depend weakly on the cut-off parameter
Exccut or constants a and b. More details on the
k-interpolation procedure and the method used to control its
accuracy for bulk calculations could be found in Ref. 27,
Sec. II.

In the LDA basis the optimum Hamiltonian H0�k� Eq. �2�
reads

Hñm̃
0 �k� 
 ��kñ

LDA�H0��km̃
LDA� = �kñ

LDA�ñm̃ + Vñm̃
xc �k� . �4�

After modifications of the matrix Vñm̃
xc as outlined above the

Hamiltonian Hñm̃
0 �k� in a form of Eq. �4� is used in the LMTO

part of the program to obtain the QP wave functions and
energies.

In the present work, we found that the QSGW method
requires additional modification when the system exhibits
extended regions with small electronic density, for example,
when modeling a metal/vacuum interface. Explicitly, addi-
tion of the matrix elements Vñm̃

xc to the LDA Hamiltonian in
Eq. �4� leads to slightly improper mixing between occupied
LDA states with energies �km̃

LDA��F that are spatially concen-
trated in the metal region and “vacuum” LDA states with
energies �kñ

LDA
�F+� extending to the entire volume of the
system. As a result, after diagonalization of the Hamiltonian
�4�, the occupied QP states have small tails that decay un-
physically slow as a function of distance from the metal sur-
face. Several reasons may contribute to this slow, nonexpo-
nential decay of occupied QP wave functions into vacuum,
for example: remaining errors in the k interpolation of the
Vñm̃

xc , noncompleteness of the LDA basis, numerical errors,
etc.

QUASIPARTICLE SELF-CONSISTENT GW CALCULATION… PHYSICAL REVIEW B 81, 205436 �2010�

205436-3



Development of a general procedure to construct opti-
mum QSGW Hamiltonian for systems with vacuum regions
in a way that guarantees correct exponential decay of occu-
pied QP wave functions in vacuum is beyond the scope of
this paper. However, in application to the specific case of Al,
we can overcome this problem by straightforward truncation
of the unphysical nondiagonal matrix elements Vñm̃

xc with
�km̃

LDA��F and �kñ
LDA
�F+�, using the fact that the wave

functions of bulk Al are rather well described by LDA �see
Fig. 1�. Specifically, we truncate all nondiagonal matrix ele-
ments of Vñm̃

xc if the energies �kñ
LDA and �km̃

LDA satisfy follow-
ing conditions

Vñm̃
xc �k� = Vm̃ñ

xc �k� = 0

if �kñ
LDA − �km̃

LDA � Ec and �kñ
LDA � �F. �5�

Here Ec is a cut-off parameter. The idea of the method is to
allow the occupied LDA states m̃ to be mixed by matrix
Vñm̃

xc only with unoccupied LDA states ñ with energy less
then �F+Ec. Such procedure will prevent occupied states
from mixing with extended vacuum states if Ec�� �at least
in the first order of the perturbation theory, if consider Vñm̃

xc

in Eq. �4� as a perturbation to the LDA Hamiltonian�. Note
that second condition in Eq. �5� always allows the occupied
states to be mixed between themselves. In the limit Ec→	
there is no modification of the matrix Vñm̃

xc and the method
reduces to the standard QSGW approach. In the opposite
limit, Ec→+0, the method becomes an “unoccupied states
eigenvalue-only” self-consistent GW method. The unoccu-
pied states eigenvalue-only means that unoccupied sub-block
of the matrix Vñm̃

xc is diagonal so the unoccupied QP wave
functions are always equal to the LDA wave functions and
only QP energies are modified due to the diagonal matrix

elements Vññ
xc . Thus, parameter 0�Ec�	 smoothly inter-

polates between these two methods.

III. RESULTS AND DISCUSSION

We begin with analyzing different characteristics of bulk
Al and Al surfaces as function of parameter Ec. Figure 1
shows the density of states �DOS� of the bulk Al calculated
by LDA, full QSGW �that corresponds to the limit Ec→	�,
modified QSGW as specified by Eq. �5� with small cut-off
parameter Ec=0.1 eV, and the standard “eigenvalue-only”
self-consistent GW methods. �In the eigenvalue-only self-
consistent GW method all nondiagonal elements of the GW
addition to the LDA Hamiltonian are neglected Vñm̃

xc

=Vññ
xc�ñm̃, so the QP wave functions are always equal to the

LDA ones.� It is evident that all three modifications of the
GW method produce very similar DOS, somewhat different
from the LDA result. The eigenvalue-only DOS is very close
to the full QSGW DOS with minor deviations in the energy
range from �F−1 eV to �F+3 eV. More importantly, the
DOS obtained in the full QSGW �solid line� and DOS ob-
tained by modified QSGW with small cutoff Ec=0.1 eV
�dotted line� are almost indistinguishable on the figure. This
means that the truncation of the matrix elements Vñm̃

xc , as
specified by Eq. �5�, with arbitrary cut-off parameter Ec

0.1 eV practically does not change the bulk Al electronic
structure. This is an important result suggesting that we can
safely neglect erroneous nondiagonal elements of Vñm̃

xc with
�km̃

LDA��F and �kñ
LDA
�F+� in surface calculations.

Next, we turn to the Al/vacuum interface systems. Figure
2 shows the electron density averaged over the x and y di-
rections for an Al�111� surface using five different values of
Ec. The calculations were performed for four Al and eight
vacuum layers �NA=4 and NV=8�. The expected well-
behaved exponential decrease in electron density away from
the metal surface is seen for Ec=1.36, 2.72, and 4.08 eV.

FIG. 1. �Color online� DOS of bulk Al calculated in LDA
�dotted-dashed line�, full QSGW that corresponds to the limit Ec

→	 �solid line�, modified QSGW with small cut-off parameter Ec

=0.1 eV �dotted line�, and the standard eigenvalue-only self-
consistent GW �dashed line�. The DOS curves of the full QSGW
�Ec→	� and modified QSGW with Ec=0.1 eV are indistinguish-
able on the figure.

FIG. 2. �Color online� The electron density averaged over the xy
plane �in atomic units, note logarithmic scale� as a function of the
distance from the center of the vacuum slab, z, �in Å� for Al�111�/
vacuum interface calculated by modified QSGW method using five
different values of the Ec parameter. The number of Al and vacuum
layers are NA=4 and NV=8. The density curves with three smallest
values of Ec are indistinguishable on the figure.
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Importantly, the densities obtained using these three Ec are
indistinguishable. On the other hand, for Ec above 4.08 eV,
the density begins to deviate from the normal behavior; it
sharply increases near the center of the vacuum. The density
calculated with Ec=6.8 eV even increases, at some z, when
the distance from the metal increases. Similar results, inde-
pendence on Ec and correct exponential behavior of density
in vacuum for Ec�4 eV, and unphysical behavior for Ec

4 eV, is found for Al�100� and Al�110� surfaces.

We note that the unphysical behavior of the electron den-
sity only occur for small absolute density values, 4–5 orders
of magnitude smaller then the density in metal region. Also,
the QP energy bands depend only weakly on Ec: the energy
bands calculated with parameters Ec=2.72 and 6.80 eV �not
shown� almost coincide with each other for states with ener-
gies less then �F+2 eV and begin to deviate slowly for
higher energies. Increasing Ec from 2.72 to 6.8 eV results in
an upshift of the QP bands with energy above �F+4 eV by a
value ranged from 0 to 0.2 eV, depending on particular band.

Figure 3 shows the calculated work function, �, for
Al�111� as function of the cut-off parameter Ec. The value of
the work function does not depend on Ec, up to Ec	4 eV
but changes above this threshold. Similar behavior—
independence of the work function on Ec for Ec�4 eV and
rapid change above Ec	4 eV threshold, was obtained for
Al�100� and Al�110� surfaces. The threshold at Ec	4 eV at
which point the behavior of the work function and electronic
density in vacuum both sharply changes, is roughly equal to
the value of the work function Ec	�	4.2–4.4 eV of Al
surfaces, an additional indication that the origin of the error
is an improper mixing of the occupied and vacuum states
with energies �kñ

LDA
�F+�.
Summarizing the results shown in Figs. 1–3, we conclude

that �1� the DOS of bulk Al does not depend on Ec for Ec

0.1 eV; �2� for all three Al surfaces the electron density is
exponential in vacuum, does not depend on Ec for Ec
�4 eV, and demonstrates unphysical behavior for Ec

4 eV; and �3� for all three Al surfaces the value of the
work function does not depend on Ec for Ec�4 eV, and
sharply changes for Ec
4 eV. Therefore, in the range
0.1 eV�Ec�4 eV, Ec is large enough for Vñm̃

xc to include
all important matrix elements �at least at the level of bulk
Al�, and simultaneously small enough to not include Vñm̃

xc

that erroneously mix occupied LDA states with vacuum
LDA states. Importantly, the work function in this range does
not depend on Ec and thus could be taken as the true QSGW
value of the work function. Therefore, in all calculations pre-
sented below the Ec parameter is fixed and set to Ec
=2.72 eV.

The range of applicability of the method described by Eq.
�5� is limited to materials �such as Al� for which LDA wave
functions are adequate so the matrix elements of Vñm̃

xc with
�kñ

LDA−�km̃
LDA
� can be neglected. For any given metal, this

condition can be verified on bulk level without performing
time consuming surface calculations. The method is not ap-
plicable to metals �such as d-electron Fe and Cu� for which
the matrix elements Vñm̃

xc with �kñ
LDA−�km̃

LDA�� play signifi-
cant roles. As mentioned above, further efforts are required
to develop a universal QSGW-derived method applicable to
Fe, Cu, and other metals for which simple truncation of the
matrix elements, Eq. �5�, does not work.

Figure 4 shows the variation in the calculated work func-
tion, �, as function of slab thickness NA. The calculations
were performed with LDA and QSGW for unrelaxed sur-
faces using the following parameters: Ec=2.72 eV, NV=6,
�22�22� kLMTO mesh, and �6�6� kGW mesh in the surface
BZ �for the more anisotropic Al�110� surface we used �22
�16� kLMTO mesh, and �6�4� kGW mesh�. For the LDA
calculations we used the Barth-Hedin7 functional. � oscil-
lates as the slab thickness increases. These oscillations are
well known33 and can be attributed to quantum-size effects
�QSE�. The positions of the local maximums of the LDA �

FIG. 3. The work function calculated for Al�111� with NA=4
and NV=8 as function of the cut-off parameter Ec.

FIG. 4. �Color online� The work function of Al�111� �top panel�,
Al�100� �middle panel�, and Al�110� �bottom panel� surfaces calcu-
lated by LDA �squares� and QSGW �circles� approaches as function
of the number of Al layers, NA.
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at NA=5, 8, and 11 for the Al�111� surface, and minimums at
NA=7 for the Al�100� surface and at NA=5 and 12 for the
Al�110� surface are in agreement with previous DFT
calculations.33 The work functions obtained by the QSGW
method show similar QSE oscillations. We estimate the un-
certainty in our calculated for NA=12 �NA=14 for Al�110��
values of the work function due to the QSE as �0.03 eV,
which is larger then uncertainties due to other computational
parameters, for example, the number of k points in the kGW

mesh.
Delerue et al.35 and Freysoldt et al.21 found sizable renor-

malization of the GW self-energy in thin semiconductor
films due to the image potential at the interface; this effect is
as large as 0.2 eV for the band gap of Si slabs with a thick-
ness below 3 nm.35 This is a finite-size effect, different from
QSE. On the other hand, for metallic films the image poten-
tial inside the metal slab is well screened so it has only a
minor effect on occupied states concentrated within the slab.
Since the work function is mostly affected by occupied
states, we do not expect a significant image potential-induced
correction to the value of the QSGW work function. Further-
more, because there is no image potential in the LDA ap-
proach, this assumption is supported by the similar behavior
of � for QSGW and LDA as a function of slab thickness, see
Fig. 4.

Results from our work function calculations for three Al
surfaces are shown in Table I in comparison with experimen-
tal data and results from other theoretical studies. For all
three surfaces, our LDA/CA results are relatively close to
those obtained by other groups. The values of work function
of Al�111� and Al�100� surfaces calculated by different
groups using the GGA/PBE method also are relatively close
to each other. Thus, one can conclude that the results ob-
tained using a specific DFT functional are converged �within
0.1 eV or better accuracy� for different code implementa-
tions. On the other hand, Table I shows that the work func-
tions obtained by using different DFT functionals could de-
viate by more then 0.1 eV: the LDA/CA values of work
functions are universally smaller by 	0.1 eV then LDA/BH
values while GGA/PBE values are universally smaller then
both LDA/BH and LDA/Wagner values by as much as 0.3
eV. As mentioned in the introduction, such discrepancies em-
phasize the need for improved methods if an accuracy of 0.1
eV or better is required.

Table I shows that the work functions calculated using the
QSGW method for relaxed Al�111�, Al�100�, and Al�110�
surfaces are equal to 4.17, 4.36, and 4.19 eV, respectively.
We verified that these values do not depend on the particular
LDA exchange-correlation functional used for the initial it-
eration by applying both LDA/BH and LDA/CA. We found
that relaxation of the Al surface leads to a less than 0.01 eV
shift in the value of the QSGW work function: work func-
tions for unrelaxed systems are 0.002 and 0.007 eV higher
for A�111� and Al �100�, and 0.008 eV lower for Al �110�
surface relative to corresponding values for relaxed surfaces.
Such small effects of surface relaxation agree well with pre-
vious DFT calculations �see, e.g., Ref. 33�.

When compared with data from experimental photoelec-
tric measurements carried out under ultrahigh vacuum,44 the
work functions obtained using the QSGW method for

Al�111�, Al�100�, and Al�110� surfaces differ by 0.07, 0.05,
and 0.09 eV, respectively. All three differences are less then
0.1 eV and on the order of the sum of the theoretical and
experimental error bars; we therefore consider this agree-
ment excellent. Of particular interest are the differences be-
tween different surface faces: ��100�−��111�=0.19 eV
and ��110�−��111�=0.02 eV are both in agreement with
the experimental data44 ��100�−��111�=0.17 eV and
��110�−��111�=0.04 eV.

Note that all calculated work functions presented in Table
I �except G0W0�jel�� follow the increasing trend ��111�
���110����100�, in agreement with data. This behavior is
considered an anomaly; most other fcc metals instead follow
Smoluchowski’s rule ��110����100����111�. The
anomaly is caused by an increased p-atomiclike character of
DOS at the Fermi energy in aluminum for the three surfaces,
a behavior different to that of most fcc metals.37 We in this
context note that earlier experiments45 reported 0.21 and 0.22
eV smaller values for Al�100� and Al�110� work functions
compare to that of Ref. 44. However, Grepstad et al.44 sug-
gested that this discrepancy could be due to higher impurity
concentration, in particular oxygen, in the earlier experiment.

Table I shows that Al work functions calculated using the
G0W0 method differ little �0.01–0.02 eV� from the converged
QSGW results. The G0W0 results presented in Table I corre-
spond to using LDA/BH as starting point for GW iterations.
Similar 0.01–0.02 eV deviations from the converged QSGW
results were found for G0W0 when instead using LDA/CA.
We also note that the convergence of the GW iterations is
fast, meaning that the initial LDA wave functions are close to
the converged QP wave functions; a conclusion supported by
the similarity of the QSGW and QSGW �e-only� DOS for
bulk Al shown in Fig. 1. The substantial differences to pre-
vious G0W0 calculations by Morris et al.25 �G0W0�jel� line in
Table I� and Heinrichsmeier et al.26 �Vxc�GW� line in Table I�
should therefore neither be attributed to the nonself-
consistency of the G0W0 method nor to errors associated
with the choice of particular DFT functional. Instead, we
propose that the differences are due to the jellium approxi-
mation employed in both those studies.25,26

For more correlated materials such as Fe or Cu �where
LDA and GW wave functions overlap less than they do in
Al� we expect larger deviations of the work functions calcu-
lated by G0W0 and QSGW methods as well as a stronger
dependence of the G0W0 results on the DFT functional used
to calculate G0 and W0.

IV. SUMMARY

We have applied the QSGW and G0W0 methods to calcu-
late the work functions of Al�111�, Al�100�, and Al�110� sur-
faces. The G0W0 results differ from converged QSGW re-
sults by less then 0.02 eV and this small difference can be
attributed to significant overlap of the LDA and QP wave
functions. The QSGW results are in excellent agreement with
experimental data taken under ultrahigh vacuum conditions.
The calculated values of the work functions do not depend
on the DFT functional used for the initial Hamiltonian H0.
These results suggest that QSGW method can be used for
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reliable and accurate calculation of the work functions with
accuracy on the order of 0.1 eV or better.

We found that modifications of the original QSGW
method10,11,27 are required in order to apply the method to the
metal/vacuum surface. In particular, special care should be
taken to control the errors originated form �slight� improper
mixing of the occupied and vacuum states. In some simple
cases, such as Al, where LDA wave functions are already a
good approximation to the QP wave functions, simple trun-
cation of corresponding matrix elements �see Eq. �5�� are
enough to control these errors.

The truncation method is not applicable to metals such as
d-electron Fe and Cu for which the matrix elements Vñm̃

xc

with �kñ
LDA−�km̃

LDA�� play significant roles. For any given
metal, this condition can be verified by studying the bulk
electronic structure, thus without performing time consuming
surface calculations. Further efforts are required to develop

an universal QSGW-derived method applicable to Fe, Cu,
and other metals for which simple truncation of the matrix
elements is not adequate.
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